Skip to main content

Voronoi diagrams of moving points in the plane

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 1991)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 570))

Included in the following conference series:

Abstract

Consider a set of n points in the Euclidean plane each of which is continuously moving along a given trajectory. At each instant in time, the points define a Voronoi diagram. As the points move, the Voronoi diagram changes continuously, but at certain critical instants in time, topological events occur that cause a change in the Delaunay diagram. In this paper, we present a method of maintaining the Voronoi diagram over time, while showing that the number of topological events has a nearly cubic upper bound of O(n2λs(n)), where λs,(n) is the maximum length of an (n, s)-Davenport-Schinzel sequence and s is a constant depending on the motions of the point sites. In the special case of points moving at constant speed along straight lines, we get s = 4, implying an upper bound of O(n 32α(n)), where α(n) is the extremely slowly-growing inverse of Ackermann 's function. Our results are a linear-factor improvement over the naive quartic bound on the number of topological events.

In addition, we show that if only k points are moving (while leaving the other n− k points fixed), there is an upper bound of O(k n λs(n) + (n−k)2 λs(k)) on the number of topological events, which is nearly quadratic if k is constant.

We give a numerically stable algorithm for the update of the topological structure of the Voronoi diagram, using only O(log n) time per event (which is worst-case optimal per event).

Partially supported by a grant from Hughes Research Laboratories, Malibu, CA, and by NSF Grant ECSE-8857642.

Work on this paper by Thomas Roos was supported by the Deutsche Forschungsgemeinschaft (DFG) under contract (No 88/10-1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Abramowski and H. Müller, Collision Avoidance for Nonrigid Objects, in H. Noltemeier (ed.): ZOR — Zeitschrift für Operations Research, Vol. 32, 1988, pp 165–186

    Google Scholar 

  2. A. Aggarwal, L. Guibas, J. Saxe and P. Shor, A Linear Time Algorithm for Computing the Voronoi Diagram of a Convex Polygon, Proc. of the 19th Annual ACM Symposium on Theory of Computing, New York City, 1987, pp 39–45

    Google Scholar 

  3. A. Aggarwal, M. Sharir and P. Shor, Sharp Upper and Lower Bounds on the Length of General Davenport-Schinzel Sequences, Journal of Combinatorial Theory, Series A, Vol. 52, 1989, pp 228–274

    Google Scholar 

  4. M.J. Atallah, Some Dynamic Computational Geometry Problems, Computers and Mathematics with Applications, Vol. 11, 1985, pp 1171–1181

    Article  Google Scholar 

  5. H. Aunuma, H. Imai, K. Imai and T. Tokuyama, Maximin Locations of Convex Objects and Related Dynamic Voronoi Diagrams, Proc. of the 6th ACM Symposium on Computational Geometry, Berkeley, 1990, pp 225–234

    Google Scholar 

  6. F. Aurenhammer, Voronoi Diagrams — A Survey, Report 263, Nov. 1988, Institute für Informationsverarbeitung, Techn. Univ. Graz

    Google Scholar 

  7. B. Chazelle and H. Edelsbrunner, An Improved Algorithm for Constructing k th-Order Voronoi Diagrams, IEEE Transactions on Computers, Vol. C-36, Nov. 1987, No. 11, pp 1349–1354

    Google Scholar 

  8. R.L. Drysdale III and D.T. Lee, Generalized Voronoi Diagrams in the Plane, Proc. 16th Annual Allerton Conference on Communications, Control and Computing, Oct. 1978, pp 833–842

    Google Scholar 

  9. H. Edelsbrunner, Edge-Skeletons in Arrangements with Applications, Algorithmica 1986, Vol. 1, pp 93–109

    Google Scholar 

  10. H. Edelsbrunner, Algorithms in Combinatorial Geometry, EATCS Monographs in Computer Science, Springer-Verlag, Berlin-Heidelberg, 1987

    Google Scholar 

  11. H. Edelsbrunner, J. O'Rourke and R. Seidel, Constructing Arrangements of Lines and Hyperplanes with Applications, SIAM J. Comput., Vol. 15, No. 2, May 1986, pp 341–363

    Article  Google Scholar 

  12. S. Fortune, A Sweep-line Algorithm for Voronoi Diagrams, Proc. 2nd Annual ACM Symp. Computational Geometry, Yorktown Heights, 1986, pp 313–322

    Google Scholar 

  13. J-J. Fu and R.C.T. Lee, Voronoi Diagrams of Moving Points in the Plane, Int. Journal of Computational Geometry & Applications, Vol. 1, No. 1, 1991, pp 23–32

    Google Scholar 

  14. H. Imai and K. Imai, Voronoi Diagrams of Moving Points, Proc. Int. Computer Symp., Taiwan, 1990, pp 600–606

    Google Scholar 

  15. I.G. Gowda, D.G. Kirkpatrick, D.T. Lee and A. Naamad, Dynamic Voronoi Diagrams, IEEE Trans. on Information Theory, Vol. IT-29, No. 5, Sept. 1983, pp 724–731

    Google Scholar 

  16. L. Guibas, D.E. Knuth and M. Sharir, Randomized Incremental Construction of Delaunay and Voronoi Diagrams, Proc. 17th Intern. Colloquium on Automata, Languages and Programming ICALP 90, LNCS 443, Springer, 1990, pp 414–431

    Google Scholar 

  17. L. Guibas and J. Stolfi, Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams, ACM Transactions on Graphics, Vol. 4, No. 2, April 1985, pp 74–123

    Google Scholar 

  18. H. Hadwiger und H. Debrunner, Kombinatorische Geometrie in der Ebene, Monographies de L'Enseignement Mathématique, No. 2, Université Genève, 1959

    Google Scholar 

  19. S. Hart and M. Sharir, Nonlinearity of Davenport-Schinzel Sequences and of Generalized Path Compression Schemes, Combinatorica, 1986, Vol. 6, pp 151–177

    Google Scholar 

  20. K. Imai, S. Sumino and H. Imai, Geometric Fitting of Two Corresponding Sets of Points, Proc. 5th ACM Symp. on Computational Geometry, 1989, pp 266–275

    Google Scholar 

  21. D.T. Lee, On k-Nearest Neighbor Voronoi Diagrams in the Plane, IEEE Transactions on Computers, Vol. C-31, No. 6, June 1982, pp 478–487

    Google Scholar 

  22. D. Leven and M. Sharir, Planning a Purely Translational Motion for Convex Objects in Two-Dimensional Space Using Generalized Voronoi Diagrams, Discrete & Computational Geometry, 1987, Vol. 2, pp 9–31

    Google Scholar 

  23. H. Noltemeier, Computational Geometry and its Applications, Proceedings Workshop CG '88, Universität Würzburg, März 1988, LNCS 333, Springer Verlag, 1988

    Google Scholar 

  24. J. O'Rourke, Computational Geometry Column 12, SIGACT News, Vol. 22, No. 2, Spring 1991, pp 26–29

    Google Scholar 

  25. F.P. Preparata and M.I. Shamos, Computational Geometry — An Introduction, Springer-Verlag, New York, 1985

    Google Scholar 

  26. T. Roos, Voronoi Diagramme, Diplomarbeit, Universität Würzburg, 1988

    Google Scholar 

  27. T. Roos, k — Nearest — Neighbor Voronoi Diagrams for Sets of Convex Polygons, Line Segments and Points, Proceedings 15th Intern. Workshop on Graph-Theoretic Concepts in Computer Science WG89, LNCS 411, Springer-Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  28. T. Roos, Voronoi Diagrams over Dynamic Scenes (Extended Abstract), Proceedings 2nd Canadian Conference on Computational Geometry, Ottawa, 1990

    Google Scholar 

  29. T. Roos, Voronoi Diagrams over Dynamic Scenes, to appear in Discrete Applied Mathematics, 1991

    Google Scholar 

  30. T. Roos and H. Noltemeier, Dynamic Voronoi Diagrams in Motion Planning, to appear on 15th IFIP Conference on System Modeling and Optimization, Zurich, 1991

    Google Scholar 

  31. M.I. Shamos and D. Hoey, Closest — Point Problems, Proc. 16th Annual Symp. on FOCS, 1975, pp 151–162

    Google Scholar 

  32. M. Sharir, Davenport-Schinzel Sequences and their Geometric Applications, pp 253–278, NATO ASI Series, Vol. F40, Theoretical Foundations of Computer Graphics and CAD, R.A. Earnshaw (Ed.), Springer-Verlag Berlin Heidelberg, 1988

    Google Scholar 

  33. K. Sugihara and M. Iri, Construction of the Voronoi Diagram for One Million Generators in Single-Precision Arithmetic, private communications, 1989, to appear in Proc. of IEEE

    Google Scholar 

  34. C.K. Yap, An O(n log n) Algorithm for theVoronoi Diagram of a Set of Simple Curve Segments, Discrete & Computational Geometry, 1987, Vol. 2, pp 365–393

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gunther Schmidt Rudolf Berghammer

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guibas, L.J., Mitchell, J.S.B., Roos, T. (1992). Voronoi diagrams of moving points in the plane. In: Schmidt, G., Berghammer, R. (eds) Graph-Theoretic Concepts in Computer Science. WG 1991. Lecture Notes in Computer Science, vol 570. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55121-2_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-55121-2_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55121-8

  • Online ISBN: 978-3-540-46735-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics