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Abstract 

By using an 0 ((log n)2) time EREW PRAM algorithm for a maximal independent 
set problem (MIS), we show the following two results: (1) Given a graph, the maximal 
vertex-induced subgraph satisfying a hereditary graph property n can be found in time 
0 ( ~ ~ ( " ) ~ , ( n ) ( l o ~  n)2) using a p~lynomia~l number of processors, where X(T) is the 
maximum of diameters of minimal graphs violating T and T,(n) is the time needed to 
decide whether a graph with n vertices ~a~tisfies T. (2) Given a family C = {el,. . . , c,)  
of subsets of a finite set S = {I, .  . . , n) with S = Ugl ci, a minimal set cover for S can be 
computed on an EREW PRAM in time O(cup(log(n + m))2)  using a polynomial number 
of processors, where cu = max{lcil I i = 1, .  . . , na) and p = max{ldjl I j = 1,. . . ,n). 

1 Introduction 

We show a way of employing the parallel algorithms for the maximal independent set problem 

(MIS) [3, 4, 51 to solve problems in which maximal or minimal solutions are searched. For 

the bounded degree maximal subgraph problems, we have constructed an NC algorithm by 

employing the NC algorthms for MIS [8]. This paper extends the technique developed in [8] 

and gives NC algorithms for two kinds of such problems. 

The first problem is to find a maximal set of vertices which induces a subgraph satisfying a 

given graph property T .  The other is the minimal set cover problem that is, given a collection 

C = {el, ..., h) with ci c S = (1, ..., n),  to find a collection C' C such that every element 



in S is contained in some c E C' but no proper subcollection C" c C' does not have this 

property. 

These problems are easily solved in polynomial time by straightforward greedy sequential 

algorithms. However, these algorithms are hardly parallelizable since they are P-complete 

[7]: It is shown in [6] that the lexicographically first maximal subgraph problem for a given 

property n is P-complete if n is hereditary, nontrivial and polynomial-time testable. The 

same fact also holds for the greedy minimal set cover algorithm. 

For the maximal subgraph problem, we need some restrictions on the property to solve 

the problem in NC. A graph property ?r is called local if the diameter of any minimal graph 

violating n is bounded by some constant. For such local property T, we consider the problem 

of finding a maximal vertex-induced subgraph which satisfies ?r and, simultaneously, whose 

maximum vertex degree is at most A, where A is a given constant. We prove that this 

problem can be solved in NC by using MIS if T is testable in NC. 

For the minimal set cover problem, we also show an algorithm which employs an MIS 

algorithm. This algorithm can be implemented on an EREW PRAM in time O(cu/3(log(n + 
r n ) ) 2 )  using a polynomial number of processors, where cu = max{lci 1 I i = 1, . .. , rn} and 

,b' = 1nax{ldjl I j = 1, ..., n} with dj = {ci I j E ci}. This implies that if a/3 = 0 ( ( 1 0 ~ ( n + m ) ) ~ )  

then the problem is solvable in NC. 

The algorithms for these problems are described by a scheme which applies MIS repeat- 

edly. Thus we do not directly deal with parallelization of the problems. Our concern is how 

to employ an MIS algorithm to solve problems in parallel. 

2 Maximal subgraph problem for a local property 

Let G = (V, E) be a graph. For a subset U of vertices, the induced subgraph of U is the graph 

defined by G[U] = (U, E[U]), where E[U] consists of edges whose endpoints are both in U. 

Let n be a property on graphs. We say that a graph G = (V, E) is a minimal graph 

violating n with respect to vertices if G violates n and the vertex-induced subgraph G[U] of 

U satisfies n for every subset U of V with U + V. The property ?r is called local with respect 

to vertices if X(n) = sup{diameter(G) I G is a minimal graph violating n with respect to 

vertices} is finite. 

Remark 1 A minimal graph violating a property ?r with respect to vertices must be con- 

nected if n is local. 

A property n on graphs is called hereditary with respect to vertices if for every graph 

G = (V ,E)  satisfying n, the vertex-induced subgraph G[U] also satisfies T for every subset 



Theorem 1 Let n be a graph property which is local and hereditary with respect to vertices. 

Then a maximal subgrapli of a graph G = (V, E) which satisfies n and whose maximum degree 

is at most A can be coinlsuted on an EREW PRAM in time ~ ( ~ ' ( " ) ~ , ( n ) ( l o ~  n)2) using a 

polynomial number of processors, where T,(n) is the time needed to decide whether a graph 

with n vertices satisfies n. 

Proof. For subsets W and U  of vertices with W n U  = 0, let EF = {{v, w) 2 W I 
distGlr/uIv,w)l(v,~) 5 X(n) with v # w) and Nu(w) = {u E U I d i ~ t ~ [ ~ ( u , w )  5 X(n) - I),  

where distG({v, w)) is the length of the shortest path between v and w in G .  Then let 

HF = (W, E [ W ]  U E?). The required set U of vertices is computed together with a set 

W of vertices such that 147 n U  = 0. Initially let W = V and U = 0. At each iteration 

of the algorithm, a maximal independent set I of H? is computed and added to U  while 

vertices which induce a graph violating n or make the degree of some vertex greater than A 

are deleted from 137 together with I. This is iterated AX(") times. Formally the algorithm is 

described as follows: 

1 begin /* G  = (V, E) is a.n input */ 
2 w t v ; u + - 0 ;  
3 while W f 0 do 
4 begin 
5 Find a maximal independent set I  of I*; 

6 U t - U U I ;  

7 W c - w - I ;  

8 W t- W - {w E W / G[U U {w)] violates n or deg(G[U U {w)]) > A) 

9 end 
10 end 

EF consists of unordered pairs of vertices such that if the vertices are added to U at 

the same iteration the induced subgraph of U  may violate the property. We show that this 

algorithm computes a maximal subset U  whose induced subgraph satisfies n and maximum 

degree is at most A. 

Let Wo = V and Uo = 0. Then the graph is the same as G  = (V, E ) .  Therefore in the 

first iteration, a maximal independent set of G is computed at line 5. For i = 1, ..., AX("), let 

Ui, I, and lYi be the contents of variables U ,  I  and W at the end of ith iteration, respectively. 



Obviously, Wi n Ui = 0 for i = 0, . . . , AX("). We assume that the induced subgraph GIUi-l] 

satisfies T and the maximuin degree of GIUi-l] is at  most A. 

Let { w , u )  be an edge in E with zu E 144 and u E Ui. Line 8 deletes every vertex which is 

adjacent to more than A vertices in Ui or adjacent to a vertex v in Ui with degG[uil(v) = A .  

Therefore u is adjacent to at most A vertices in Ui and degG~uju{wll(u) 5 A. Moreover, 

INui(w)l 5 AX(")-'. Hence, for ea,cli w in Wi, we see that 

To show that W becomes empty within A'(") iterations of the while-loop, it suffices to 

prove that 

Ai (w ) > Ai-l ( w )  

wi-1 for each w in Wi. Since w is not in the maximal independent set Ii of HUj-l computed by 
wi-1 line 5 ,  w is adjacent to a vertex v in Ii C T.T/i-l via an edge {w, v )  in EIWi-l] or Eu,-l . 

Case 1. { w ,  v )  E EIWi-l]: Then { w ,  v )  is an edge in G[Uiu {w)]. Hence degG~uiu~wll(v)  2 
1. Since v E Nui ( 2 0 )  and v @ NUi-, ( w ) ,  we see that Ai(w)  > ( w )  + degG[uiu{wll ( v )  > 
Ai-l(w)+ 

Case 2. { w ,  v )  E E:-<': Then there is a path w ,  u l ,  ..., uk-1, v with k < X ( T )  and 

~j E Ui-1 ( j  = 1 , .  . . , k - 1) in G[Ui-1 U { w , v ) ] .  Since v E I/Vi-l, I4yiYl n Ui-1 = 0 and 

w # v ,  we see v @ Ui-l U { w ) .  Hence { V , U ~ - ~ }  is not an edge in GIUi-l U { w ) ] .  On the 

other hand, v is in Ui and uk-1 is in UiWl Ui. Hence { v ,  uk - l }  is an edge in G[Ui U { w ) ] .  

Therefore degG[U,u{~)] (uk- 1 )  > deg~[U,-, "{w}] (uk- 1 ) .  Since uk-1 E NUt-, (w ) C NU, ( W )  we See 

that Ai(w)  > A i - l ( ~ ) .  

We now show that deg(G[Ui]) 5 A and G[Ui] satisfies T .  

Claim 1. deg(G[Ui]) 5 A. 

Proof. For a vertex u in Uiel, if u is adjacent to a vertex w in I, via an edge in E ,  then no 

other vertex in I, is adjacent to u since Ii is also an independent set with respect to E:-;'. 

Therefore the degree of u in G[Ui-1 u I,] remains to be at most A since deg(GIUiml u { w ) ] )  5 A 
by the algorithm. For a vertex u in Ii, deyciu*,,_, uril (ti) is at  most A since u is adjacent to at 

most k vertices in Ui-l and since Ii is an independent set with respect to EIWi-I]. Hence 

d e g ~ [ u , - ~  U I ~ ]  ( u )  l A 
Claim 2. G[Ui] satisfies T .  

Proof. We assume that G[Ui] does not satisfy T .  Then, there is a minimal subset S 2 Ui 

such that G[S]  violates T .  Since S C Ui a>nd Ui = Ui-1 UIi, we see that S = ( S n U i - l ) ~ ( S n I i ) .  

The set S n Ii contains at least two vertices since if S n Ii consists of only one vertex then 



line 8 deletes the vertex at the last iteration. Therefore there are two distinct vertices v, w 

such that {v, w} E E or there are at most X(n) - 1 vertices in S n Ui-l which construct a 

path between v and w since diameter(G[S]) 5 X(n). For each case, {v, w) are in EIWi-l] 
wi-1 or E l  since V,  w E Ii c I/T'i-l. It coiitradicts the fact that V ,  w E S n Ii c Ii and Ii is a 

Trlrj - ,, maximal independent set with respect to E [T4ri] U EEU ~ - 1  . Hence G[Ui] satisfies x. 

Since only vertices which violate the property n or the condition of maximum degree A 

are deleted from W and since x is hereditary, tlie resulting set U is a maximal subset which 

induces a subgraph satisfying n when W becomes empty. 

MIS can be solved on an EREW PRtAM in O((1og 7 ~ ) ~ )  time using a polynomial number 

of processors [ 5 ] .  It is not hard to see tlmt the steps other than MIS can also be implemented 

on an EREIV PRAM in O((1og ~ 2 ) ~ )  time using a polynomial number of processors. Hence 

the total algorithm can be implemented using the same amount of time and processors.~ 

Remark 2 At line 8 of the algorithm, for each w E W ,  it is sufficient to decide whether 

G[Nu(w) U {w)] satisfies n and dey(G[Nri(ru) U {zu)]) 5 A. Therefore, the time needed to 

compute line 8 depends only on A and X(n). 

Finding a maximal subgraph of maximum degree k takes O(k2(logn)2) time using a 

polynomial number of processors [8]. This is a special case of Theorem 1 for n = "maximum 

degree k", X(n) = 2 and A = k .  For a graph of maximum degree A and n = "k cycle free", 

it takes O ( A ~ ~ / ~ ]  (log n)2) time to find a ir~asimal suhgraph satisfying x of maximum degree 

A since X(x) = Lk/2j. 

3 Solving the minimal set cover problem using MIS 

Let C = {el, ..., em} be a family of subsets of a finite set S = (1, ..., 72). A subset St of S 
is called a hitting set for C if ci n St # 0 for all i = 1, ..., rn. A subset S" of S is called a 

co-hitting set if c; St for all i = 1, ..., m. We say that C is a set cover if UYzL=, Ci = S. 
It should be noticed that S' is a hitting set for C and only if ,S - St is a co-hitting set for 

C. Therefore, S' is a minimal hitting set for C if and only if S - St is a maximal co-hitting 

set for C. 
The problem of finding a hitting set is closely related to tlie set cover problem. For a 

family C = {el, .. ., em) with U;=fli = {l, .. . , n}, let 



for j = 1, ..., n. Then each (1, is not empty. Let D = {dl, ..., d,) and C' C be a minimal 

hitting set for D. Then dj n C' f 0 for each j = 1, . .. ,72. Therefore there is some ci E dj n C'. 

Thus j E cia Hence C' is a set cover of {I, .. ., n )  and also can be seen that C' is minimal. 

Theorem 2 Let C = {el, ..., c,) be a fa>rnily of distinct subsets of a finite set S = (1, ..., n). 

Let a = max{lcil I i = 1 ,..., m} and p = max{ldjl 1 j = 1 ,..., n ) ,  where dj = {ci I j E 
ci). Then a minimal hitting set for C call be computed on an EREW PRAM in time 

O(a@(log(n + rn))2) using a polynomia.1 number of processors with respect to n and rn. 

Hence, if a@ = O((log(n $ rn))'), then a, minima.1 hitting set can be computed in NC. 

Proof. We consider the following a.lgorithm that finds a maximal co-hitting set for Co: 

/* A family Co = {cl ,..., c,} with c; 5 So = {I ,  ..., n }  for i = 1 ,..., rn is given. */ 
/* We assume that So = UcECo c and lcil 2 2 for i = 1, ..., m. */ 
1 begin 

2 S + So; C + Go; 

3 W t 0; /* W gets a maximal co-hitting set */ 
4 while S f 0 do 

5 begin 

6 ~5' + 0; 
7 par c E C do 

S begin 

9 Choose two clistilict vertices v,  w from c n S; 
10 Add the edge {v, (to) to E 

11 end; 

12 Find a maximal indepelident set I of the graph G = (S, E); 
13 I V t  W U I ;  

14 S + S - I ;  
15 U + {U E S I c n S c U { u )  for soiiie c E C); 
16 par c E C do if c n U # 0 t h e n  delete c from C; 

17 S + S - U ;  

1s + S - u,,c c 
19 VV + Mr U V 

20 S t S - V ;  

21 end 

22 end 



The variable W gets a maximal co-hitting set. Let I,, Ci, Ui, Wi and Si be the contents 

of the variables I, C, U, W and S just after the it11 iteration of the while-loop, respectively. 

For convenience, let T4To = 0 and Uo = 0. Let UT = Uo U . . . U Ui. We also let Ei be the set 

of edges constructed during lines 7-11. Then from the a<lgorithm we can easily see that So, 
Si-l and Wi are represented as the follo~~riug disjoint unions (Figure 1): 

(1) Si U Wi U U ,  = So. 

(2) SiW1 = Ii U Ui U V,  U ,Si. 

(3) Wi = Wi-1 U I, U V,. 
Claim 1. For c E Ci, c n  Si contains at  least two elements. 

Proof. By the assumption on the input, C;la*irn 1 obviously holds for i = 0. Assume that 

the claim holds for i and # 0. Let c be in Ci. Then cn Ui = 0 from line 16 and c n = 0 
from line 18. Therefore from (2) we see that c n Si = c 0 - I,). If c n  Si = 0, then 

Ui = Si-1 - Ii from line 15. This yields Si = 0 from line 17. This is a contradiction since Si 
is assumed not empty. On the other l~a~ncl, if c n  Si = {u), then c n Si C Wi-1 U Ii U {u). 

This means that u is in Ui and, therefore, c n  IJi j; 0, a contradiction. Thus lc n SiI 2 2. 

Claim 2. is a co-hitting set for Go. 

Proof. We assume that Si-1 + 0. Obviously, !.I/o = 0 is a co-hitting set for Co. Assume 

that Wiel is a co-hitting set for Co. Let c be in Co. 

Case 1. c $! Ci: c was deleted during the $11 iteration for some 1 5 j 5 i. Then 

c n Uj f 0. Hence there is u in c n  Uj  2 l J T .  By (1) u is not in Wi. Therefore we have c g Wi. 

Case 2. c E Ci: c is also in Ci-l. Tim by Claim 1 there are v, w in c n  Si-1 with v # w 

and {v, W)  E Ei. Since Ii is an independent set, v @ Ii or w @ 1,. Since Wi-1 is a co-hitting 

set for Co, we have c 14fi-1. Since no element in Si-1, hence no element in Ii, is in WiWl, v 

or w is not in WiVl U I,. Therefore c T/!,7i-1 U Ii. On the other hand, c n  V,  = 0 by line 18. 

Therefore c g TVi-l u Ii u V,  = TMi. 

Claim 3. For any u E Ui, there is c E Ci-l such that c C TATi. 

Proof. By line 15, for u E Ui there is c E CiW1 such that c n  (Si-1 - I,) C Wi-1 U Ii U {u). 

Then c n Si-l 2 Wi-1 U Ii U {u). Note that for c E Ci-l we have c n  U c l  = 0 by line 16. 

Then 
c = c n  (Si-1 U TVi-l U ULl (by (1)) 

= ( ~ n S ~ - ~ ) U ( c n T d ~ ~ - ~ ) U ( c n U : - , )  
2 Wi-l u Ii u {u}. (by c n  uL1 = 0) 

Let t be the integer such that St = 0. Then by (1) So = Wt U UT. From Claim 2 

is a co-hitting set. Claim 3 asserts t,ha.t for any 11 E Uf there is some c with c C W, U { u ) .  

Therefore Wt is a maximal co-hitting set for Co 
Claim 4. t a@, 



Figure 1: Relation between S;, Ii, V,, and UT 

Proof. For u E Si, we define 

Bi(u) = {V I u # v ant1 {ti, 1 ) )  C c n Si for some c E Ci). 

It is easy to see that IBi(u)1 5 ap. Then i t  suflices to show that 

for each u E S;. If u E Si, then u is not i11 I, from line 14. Since Ii is a maximal independent 

set, there is u with {u, v) E 23,. Therefore {ti, fiu) 2 c n Si-l for some c E CiW1. Hence v is in 

Bi-l (u). However, v is not in Si since ZJ is i l l  I,. Therefore v is not in Bi(u). 

As in the proof of Theorem I ,  the part, ol finding a maximal independent set can be 

implemented on a11 EREW PRAM in O((log(7r + n2))2)) time using polyiiomially many pro- 

cessors with respect to n and m. The otller steps caln aJso be implemented with a t  most the 

same amount of time a.nd process0rs.m 

The following corollary is obtained in a, straightforward way from Theorem 2: 

Corollary 1 Let C = {el, ..., c,) be a fa,lnily of suhsets of a finite set S = {I, ..., n)  such 

that S = Uzl ci. Let a = max{lci 1 I i = 1, . . . ,172) and ,b' = maxi Idj 1 I j = 1, .. ., n),  where 

d j  = {ci I j E ci}. Then a minimal set cover for ,S call be computed on an EREW PRAM in 

time O(olp(log(n + m))2) using a, polynomia.1 number of processors with respect to n and rn. 

Hence, if ap = O((log(n + rn))k), then a ~niliiinal set cover can be computed in NC. 

Remark 3 An NC approximation a81gorithm for the set cover problem is shown in [I]. But 

it should be noted here that their algorithm does not produce a minimal set cover. 



4 Conclusion 

We have shown that parallel MIS algoritlllns are useful to solve the minimal set cover problem 

and the maximal subgraph problem for a property "local and of degree at  most A". However, 

the idea of using 141s does not seem to work for other properties, for example, "acyclic", 

"planar", which are not local. MIS locates at  a11 interesting position in the NC hierarchy. 

It is in NC2 but unliltely to belong to classes such as AC' and DET shown in [2]. It is not 

difficult to see that the a4lgorithms shown ill illis paper can be transformed to NC1-reductions 

to MIS. Hence the results in this paper give some new problems NC1-reducible to MIS. 
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