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1 I n t r o d u c t i o n  

1.1 Motivation 

Program verification is a branch of computer science whose business is "to prove programs 
correctness". It has been studied in theoretical computer science departments for a long 
time but it is rarely and laboriously applied to real world problems. As a matter of fact, 
we must pay much more attention to practical problems like the amount of space and 
time needed to perform verification. Let us recall that proofs of correctness are proofs 
of the relative consistency between two formal specifications: those of the program, and 
of the properties that the program is supposed to satisfy. Such a formal proof tries to 
increase the confidence that a computer system will make it right when executing the 
program under consideration. 

A considerable need for such methods appeared these last ten years in different do- 
mains, such as design of asynchronous circuits, communication protocols and distributed 
software in general. A lot of us accepted the challenge to design automated verification 
tools, and many different theories have been suggested for the automated analysis of 
distributed systems. There now exist elaborate methods that can verify quite subtle 
behaviors. 

A simple method for performing automated verification is symbolic execution which 
is the core of most existing and planned verification systems. The practical limits of this 
method are the size of the state space and the time it may take to inspect all reachable 
states in this state space. Those quantities can dramatically rise with the problem size. 

1 .2 C u r r e n t  s t a t e - o f - a r t  

Reachability analysis is basically an exhaustive search yielding a rooted graph of global 
states. This technique is often called perturbation [22]. Starting from some specified 
initial state, successor states are generated and stored in the computer. The process 
stops when no new state (i.e. one not previously stored) can be generated. Termination is 
guaranteed if all the program variables (including communication channels) are bounded. 

*This work was partly funded by the french national project C 3 on parallelism. 
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The state graph is usually very large and for example, any protocol of practical 
relevance will have a state space in the order of one million states. There are two major 
problems when handling systems of this size: state matching (to avoid double work and 
to ensure termination), and state storing. 

We will suppose that the memory is arranged as a balanced tree, that reachable states 
are numbered from 1 to R, and that states are of constant size S. The memory'sizc M 
needed is then at least R.S. Let C(S) be the time needed for the comparison of two 
states. The first time a state i is generated, the memory contains i - 1 states, thus 
its insertion in the tree is carried out in time at worst C(S). log(i). If d is the average 
degree of nodes, each node is re-generated d - 1 times and searched in a memory which 
contains at least i states. The time needed for those searches can be approximated by 
(d - 1).C(S). log(i). Coarsely approximating log(R!) by R. log(R), we say that the time 
complexity of the perturbation technique is 

T ~- d.C(S).F~= 1 log(i) ~- d.C(S), log(R!) _ d.C(S).R, log(R) 

If M -- 107 bytes and S = l0 s bytes, the size of the graphs that can actually be analysed 
is less than R = 105 states. If d = 2, C(S) = 10 -4 seconds, and trees are binary trees, 
the time needed is T _~ 6 minutes. 

In order to master the "state explosion", different works have been conducted to 
reduce the size of the graph [3, 21, 2, 8, 7]. Obviously, reduction must be performed 
during the graph generation. The other constraint is that the validity of properties to be 
verified must not be changed. For that reason, we do not consider simulation methods 
which provide only partial verification [14, 9, 23, 19, 13, 10]. 

1 .3  V e r i f i c a t i o n  o n - t h e - f l y  

The key idea is that, for a large class of properties, storing Ml the reachability graph is 
not mandatory. It is enough to visit all the states and/or all the transitions. A depth-first 
traversal of the reachability graph performs such an exhaustive search. Only the current 
path has to be stored but the time needed to perform a verification can be catastrophic, 
due to the re-generation of forgotten states. 

We propose an intermediate method which offers a good compromise between time 
and space requirements. It is based on a depth-first traversal but uses all the available 
space in order to store not only the current path, but also the greatest possible number 
of already visited states. We will prove that bounding memory to a smMler size than the 
state space may not significantly increase the time complexity. Such Mgorithms allow 
us to build efficient verifiers, able to handle large graphs. This approach is often called 
"verification on-the-fly'. 

It was first proposed in terms of "on-line model-checking" by the authors in [15]. Since 
then, similar ideas have been advocated in [4] and [5]. [4] presents efficient algorithms to 
compare Biichi automata and thus proposes a new solution to the verification of temporal 
properties on infinite behaviors of finite state programs. [5] extends the technique to 
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verify on-the-fly bisimulation equivalences on transitions graphs. The core of the method 
is to traverse (during its generation) a kind of product of finite transitions systems. 
Unifying these different views would be an interesting prospect. 

The remainder of the paper is organized as follows. We present in detail a class Of 
bounded-memory algorithms that traverse exhaustively the state space of the program 
to be verified. Upper bounds for space and time complexities are computed and different 
experiments show the average behavior of our algorithms. Another part of the paper 
discusses applications, namely verification of safety properties and testing unboundedness 
of Fifo channels. We conclude with some prospects. 

2 Depth-first traversal with replacement 

We saw above that the main drawback of a perturbation technique is the memory size 
needed to perform the graph generation of real size systems. Now, there are some verifi- 
cations for which a traversal of all states and transitions is enough. It is then unnecessary 
to store the whole graph. An algorithm performing this exhaustive traversal is a depth- 
first traversal in which we theoretically only need to detect cycles, provided that the 
memory is large enough to store the longest acyclic sequence. Unfortunately, visited 
states which no longer behave to the current sequence are forgotten and can be visited 
again in many other sequences. In the best case the number Rgen of generated states is 
R. But in the worst case Rg~n can reach R!.e for a complete graph with R states (e is the 
basis of natural logarithms). If the number of states in the memory is bounded by the 
length of the longest acyclic sequence Dma~, the time needed to complete the traversal 
is in the scale 

C(S).R. log(Dma=) < T < C(S).R!.e. log(Dma=) 

However, a depth-first traversal can significantly be improved if the whole memory 
amount is used [16]. Actually, since Dma,.S < M, one can use the remainder of the 
memory to store already visited states, and then avoiding re-traversing some states. We 
present this technique and show with examples that it can be efficiently used to analyse 
real size graphs which are too large to fit in memory. 

2.1 T h e  a l g o r i t h m  

An algorithm performing a depth-first traversal with replacement is described above. It 
is very similar to a classical depth-first traversal except for the set Visited of already 
visited states and the execution phase when the memory is full. 

The traversal with replacement algorithm can be used on every graph such that 
D,,a~.S <_ M. But, contrarily to the simple traversal, it is not a necessary condition for 
the termination because states of the longest acyclic sequences can be reached by shortest 
sequences. A necessary condition is Gma=.S <_ M where Gma~ is the maximal length of 
a geodesic with initial state So (a geodesic from S to S I is an acyclic sequence from u 
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to v with min imum length). We have Gma~. <_ Dmax but if G m a = . S  <_ M < D m a z . S  the 
algorithm may or may not terminate,  depending on the order of  transitions evaluations.  

SLStack:=nil;  (*  - -  states o.f the current sequence - -  *) 
Tr_Stack:=nil; (*  - -  stack oJ sets o] pending transitions - -  *) 
Visited:=O; (*  - -  already visited states - -  *) 
p~.h (So, SLStack); p~.h(~rea~te(So), Tr_Stack); 
while St_Stack # 0 do  begin 

s-=~op(S~_Stac~); (* - -  curr~.t . t a e  - -  *) 
if fop(Tr-Stack)  ~ ~ then begin 

t:=extract-one_elt-o](top(Tr_Stack)); (*  - -  choose and remove - -  *) 
S '  :=succ(S, t ) ;  
if  S' f! S~-$fack u Visited then begin 

if memory_lull then begin (* - -  replacement - -  *) 
Sdel :=one_state. lrom(Visi ted);  
Viaifed:= Visited - {S t i l l ) ;  
e n d ;  

push(S ' ,SLStack) ;  
p,,h(~re,bt~CS' ). Vr_Stack ); 
e n d ;  

end 
else begin (*  - -  top(Tr_Stack) = fl - -  *) 

pop(St_Stack); 
pop(Tr-Stack); 
Visited:= Visited U{S}; 
e n d ;  

e n d ;  

2 . 2  T i m e  c o m p l e x i t y  

Let us remark that we always have (ISt_Stackl + IVisitedD.S < M and the boolean 
variable Memory_full is equal to (I St-Stack I+ ] Visited]).S = M and is a stable property. 
Let Rins  be the number of  insertions of  states in the memory  i.e. St_StackU Visited. The 
behavior of the algorithm in the case R.S <_ M is a lmost  the same as a perturbation, 
except for the generation order. Each state is inserted once, so R/n, = R. The t ime 
complexity is then approximately the same. 

Now if R.S > M, Ri , ,  exceeds R because an already visited state may  have been for- 
gotten. Due to the stability of  the property memory_full, we can separate the algorithm 
into two phases: 

�9 in the first phase, when -,memory_full, all visited states are in St_StaekU 
Visited and the algorithm behaves like a perturbation, 

�9 in the second phase, when memory_full, each t ime a state S' is gener- 
ated and not found in St_Stack U Visited, we must  remove one state Sdet 
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from Visited before pushing S ~ in St_Stack. The way this replacement is 
performed influences the total number of generated s ta tes  Rgen. 

We also suppose that the whole memory St_Stack U Visited is arranged as a balanced 
tree, which supports access, insertion and deletion operations in logarithmic worst case. 
The number of states in that memory is always less than M/S .  Each generated state 
must be searched in that memory. Thus, the total time of the traversal is approximately 

T ~- C(S).Raen. log(M) 

Recall that for the perturbation technique, time complexity is C(S).d.R. log(R). If 
M < R.S, we have Rae, ~_ d.R, thus complexities are identical. If M > R.S, a perturba- 
tion technique is no longer possible. We have log(M/S) < log(R) thus, if Rge, is in the 
same order of magnitude that d.R, time complexity of the depth-first traversal is close 
to the complexity that a perturbation would have with a memory of size R.S. 

The relation between Rgen and /?4,, is almost the same that the one between d.R 
and R. So, we expect that Ri, ,  will stay close to R. 

The choice of a replacement strategy is then essential in such an algorithm. Several 
strategies have been looked at. As noticed in [11], the best one seems to be random 
replacement. It is easily performed and has no performance drop for particular graphs. 

2 .3  E x p e r i m e n t s  

The depth-first travcrsal with replacement has been used with different kinds of graphs. 
Some of them are accessibility graphs of communication protocols modelled by commu- 
nicating finite state machines, and others are random graphs. The parameters of these 
random graphs are Rma~ a bound on the number of states and d,,a~ the maximum de- 
gree of a node. They are generated in a breadth-first way. The degree of each node is 
chosen uniformly between 0 and dma=. If g is the number of already generated states, 
each successor of the current state has probability 1 -g /min (2 .g ,  R,,a=) to be a new 
state. Among those random graphs, we only considered those with R close to Rma=. 

The two curves of figure 1 represent the behavior of the algorithm on a random 
graph when decreasing the memory size. Starting from M, na~ = R.S, the memory size is 
decreased down to the minimal possible value Mmin for which the algorithm terminates. 
The two bounds Mma~/S and M,, in/S  are figured by the two dashed vertical lines. 

The two first curves represent the evolution of the number of insertions Ri , ,  of states 
in St_Stack U Visited and the execution time. If M = Mrnax - R.S then Ri , ,  = R. 
When M decreases, R/n, increases. But it increases very slowly until M comes very near 
from Mmin. The number R~n, is then less than twice R. Finally Ri , ,  explodes but the 
memory has been significantly reduced before explosion. The execution time T has then 
a similar form. For that example, with a memory size of 40% of R.S we have only 70% 
more insertion of states, which give only 50% time increase. 
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Figure 1: Number of generated states and execution time 
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Figure 2: Execution time in extremal cases 
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Many examples have been tested with this traversal. They almost gave the same 
type of curves. But we can only decrease the memory size downto a value between 
Dmax.S and Grna=.S. Thus when Dma~ is small with respect to R, one can reduce M 
very significantly, and the increase o f / t in ,  and T are very slow. In the left example of 
figure 2, Mmin = Mrnax/lO, and we have an increase of only 1% of R~n, and 11% of T 
(see the left hand curve of figure 2). However, for graphs in which Dm~= is close to R as 
in the right hand curve of figure 2, that is when graphs are very connected (a complete 
graph is the worst case) results are not so good. The domain in which M/S can vary is 
very tight and R~n, and T increase very quickly. 
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3 Appl icat ion to on- l ine  mode l - check ing  

The first application of the depth-first traversal with replacement was introduced in [15]. 
The purpose was to verify that a protocol specification satisfied a property f .  Properties 
were expressed in event based linear temporal logic (LTL) [20] and translated into finite 
states automata.  But the idea can be generalized to other formalisms such as Biichi 
automata.  

Let $1 = <  Q1, A, T1, q01 > be the labelled transition system associated to the speci- 
fication Spec where Q1 is a finite set of states, A a finite set of actions, T C Q1 x A x Q2 
the transition relation, and q01 the initial state. 

Suppose that  a property 7 ~ can be expressed by a deterministic Biichi automaton 
B = <  Q~, A, T2, q02, F2 > where Q2 is its finite set of states, A its set of actions, T2 C 
Q2 x A x Q2 its transition relation, q02 the initial state and F2 a set of designated states. 
An infinite word al . . .  an . . .  E A w is recognized by Y if and only if there exists an infinite 
run of B: q02 ~4, ql - . -q~- i  2_~ q. . . .  such that qi E F2 for infinitely many i's. 

We say that  Spec satisfies 7 ) written Spec ~ "P if and only if every infinite word 
labelling an infinite transition sequence of $1 is recognized by B. 

When the Biichi automaton is not necessarily deterministic, the usual way to verify 
that  Spec ~ 7 ~ is to consider 31 as a Biichi automaton (its set of designated states is 
Q1), make the product of 31 with the complement automaton B of B and check if 31 x B 
is empty (accepts no word). This can be done by computing the strongly connected 
components. 

In the case of a deterministic Biichi automaton,  we will show that  there is a very 
simple algorithm which performs this verification without complementation and without 
computation of strongly connected components [16]. 

We consider $1 as a Biichi automaton with Q1 as its set of designated states. We 
suppose that  B is complete. This can always be done by adding a new state. 

The synchronous product of $1 and B is S = <  Q, A, T, q0, F > with: 

�9 Q - Q l x Q 2 ,  

�9 qo = (qo l ,  qo2), 
�9 F = Q l x F 2 ,  

�9 T C Q x A x Q i s d e f i n e d b y  

((ql, q2), a, (q~, q[)) E T if and only if (qx, a, q~) e T1 and (q2, a, q[) e T~ 

Since B is complete, the infinite sequences of executable actions of S1 are exactly the 
words labelling the infinite runs of S. And according to the definition of S, Spee ~ :P if 
and only if every infinite run of S contains infinitely many states of F .  Considering S as 
a directed graph, it is equivalent to say that every cycle of the graph contains a vertice 
in F .  But this is equivalent to say that  the sub-graph S '  obtained from S by removing 
all vertices of F (and the correponding edges) is acyclic. And S '  is acyclic if and only if 
a depth-first traversal of S '  doesn't detect any cycle. 
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But we don ' t  want to first build S and then remove vertices of F .  We would like to 
check whether tha t  S / is acyclic during a traversal of S. This can be done by a traversal  of 
S which is composed of depth-first traversals of sub-graphs of S in the following way. We 
need a set W initialized with {q0} which contains the roots of the depth-first traversals 
not yet performed. These roots are q0 and all s tates of F .  For each traversal initiated 
in a state qi,~it E W, remove qinit from W and add the following to the traversal  with 
replacement: if a new state q E F is reached, it is added to W and successors of q are 
not explored now (they will be in the traversal initiated in q) and if a cycle is detected 
in q r F this s imply signifies that  a cycle of  S ~ is detected. 

The algori thm stops when W is empty  and Spec ~ 7~ if and only if no cycle of  S ~ is 
detected. This algorithm is described below: 

Visited:=~; 
w:={So}; 
while W r ~ do begin 

SLStaek:=nil; 
Tr_Stack:=nil; 
qinit := eztracL one-elL of( W); 
p•sh(qinit, St-Stack); 
push(fireable(qi.it ), Tr_Staek); 
while SLStaek ~ ~ do begin 

q:=top(SLStaek); 
if top(Tr_Staek) ~ ~ then begin 

t:=extracLone_elLof(top(Tr_Staek)); 
ql :=suee(q,t ); 
i f  q~ E SLStaek then 

i f q ' ~ F t h e n  ERROR 
else if q~ f[ Visited then 

i f  q' E F then W:=WU{q '}  
else begin 

i f  memory_.full then  begin 
qdel :=one_state-]rein(Visited); 
Visited:= Visited - {qdet} ; 
end;  

p~tsh(qI,SLStaek); 
push(fireable(q' ), Tr_Staek); 
end;  

end;  
else begin (* - -  top(Tr.Staek) = $ - -  *) 

pop(St_St~ek); 
pop(Tr.Staek); 
Visited:= Visited U{q}; 
end;  

end;  
end;  
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The depth-first traversal with replacement is very efficient for the on-line model-  
checking of deterministic finite states and Biichi automata.  It avoids constructing the 
complete reachability graph. Moreover, you can choose to stop as soon as an error is 
detected. 

It appears in the litterature that  different kinds of verification can be performed 
on-the-fly, since then they are based on a depth-first traversal. We found the [5] 
paper, which presents a new technique to verify strong bisimulation equivalence. In 
the paper [4] also, the authors define a method for the verification of a temporal logic 
property f on a finite state program P which combines a depth-first traversal with a 
partial search with hashing [10]. Finally, in [17] our traversal with replacement has 
also been proposed for the test of unboundedness of fifo channels in some specification 
models such as communicating finite state machines [1], fifo-nets [18, 6] and even Estelle 
programs [12]. 

4 Conclus ion and prospects  

Dealing with the state space explosion problem, we have presented an alternative to the 
exhaustive construction of state graphs. The depth-first traversal insures an exhaustive 
traversal of all states and/or  transitions of a reachability graph. It requires less memory 
since it theoretically only needs a memory large enough to store the longest acyclic 
sequence. In order to improve this technique, it is necessary to store some visited states. 
When the memory is full, visited states are randomly replaced by new states of the 
current sequence. We have shown that  this method can significantly increase the size 
of the state graphs that can actually be analysed without excessively increasing the 
computation time. 

As we saw, this method can be used for different kinds of verification. A few ap- 
plication examples have pointed out that  it can certainly improve the verification tools 
in various domains such as bisimulation, Biichi acceptance, on-the-fly verification of 
temporal properties and test for unboundedness. 

However, this technique does not solve all the problems. We still don't  know the 
whole applicability domain of that  method. For example, is it possible to verify brancMng 
time temporal logic properties with a depth-first traversal with replacement, and, if the 
answer is positive, is it efficient? We also know that  this algorithm is not quite suited 
for all kinds of graphs. Perhaps an interesting problem would be to carefully study the 
structure of graphs for which it is well suited. We could then infer on the convenience 
of the method on some classes of transitions systems. Within a tool, the choose of the 
depth-first traversal in a particular verification could then be guided by the expected 
structure of graphs. 
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