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Abstract  

We show that the branching bisimuiation equivalence introduced by Rob 
van Glabbeek is decidable for the class of normed, recursively defined BPA 
processes with silent actions, thus generalizing the decidability result for 
strong bisimilarity by Baeten, Bergstra, and Klop. 

1 I n t r o d u c t i o n  

In their paper [BBK87] Baeten, Bergstra, and Klop showed that strong bisimulation equivalence is 
decidable for normed recursively defined BPA processes [BK88], a class of processes corresponding to 
that of irredundant context-free grammars without empty productions. In this paper we generalize 
this result by showing that the branching bisimilation equivalence introduced by van Glabbeek and 
Weijland in [vGW89] is decidable for the class of normed recursively defined BPA processes with 
silent actions. The proof generalizes that of the decidability of strong bisimulation equivalence given 
by Colin Stirling and the present author in [HS91], relying as it does on a similar tableau-based 
decision method. This tableau method is related to the equivalence algorithms for certain classes 
of context-free grammars introduced by Korenjak and Hopcroft [KH66], and it directly reflects 
usual intuitions about determining the equivalence of processes by means of successive matchings 
of transitions. 

Since the class of processes considered allows infinite state spaces, the present result further under- 
pins the fact that the decidability of behavioural equivalences can extend beyond the finite-state 
case, and that decidability should be seen as a criterion for determining the relative merits and 
deficiencies of behavioural equivalences. 

Section 2 introduces the notion of branching bisimilarity and the class of normed BPA~e c processes. 
In Section 3 we describe the tableau system, prove its soundness and completeness, give a complexity 
measure and establish the decidability result of branching bisimilarity. Section 4 sums up conclusions 
and gives suggestions for further work. 

*Present address: Department of Mathematics and Computer Science, Aaiborg University Centre, l~redrik Bajer- 
svej 7E, 9220 Aaiborg O, Denmark. E-maih haas@iesd.auc.dk 



2 P r e l i m i n a r i e s  

2.1 Branching  bisimilarity 

The processes that we will be looking at have their behavioural semantics given by transition graphs 
with silent actions. For comparison we first describe the notion of weak bisimulation equivalence, 
introduced by Milner [Mil80, Mi189], which is essentially bisimulation equivalence defined on the 
derived weak transition relations that disregard silent actions. 

Definition 2.1 For a transition graph ~ = (Pr, Act U {r},---~) 
transition relations { = ~  Is  E Act U {e}} are given by = ~  = 

with silent action r, the weak 
-~ -~* for  a E Act and 

In the definition below, we use the 'observational' mapping ~b : (Act U {r})* ---, Act* which is the 
homomorphic extension of the function defined by ~(a) = a for a E Act and ~(r)  = e. 

Definition 2.2 [Mi189] A weak bisimulation on ~ is a symmetric relation R C Pr  x P r  such that 
whenever pRq for  any a E Act U {r} we have that p ~ I] implies that there exists a q~ such that 

q ~(~ q' with p'Rq'. We define ~ by 

= {(p, q) [ pRq for some weak bisimulation R} 

I f  p ~ q we say that p and q are weakly bisimilar. 

The notion of branching bisimilarity was put forward by van Glabbeek and Weijland in [vGW89] 
as an alternative to weak bisimnlation. 

Definition 2.3 [vGW89] A branching bisimulation (bb) on O is a symmetric relation R C_ P r  x P r  
such that whenever pRq for any a E Act O {r} we have that p --~ p' implies 

�9 a = r and l /Rq or 

�9 there exist q~,qt such that q==~ q~ -~ q~ with pRq~,plRq' 

We define ~b by 

~b = {(P, q) [ pRq for  some bb R} 

I f  p ~b q we say that p and q are branching bisimilar. 

Unlike weak bisimulatiou equivalence, changes in branching properties c~nsed by individual v- 
transitions must always be taken into account in branching bisimnlation. (Example 2.2 provides an 
example of the importance of this, naraely two processes that are weakly bisimilar but not branching 
bisimilar). An equivalent definition which reflects this stuttering property better is the one below 
which we will be using in the tableau system presented in Section 3. 

Proposi t ion 2.1 A branching bisimulation on ~ is a symmetric relation R C_ P r  • P r  such that 
whenever pRq for any a E Act U {v} we have that i f  p -~ f then either 

�9 a = v and l /Rq or 

�9 there e~ t  q~,..., ~,, q' such that q = q~-~ ~ -~ . . .  -~ q" -~ q' with pRq~ for 0 <_ i <_ n 
and f P~. 



2.2  N o r m e d  BPA~e c 

Recursive Basic Process Algebra (BPA) with silent actions, the class BPA~e c [BK88], consists of 

processes given by systems of defining equations A = {Xi dej El [ 1 < i < m}. The process 
expressions Ei are given by the syntax 

E::=a I~ IEI+E2 IEIE2 IX 

where ~" is a new, silent action not in Act. In the following, elements of Var* will be denoted by 
Greek letters: a,/~,.. �9 and BPA expressions in general by E, F .... The operational semantics given 
by the transition relations { -% ] a 6 Act U {r}} is as given below. 

Definition 2.4 Any system of BPA process equations A defines a labelled transition graph. The 
transition relations are given as the least relations satisfying the following rules: 

E ~ E' F -% F' 

E + F-% E' E + F-~ F' 

E-% E' 
a-~ e a q ACt U {~'} 

E F  -~ E 'F  

E~ E' 

X ~ E '  
X ~ E e A  

We restrict our attention to weakly normed systems of process equations. 

Def in i t ion  2.5 The weak norm of any X E Vat  is given by 

IlXil = rain{length(w) I X  =~" e,w q Act '} 

A system of defining equations A is weakly normed if for any X E Vat  0 < IIXII < co. The 
maximal norm of any variable in A is defined by MA = max{llXll I X  e Vat} .  

Since norms must be strictly positive, all variables must eventually perform an observable action 
and processes can therefore not terminate silently. 

In Section 3 we shall also need the notion of a strong norm (of. [HS91]). 

Def in i t ion  2.6 The strong norm of a BPA're c e~ression E is defined as 

IEI = min{length(w) [ E ~ e,w fi Act +} 

A system of defining equations A is strongly normed i f /or  any variable X E Va t  IX] < vo. The 
maximal strong norm of an~t variable in A is rna = max{lXI I X e Vat} .  

Clearly, if A is weakly normed it is also strongly normed. 

Finally, we restrict our attention to systems of defining equations given in 3-Greibach Normal Form 
(3-GNF). 



Definit ion 2.7 A system of BPA equations A is said ~o be in Greibach Normal Form (GNF) i f  all 
equations are of the form 

n i  

{x,  ~ F_, a~ja,j 11 < i < m} 
.iffil 

I f  for each i , j  the variable sequence a 6 has length(al./) < k, A is said to be in k-GNF. 

The normal form is called Greibach Normal Form by analogy with context-free grammars (without 
the empty production) in Greibach Normal Form (see e.g. [HU79]). There is an obvious correspon- 
dence with grammars in GNF: process variables correspond to non-terminals, the root is the start 
symbol, actions correspond to terminals, and each equation Xi &ff ~ = 1  aijalj can be viewed as the 
family of productions {X~ ~ al./aij 11 <_ j <_ ni}. The notion of normedness says that the grammar 
must not have useless productions. The requirement of norms being positive is in analogy with the 
requirement that a grammar has no empty productions. 

It is well-known that any context-free language (without the empty string) is generated by a gram- 
mar in 3-GNF [HU79]. One can show that actually is not a re.a1 restriction, since any system of 
process equations A in BPA~e c can effectively be rewritten to a A '  which is strongly bisimilar to A 
and therefore weakly normed iff A is [BBK87]. This leaves us with transition graphs whose states 
are strings of process variables; the further restriction to variable sequences of length at most 2 
guarantees limited growth when determining single transitions: 

P ropos i t ion  2.2 Suppose A is in 3-GNF. Then, for any a E Var*, whenever a --% d we have 
length(o~) ~_ length(a) + 1. 

Because weak norms are assumed strictly positive, we have a simple relationship between lengths 
and norms: 

Proposition 2.3 For a 6 Vat* length(a) <_ flail and Ilall - MA/engZh(a) .  

The weak norm is additive under sequential composition: 

Propos i t ion  2.4 For a ,~  6 Vat" Ila~ll  = Ilall + I1~11. 

Note that for weakly normed systems we have 

Propos i t ion  2.5 a ~b/3 implies that II~ll = II~ll. 

Example  2.1 Consider A,  = {A ~r a + bBC; B ~ cA; C dfd c} and A2 = { X  dfa a + bXY; Y 
c}. The transition graphs are shown in Figure 1. For A,  we have Lob,(A) -- {b"ac" I n >_ 0}, 
Lobo(B) = Lobo(A) and Lob~(C) = {c}. X ~b A because of the branching bisimulation 

{(XY',AC")In > O} U {(XY",BC")In > i} U {(Y",C") I n > l} U {(~,e)} 

For the tableau system we need the following results - firstly, ~,b is a congruence w.r.t, sequential 
composition: 



A b " B C  r ' A C  b " B C C . ' -  

~ ~ : 
C q C . 

c c 

b "AC" 

~ 
�9 C ~ n  . 

b D . . . . . .  

. . . . .  ~ 
C 

Figure 1: Transition graph for A ~ t  a + bBC; B dc=f rA; C ~ f  c 

P r o p o s i t i o n  2.6 I f  al ~b ~1 and a2 ~b ]32 then alc~2 ~-'b fl1~2 

The other result is a 'split '  lemma that allows us to discard identical tails: 

L e m m a  2.1 I f  ~ a  ~b a2cx then al ~b c~2. 

It is important to note that this does not hold for weak bisimulation. The following counterexample 
arose in a discussion with Kim Larsen and is due to him. 

E x a m p l e  2.2 Consider A = {X = aY, Y = a + r X ,  A = a + aB,  B = a}. As IIXII = 2, IIYII = 
1, IIAII = 1 and IIBII = 1,/x dearly obeys all requirements stated above. It is easily seen that X 
B Y  and that A ~ B. However, we have A Y  ~ B Y ,  since {(AY, B Y ) ,  (BY,  X ) ,  (Y, Y ) ,  (e, e), (X,  X)} 
is a weak bisimulation. The problem lies in the fact that weak bisimilarity does not require the 
results of intermediate steps in weak transitions to be related. In particular, A Y  --% Y is matched 
by B Y  ==~ X .  The latter is due to B Y  -~ Y ..T. X ,  where we clearly have that  A Y  ~ Y .  Cl 

3 A tableau system for branching bisimulation 

3.1 Building tableaux 

A tableau for determining branching bisimilarity is a maximal proof tree built using the proof 
rules in Table 1. Tableaux consist of a number of subtableaux. These are built from successive 
applications of the STEP rule. 

STEP is applicable iff there is a possibility of matching transitions. A possible match is any set of 
equations whose sides are the results of successful matching transitions according to the definition 
of branching bisimilarity in Proposition 2.1: 

Def in i t ion  3.1 A set of equations M is a possible match for  c~ = ~ i f  for  any a E Act we have 
that i f  tr -~ ~ then either 

�9 a = r  a n d a ' = 1 3 E M  or 

�9 t h e r e e z i s t ~  = [3, . . . ,  ~ , [31such tha t~o  ~1-'*" ' ~ . . .  .5. fl~l ~ El with a = ~l E M for 
0 < i < n  andcg = ~l E M.  

and similarlg fo r ~ , any # ~ # . 



This definition appears to allow infinitely many possible matches, since there seems to be no bound 
on the length n of a matching transition sequence. However, this is not the case. Firstly, we have 

P r o p o s i t i o n  3.1 I f  c~ ~b [3 we can find a possible match M for c~ = [3 such that whenever ct .-~ el  
is matched by [3~ = [3,. . . ,  [3~, [3' such that [30 "% [3~ ~ "'" ~ [3~ -~ [3' with c~ = [3~ ~ M for  0 < i < n 
and a' = [3' ~ M all [3~ (0 < i < n) are distinct. 

Secondly, we have 

P r o p o s i t i o n  3.2 I f  X a  ~b Y[3 and X a  -~ a 'a  is matched by ]"[3 ~ [3~[3 -~ [3'[3 any intermediate 
state [3" in Y[3 = ~  [3~[3 has length([3") < Mzx + length([3). Furthermore, length([3') <_ MA + 
length([3) + 1 

The outbranching is a multiple of the bound Bx, r  on the number of single transition steps for 
X a  = Y[3; this factor only depends on the leftmost variables and is given by 

Bx , r  = { a ' l X  -~ ~ ' , a  e A a O  {~'}} V {[3' I Y[3 -~ f , a  ~ A a V  {~'}} 

P r o p o s i t i o n  3.3 Let v be the cardinality of Var.  I f  Xcc~b Y[3, there is a possible match for X a  = 
r[3 with at mo,t Bx,y E ~ 2 ( J  - 1)~J equations, where K = M~ + 1 + m ~ ( l e n g t h ( ~ ) ,  length([3)). 

Clearly, STEP is forwards sound in the following sense: 

P r o p o s i t i o n  3.4 (Forwards soundness of STEP) I f  a ~b [3, then there is a possible match M such 
that whenever c~' = f E M we have ~' ~b [3'. 

An eliminating subtableau for X ~  = Y[3 consists of at tempted matches to the depth where an 
equation of the form a = 7[3 is reached. When IX[ _< [Y[ each non-residual leaf of an eliminating 
subtableau for X a  = Y[3 is either labelled a = 7[3 (a residual of the subtableau), or a l a  = [31/~. 
Because the number of successive at tempted matches is IX] there is at least one residual and since 
all norms are strictly positive, a and [3 must persist as suffixes throughout the subtableau. For 
any such subtablean we pick one residual node and call it the residual. If instead [Y] < [X[ the 
same holds, only now the residual is 7 a  = [3. Unless a subtablean leaf is a successful terminal 
(Definition 3.3 below) it is used as the basis of a new subtableau. However, before a new subtableau 
is constructed, for every leaf one of the SUB rules is used to trim the length of the expressions in 
the new subtableau root. From Propositions 2.6 and 2.1 we see that the SUB rules axe forwards 
sound in the following sense: 

P r o p o s i t i o n  3.5 (Soundness of SUBL and SUBR) I f  a la  ~b [3d3 and ct ~b 7[3 then ai7 ~b [31. I f  
7ai  ~b [31 then al  ~b [3~7 

The rules are only applied to nodes that are not terminal. Terminal nodes can either be successful 
or ur~uccessful. 

Defin i t ion  3.2 A tableau node is an unsuccessful terminal if it has one of the forms 

I, a = [3 with I1~11 ~ 111311 

~. a = [3 with ~ ~ e,[3 ~ e and no possible match exists (i.e. STEP is inapplicable). 



Rule within a subtableau 

STEP a = 

Rules for new subtableaux 

where {Or I = ,81 . . .  Of k = ,Sk}  

is a possible match for a = 

SUBL 

SUBR 

a l r  =/~i 
where a = 7~9 is the residual 

where 7a  = B is the residual 

Table 1: The tableau rules 

In both of these cases it is obvious that the expressions compared are not branching bisimilar. Thus, 
whenever we see an unsuccessful terminal the whole tableau construction aborts. 

The nodes that can be successful terminals are those that are potential roots of eliminating sub- 
tableaux: 

Def in i t ion  3.3 A residual or consequent of an application of  a SUB rule/s a successful terminal 
i f  it has one of  the form8 

1. a = ~ where there is another subtableau root above it on the path f rom the root also 
labelled a = 

X=A 
STEP 

e=e XY=BC 
SUBL 

XY = BU 

X Y  = A C  

X=A 

STEP 
X Y Y  = B U C  Y = C 

SUBL SUBL STEP 
XY = BC e = e 

Figure 2: A successful tableau for X = A 

Example  3.1 (Example 2.1 cont.) The tableau in Figure 2 is a successful tableau for X = A. G 



3 . 2  T e r m i n a t i o n ,  c o m p l e t e n e s s ,  a n d  s o u n d n e s s  

It is important for our decidability result that all tableaux are finite. Since our tableaux are finitely 
branching by Proposition 3.3, by Kfnig's Lemma an infinite tableau would have an infinite path. 
This would then be caused by the combined absence of unsuccessful termination and the successful 
termination condition 1 along that path. Since we have assumed 3-GNF and normedness, there is 
a uniform bound on the total length of the consequent of a SOB rule. Assume wlog that  we have a 
subtableau with root X a  = Y/~ and that a SUBL rule was applied to a subtableau leaf: 

SUBL 
a17 = A 

Because the depth of the subtableau is at most rna, repeated applications of Proposition 3.2 tell 
us that length(a1) < rnA(Mzx + 1), length(~31) < ra4(MtA + 1) and length(7 ) <_ rnA(MtL + 1). 
This implies a uniform bound on the length of SOB consequents of 3 m a ( M z  + 1), so there can 
be no infinite path through infinitely many SOB applications since there are of course only finitely 
many different equations of any given length. Nor can an infinite path pass through infinitely many 
residuals. For if a residual a0 = #0 is above the residual a l  = #1 we have that Ila011 = I1#011 < 
Ilalll = IIAII. By Proposition 2.3, any subsequence of residuals therefore has a uniform bound on 
the total lengths of expressions compared, again ensuring termination. 

T h e o r e m  3.1 For any equation a = ~ all tablearLr are finite. 

By the forwards soundness of the STEP and SUB rules (Propositions 3.4 and 3.5) we can use the 
tableau rules in such a way that only valid consequents arise. It is therefore easily seen that  the 
tableau system is complete: 

T h e o r e m  3.2 I /  a ~b 1~ , a = fl has a successful tableau. 

Finally we must show soundness of the tableau system, namely that  the existence of a successful 
tableau for a =/~ indicates that a ~b/~. This follows from the fact that  the tableau system tries to 
construct a 'bisimulation up to a sequential congruence', which, if a successful tableau is reached, 
consists of the symmetric closure of the set of nodes in the successful tableau. This notion is the 
counterpart of the notion of a self-bisimulation used in the tableau system of [HS91] and in [Caug0]. 
In order to define the corresponding notion for branching bisimulation, we need a simple rephrasing 
of Proposition 2.1: 

P r o p o s i t i o n  3.6 A branching bisimulation on a transition graph ~ is a symmetric relation R C_ 
P r  • Pr  such that whenever pRx 1 for  any a E Act U {r} we have that i f  p = Po "% Pa "% "'" pra "% f 
then there exist qo, qx, . . . ,q ,~,q '  such that qo = q and piRqi for  1 < i < m,  t tRr and f o r i  < m 

- q i = q i + l  or 

- there eaist qli , . . . ,  qi,~o such that ql "~ q~l "~ "'" q~,~,) "~ qi+a with piRqlj 
/or I <_ j <_ n(i) 

and either 

�9 a = r  andq,~ = q '  or 
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�9 there exist q , ~ , . . . ,  q,~,~,,) such that q,~ .S, q,~ .~ . . .  q,,~,,r _~, q, 

Def in i t ion  3.4 For any binary relation R on Vat*,  -~ is the least precongruence w.r.t, sequential 
composition that contains R, . ~  the symmetric  congruence of -~ and .-~* the transitive closure 
of  ~-~ and thus the least congruence w.r.t, sequential composition containing R.  

Def in i t ion  3.5 A branching bisimulation up to sequential congruence (sbb) is a symmetr ic  relation 
R C_ V a t  x V a t  such that whenever ctRfl a = ~ i f f f l  = e and for  any a E A c t U  {r} we have that 
i f  ct = ao -L al -L .. .ct,~ .2, a' then there ezist flo, f ix , . . .  ,flm, fl' such that flo = fl and ai .-~* fli for  

1 < i < ra, cJ .-~* fi' and for  i < ra 

- #~ = #i+1 o r  

- there ezist f i i~ , . . . ,  ~i,~o s.t. ~i "~ fill . S . . . .  [31,~o .~ ~i+1 with Oti ~'-~* ~ij 
for  1 < j < n(i) 

and either 

�9 a = r  and f l ra=f l '  or 

�9 there ezist f l , ~ , . . .  'fl'~,~o s.t. ~,,  --~ #,~a -L . . .  ~,n,~,,~ -~ fl' with a,~ ,-~* flmj for  1 < 

j < nCm). 

The reason why a bisimulation up to sequential congruence can be said to be an essential part of a 
bisimulation lies in the following result. 

L e m m a  3.1 I f  R is an sbb then ,-~* is a bb. 

C o r o l l a r y  3.1 a ~b ~ iff  there is an sbb R such that a R ~ .  

We then have 

T h e o r e m  3.3 I r a  = fl has a successful tableau T then 

P ~  = { ( o ' , Y )  I~' = Y or y = ~' is an e q u a t i o n  in  T }  

is an sbb. 

So we now get the soundness of the tableau system as 

C o r o l l a r y  3.2 I r a  = 13 has a successful tableau then a ~,b ft. 
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3 . 3  C o m p l e x i t y  o f  t h e  t a b l e a u  s y s t e m  a n d  d e c i d a b i l i t y  

The complexity of the tableau system can be measured in terms of the maximal depth of a tableau, 
i.e. the length w.r.t. STEP applications of the longest possible path in a successful tableau for an 
equation X a  = Y~/. Let v be the cardinality of Var. By the discussion preceding Theorem 3.1 we 
have that any SUB consequent has a length of at most 3ra~(M~ + 1), so an upper hound on the 

;r 1)v j. Between any number of distinct SUB consequents along any tableau path .o ~j=2 ~J - 

two SUB consequents there can be at most ~'3mA(MA+I)'] residuals, so any path that contains SUB 
/ 2 / 

consequents can have at most ~3"A(~ ~+1)1 v-3~,~MA+st; ix. J /--.j=2 ~j -- ~j~ snbtableau roots. As for the leftmost 
path, all of whose subtablean roots are residuals, there can be at most max(llall, II/~11) residuals, 
since the norm of the residuals is strictly decreasing. So, since a subtablean can have a depth w.r.t. 
STEP applications of at most m~, any path can have a length of at most 

~ max(llc~ll, II/~II, [3m~(M/, + 1)] Sm,,(Mz,+1) (j -- I)V j) (1) 
2 j=2 

STEPs. 

We also have an upper bound on the outbranching of any tableau for X a  = Y~. This follows from 
the fact that there is a uniform upper bound on the total length of any subtableau root in any 
tableau for X a  = Y//. The length of any subtablean root is bounded by 

L = max(2 max(ll~ll, I1~11), 3rn/,(Mz~ + 1)) 

By repeated applications of Proposition 3.2 we see that any node in a subtableau has a length of 
at most 2mA(Ma q- 1) + L. By Proposition 3.3 this means that there is a uniform upper bound on 
the number of STEP consequents at any point in any tableau for X a  -- Y/~ of 

2mA (MA -I-1)+Z, 
max{Bx,r I x ,  Y e ca , }  E (j - 1)~J 

j--2 

This means that any X a  = Y/~ has finitely many possible tableaux, so we get the main result 

(2) 

T h e o r e m  3.4 For any weakly normed A it is decidable whether or not a ~b ~ for a, [3 E Var ' .  

The naive decision procedure for ~b constructs all the finitely many tableaux for a = ~, answering 
'yes' if a successful tableau occurs and 'no' otherwise. 

4 C o n c l u s i o n s  a n d  d i r e c t i o n s  f o r  f u r t h e r  w o r k  

We have here shown that the branching bisimilaxity of [vGW89] is decidable for the class of normed 
BPA processes with silent actions by giving a tableau system. This system has exponential complex- 
ity in terms of the longest possible path of a generated tableau; however, in the case of a successful 
tableau we get additional information in the form of a finite relation whose congruence closure w.r.t. 
sequential composition is a bisimulation containing the initial equation. 

The results of [GH91] show that all known strong equivalences except bisimilaxity are undecidable 
for normed BPA. This means that their weak counterparts also axe undecidable, but there are still 
several open questions for the weak versions of bisimulation equivalence. For branching bisimulation, 
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the restriction to processes with strictly positive norms is rather strong, as it rules out the possibility 
of a process terminating silently. A problem with having nullary norms in the tableau system is 
that we no longer are guaranteed that a and fl persist throughout an eliminating subtableau for 
Xa = Yfl, since a match for Xc~ -~ may require access to observable actions inside ft. So the 
natural question is whether there is a way of introducing nullary norms. Moreover, we would of 
course also want to get rid of the restriction of normedness altogether. However, since this problem 
also needs to be tackled for strong bisimulation equivalence, it seems that progress must first be 
made here before we can give any answer for the branching bisimulation case. Last, but not least 
the questions for weak bisimilarity all remain open. As we saw, Lemma 2.1 does not hold for this 
equivalence so a different approach must be used in that case. 

Finally, it would be interesting if we could give a syntax-directed version of our tableau system for 
branching bisimulation since this could give us an equational theory of ~b over normed BPA~c 
along the lines of [HS91]. A naive approach would be to add the r-laws for branching bisimulation 
to the equational theory for strong bisimilarity of [HSgl], where a proof system is given that consists 
of rules that can simulate the tableau construction. However, this theory would not be powerful 
enough for this; the problem lies in simulating the STEP rule. 
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