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Abstract 

The major goal of this paper is to clarify how large and practical sequential 
machines can be verified with the current most powerful supercomputers. The basic 
algorithm used is an implicit symbolic model checking algorithm, which is shown to 
be 100 times and 40 times more efficient in time and space than the conventional 
symbolic model checking algorithms. Based on the algorithm, a vectorized symbolic 
model checking algorithm, which is suitable for execution on vector processors, 
is also proposed. Some benchmark results show that it achieves about 6 N 20 
acceleration ratio and it can verify a 16 bit pipelined ALU with 4 word register file, 
which supports 16 arithmetic/logical operations, in around 12 minutes on a vector 
processor HITAC S-820/80. 

1 I n t r o d u c t i o n  

Various kinds of formal methods for automatic verification have been widely studied. 
Among them, the symbolic model checking approaches based on a branching time tem- 
poral logic called CTL (Computation Tree Logic) are one of the most efficient approaches 
[5, 6, 7]. It uses a Boolean characteristic function, which is efficiently represented and 
manipulated by using Shared Binary Decision Diagrams (SBDD)[1, 3], to express the 
state transition relation of a state machine explicitly. 

The size of the SBDD representation of the characteristic function, however, is apt 
to become very large even if the size of the SBDD representation of the state transition 
functions of a sequential machine is small. In order to avoid this problem, new improved 
algorithms (we call them as implicit symbolic model checking) are proposed [4, 10, 15]. 
They do not use the Boolean characteristic function to represent the state transition 
relation explicitly. Instead, they use the state transition functions of a sequential machine 
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directly without generating the characteristic function representing the state transition 
relation of a sequential machine explicitly. 

Our major goal is to clarify how large and practical sequential machines can be verified 
based on the symbolic model checking algorithm of CTL by using one of the most advanced 
current supercomputers. Aiming at verification of sequential machines, we adopted a kind 
of implicit symbolic model checking algorithm of CTL. It is efficiently executed not only 
on supercomputers but also on the current conventional workstations. 

First, we implemented both algorithms, i.e. explicit and implicit ones, on SPARC Sta- 
tion 1+ to see the effect of the implicit symbolic model checking algorithm. Experimental 
results show that the implicit version achieves up to 100 times and 40 times improvements 
in time and space respectively compared with the explicit version. 

Next, we vectorized the implicit symbolic model checking algorithm so that it can 
be executed efficiently on a vector processor. Since the most time consuming parts of 
the symbolic model checking algorithm are manipulations of SBDD, we concentrated 
on vectorizing manipulations of SBDD [14]. Although many SBDD manipulators have 
been developed up to now, most of them are implemented on workstations [2, 13]. In 
order to handle much larger SBDD in a reasonable time, the use of parallel machines 
or connection machines is studied [12]. Their algorithms are based on depth first search 
recursive algorithms and it is difficult to vectorize such recursive algorithms for efficient 
execution on vector processors. Our vectorized algorithm is based on breadth first search 
algorithm, instead, to enjoy the power of vector processors. 

We also implemented and evaluated our vectoriz~d symbolic model checking algorithm 
of CTL on a vector processor HITAC S-820/80 at the University of Tokyo. It achieves 6 
to 20 acceleration ratio and it takes about 12 minutes to verify a 16 bit pipelined ALU 
with 4 word register file which supports 16 arithmetic/logical operations. 

This paper is organized as follows: Section 2 summarizes CTL, notations of sequential 
machines, and SBDD. Section 3 describes our symbolic model checking algorithm of CTL 
for sequential machine verification. Vectorization of our algorithm is discussed in section 
4. In section 5 we explain the implementation of our algorithm and show some benchmark 
results. Section 6 concludes this paper. 

2 Pre l iminar ies  

2.1 C o m p u t a t i o n  Tree Logic 

Computation Tree Logic (CTL)[8] is a branching time temporal logic. Let A P  be a set 
of atomic propositions. Let p be an atomic proposition and 77, ~ be CTL formulas. Then, 
p,-Wh ~1 V ~, E X T  h EGT1 and E[7/hl~] are also CTL formulas. 

The semantics of CTL is defined over a Kripke structure K = (5, R, I), where S is a 
non-empty finite set of states; R _c S • S is a total binary relation on S; I : S --* 2 Ap is 
an interpretation function which labels each state with a set of atomic propositions true 
at that state. 

An infinite sequence of states r = sOSlS~.. ,  is called a path from So if (si, Si+l).E R 
for Vi > 0. ~r(i) denotes the i - t h  state of the sequence ~r (i.e. r( i)  = s~). 

The truth-value of a CTL formula is defined at a state of a Kripke structure and 
K, s ~ 7/denotes that a CTL formula 7/hold at a state s of a Kripke structure K. If there 
is no ambiguity, we will omit K and just write as s ~ T/. The relation ~ is recursively 
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defined as follows: s ~ p (e AP)  iff p e I(s);  s ~ -~r/iff s ~ 77; s ~ r/V ~ iff s ~ r /or  
s ~ ~; s ~ E X ~  jff there exists some next state s' of s (i.e. (s, s') E R) such that  s' ~ r/; 
s ~ EGrl iff there exists some path r on K starting from the state s such that 7r(i) ~ r/ 
for Vi > 0; s ~ E[r/L/~] iff there exists some path r on K starting from the state s such 
that qi > 0, r ( i )  ~ ~ and r ( j )  ~ 77 for 0 _< Vj < i. 

2.2 S e q u e n t i a l  M a c h i n e s  

Let xi(1 < i < l), yj(1 < j < m) be input variables and state variables over B = {1, 0} 
respectively, x and y are vectors < Xl, x2, . . ,  xt > over B t and < Yl, Y2, '"Y, , ,  > over B m 
respectively. A sequential machine with l binary input signals, rn binary state variables 
and n binary output signals is defined by the set of Boolean functions as follows: 

* State transition functions: f j  e [B t x B m -* B] (1 _< j < m) 

f (x ,  y)  = <  fl(Xl, x2, .- �9 xl, Yl, Y2,"" Yra),*'' ,  fm(x , ,  Z2, ' '"  Xt, Yl, Y2,' '" Y,,,) > ~ves  
the next state yl of a current state y for an input x. 

�9 Output  functions: 

- zk E [Bm -~ B] (1 < k < n) for a Moore-type machine; 
z(y) = <  z1(9~, 92,""  9~)," �9 ", z~(y~, Y2,"" Y~) > gives the current output  at a 
state y. 

- zk E [B t x B m --~ B] (1 < k < n) for a Mealy-type machine; 
z(x, y)  = <  Zl(Xl, x2 , . . .  T.I, 91,92,"" 9 m ) , " ' ,  gnCXl, x 2 , ' " x l ,  91,92,"" Yra) > 
gives the current output at a state y for an input x. 

In order to associate binary input signals, binary state variables, and binary output 
signals of sequential machines with atomic propositions, p~, (1 < i < l), py~ (1 _< j _< m), 
and P~k (1 < k _< n) are used as atomic propositions corresponding to xi, yj and zk 
respectively, xl = 1 means p=:~ is true and so on. 

2.3 S h a r e d  B i n a r y  Dec i s ion  D i a g r a m  

Boolean functions are efficiently represented by using a Shared Binary Decision Diagram 
(SBDD)[1, 3]. SBDD is a kind of labeled acyclic directed graph representing Shannon's 
expansion theorem according to a given fixed variable ordering, in which all isomorphic 
subgraphs are shared and nodes corresponding to redundant variables are removed. Each 
node is labeled by its corresponding variable name and has two outgoing edges called '0' 
edge and '1' edge respectively. It represents a Boolean function f = x f l  + ~f0, where 
x is its label; f l  and fo are Boolean functions pointed to by its '1' edge and '0' edge 
respectively. 

SBDD has various useful properties. If the ordering of the variables is fixed for the 
whole graph, the graph is canonical, i.e. there are no two different nodes representing 
a same Boolean function [1, 3]. In addition, the size of the graph is feasible for many 
practical Boolean functions [11]. The manipulations for various operations on Boolean 
functions represented by SBDD can be performed in time proportional to the size of the 
SBDD [3]. 

In order to guarantee the uniqueness of SBDD representation, we need to manage 
SBDD nodes so that no two different nodes represent a same function. This is usually 
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done by using a hash table called node table [13]. In addition, in order to perform various 
operations on Boolean functions in time proportional to the size of their corresponding 
SBDD, same operations on same Boolean functions should be prevented. This is usually 
done by using another hash table called operation result table[13]. 

3 S y m b o l i c  M o d e l  C h e c k i n g  f o r  S e q u e n t i a l  M a c h i n e s  

For a Boolean function f E [B" ~ B] and a vector of variables x = <  xl,  x2 , . . ,  x,, > over 
B",  we use the following notations: 

~xl.f(x) def f(Xx, X2,'" "X,-x, O, x i + l , " ' ,  x,~) V f (x i ,  x2 , " "  xi-1, 1, x i + l , ' " ,  x.) 
3x. f (x)  ~f  3x lqx2 . . .3xn . f (x )  

A subset S of B"  is represented by a Boolean characteristic function Fs E [B" --4 B] 
such that  Fs(s) = 1 if and only if s E S. 

3.1 Basic A l g o r i t h m  

The algorithm shown in this sub-section is based on the symbolic model checking algo- 
ri thm proposed in [5, 6, 7]. 

Since the semantics of CTL is defined over Kripke structure, a given sequential machine 
has to be transformed to the corresponding Kripke structure for model checking. 

Let x and y be a input vector and a state vector of a sequential machine respectively. 
Let s be a state vector of the corresponding Kripke structure. Since a state transition 
of a sequential machine corresponds to a state of the corresponding Kripke structure, s 
can be expressed as x # y ,  where x # y  represents a concatenation of two vectors x and y 
(i.e. x # y  d=.r < Xl, x2 , ""  zt, Yl, Y2,"" V-, >). The set of states of the Kripke structure is 
B l x B ' .  

By introducing new vectors of Boolean variables x '  = <  x'l,  x '2 , . . ,  z'l > and y '  = <  
Y'l, Y'2,"" Y',, > corresponding to x and y,  s' is defined to be x ' # y ' .  We use x' ,  y ' ,  and 
s' to represent the input vector and the state vector of the sequential machine and the 
state vector of the Kripke structure at the next time. 

Let f j  be a state transition function corresponding to a state variable yj. The Boolean 
function representing the Kripke structure K,  denoted by FK, is constructed as follows: 

FK(g,s)  = IX (Y~ -- f j ( x , y ) )  
O~_j~_m 

This function means that FK(s' ,s) = 1 if and only if (s ' ,s) is an edge of the corre- 
sponding Kripke structure. It is easy to see that  FK(s', s) does not depend on x '  and we 
can also regard it as a Boolean characteristic function which represents state transition 
relation of the sequential machine. 

Let Fn(s ) be a characteristic function of a CTL formula 7/. It represents a set of states 
where t/holds. We can get F,(s) in a bottom up manner as follows: 

def �9 For atomic propositions, Fv, ̀  (s) def= Xi, Fpyj (S) def= YJ and Fp, k (s) = zk. 

�9 Fn.~(s ) ~t  Fn(s). Fr where '. '  is any Boolean operator. 
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�9 F~x,(s) d~ 3~'.(F,(s')A F~(~',~)). 

�9 FEa,(s) is obtained by the following fixed point calculations. 

A0(s) d~j F,(s), Ai+x(s) deal Ai(s)A3s' .(Ai(s ')A FK(S',S)) 

�9 * FE[,ueI(s) is obtained by the following fixed point calculations. 

Ao(s) d~ Fe(s), Ai+l(s) d el Ai(s) V 3g.(Ai(s') A F,(s) A FK(s',s)) 

3.2 Implicit Manipulation of Transition Relation 

The size of an SBDD representing the characteristic function FK(S I, s) for the transition 
relation can be very large, even if the total size for f j  is small. In order to improve the 
efficiency of the above algorithm, it is desired to prevent the calculation of Fg(g, s). 

Note that Fg(s', s) is used only in the form of 3g.(C(s') A Fg(g, s)). This function is 
equivalent to 

3y'.((3x'.C(s')) A H (y~ - fj(x,y))) 
l<j<,n 

Therefore, we can get this function without constructing FK(g, s) explicitly as follows: 
[Implicit Calculation of 3s'.(C(s') A Fg(s', s))] 

Obtain the following m + 1 functions Di from Do to Dm sequentially. Dm is the result. 

D0(y', s) dej 3x'.C(s') 

D~+I(y~+~, y~+3,.--, ym, s) d~ (D~(1, y,+~, y~+3,..., ym, s) A/~+x(s))V 
(Di(O, yi+2,yi+3,"" ,ym,S) A ~fi+l(S)), 0 < i < m - 2  

D,~(s) d___d (Din_l(1, s) A f.,(s))V 
(Dm_l(O, s) A ~f~(s)) 

4 Vectorization of  SBDD Manipulation 

Because most time consuming part of the symbolic model checking algorithm is the ma- 
nipulation of Boolean functions represented by SBDD, we concentrate on vectorization of 
SBDD manipulation. 

Vector processors achieve more than several GFLOPS by vector instructions which 
execute uniform operations on array-structured data using pipelined functional units, and 
they usually have large main memory of several hundred mega bytes. In conjunction with 
floating-point operations, they also support integer and bit-wise logical operations. Since 
the performance of programs on vector processors are strongly affected by vectorization 
ratio and vector length, we usually need to devise new algorithms suitable for vector 
execution to enjoy power of vector processors. 

4.1 Vectorized Algorithm for SBDD Manipulation 

The conventional algorithm for manipulating SBDD's is based on a recursive procedure 
(or depth-first operation), which is not suitable for vector processing. In this subsection, 
we propose a breadth-first algorithm for manipulating SBDD's [14]. 
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The proposed algorithm consists of two parts; an expansion phase and a reduction 
phase. In the expansion phase, new nodes sufficient to represent the resultant function are 
generated in a breadth-first manner from the root node toward leaf nodes. In the reduction 
phase, the nodes generated in the expansion phase are checked and the redundant nodes 
and the equivalent nodes are removed in a breadth-first manner from nodes nearby leaf 
nodes toward the root node. The nodes generated in the expansion phase are called 
temporary nodes, while the nodes which already exist are called permanent nodes. 

4.1.1 Expans ion  Phase  

The input for the expansion phase is a triple (op, f, 9), where op is a Boolean operator to 
be executed, and f and 9 are the root edges for operand Boolean functions. We refer to 
this triple as a requirement. The requirement (op, f ,  9) requires to compute the root edge 
for the resultant function of op(f, 9). During processing a requirement, new requirements 
will be generated for computing the operations between subfunctions or subsubfunctions 
�9 .- of the operand functions. Actually a requirement corresponds to a procedure call in 
the depth-first algorithm. We introduce a queue called.a requirement queue to manage 
these requirements, which makes our procedure breadth-first. (The procedure would be 
depth-first if we use a stack instead of the queue.) 

For a given requirement (op, f,  g), a new root node is not always generated. We should 
not generate a new node if a node representing the result of op(f,g) already exists. For 
example, if the result of op(f, g) is found trivially, or found by looking up the operation 
result table, we do not generate a new node. These judgment can be done immediately 
from f and g. However, we can not tell, in general, the existence of the node of the same 
function as op(f, g) until we construct the whole graph for the subfunctions of op(f,g). In 
our breadth-first algorithm, we once generate a temporary node in such cases. Whether 
the temporary node is actually essential or not is examined in the reduction phase. 
[Algori thm of the  Expansion Phase] 
Put the given requirement (op, f ,  g) to the requirement queue and repeat the following 
operations for every requirement in the queue until the queue becomes empty. 
(1) If the root node representing the result of op(f,g) is found trivially, return the edge 

pointing to the node. 

(2) If the root node representing the result of op(f,g) is found in the operation result 
table, return the edge found in the table. 

(3) Otherwise, generate a new temporary node and return the edge pointing to the 
temporary node. At the same time, register the edge pointing to the temporary node 
to the operation result table as the result of op(f, g) and put the new requirements 
(op, fo,go) and (op, fl,gl) to the requirement queue, whose result will be '0' edge 
and '1' edge of this temporary node respectively. 

Since the total number of requirements processed in the above procedure is exactly 
the same as the number of procedure calls in the conventional depth-first algorithm, there 
is no serious increase on the computation cost. The only drawback of our algorithm is 
the increase of the storage required for temporary nodes. 

This procedure is suitable for vector processing because it is a simple reptition of 
processing all requirements in the queue simultaneously and all the repeated operations 
are vectorized. 
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4.1.2 Reduc t i on  Phase  

After the expansion phase is finished, there may be the following type of temporary nodes: 
�9 Redundant node: A temporary node whose '0' and '1' edges point to the same node. 

�9 Equivalent node: A temporary node whose label, '0' and '1' edges are the same as 
one of the permanent nodes. 

The main tasks of the reduction phase are to find redundant or equivalent nodes and 
to remove them. They are performed in a breadth-first manner from the nodes nearby 
the leaf nodes toward the root node. In addition, temporary nodes which are neither 
redundant nor equivalent are registered to the node table. In practice, the removal of the 
redundant nodes and the equivalent nodes should be done at the end of the reduction 
phase because these nodes could be pointed to by some edges. Therefore, the redundant 
nodes and the equivalent nodes are marked with slave nodes. Every slave node has a 
pointer to its master node which takes the place of the slave node. When a slave node 
is pointed to by '0' or '1' edges of other nodes, these edges are modified to point to the 
master node. 
[Algor i thm of the  R e d u c t i o n  Phase]  
Repeat the following operations while there are temporary nodes. For every temporary 
node whose '0' and '1' edges are not temporary nodes (i.e. permanent nodes or leaf nodes), 
execute the followings: 
(1) If its '0' and '1' edges are the same, mark the node as a slave node whose master 

node is the node pointed to by its '0' edge. 

(2) If there is an equivalent node registered in the node table, mark the temporary node 
as a slave node whose master node is the node registered in the node table. 

(3) Otherwise, register the node to the node table, and change its attribute to permanent 
from temporary. 

This procedure is also suitable for vector processing because all temporary nodes 
whose '0' and '1' edges are not temporary nodes can be processed at a time, and almost 
all operations are vectorizable. 

5 Experimental Results 
5.1 Pipelined ALU 

The sequential machine we used as an example is an n bit pipelined ALU with a register 
file. Its structures is similar to the sequential circuit used by Burch et all5, 6]. Fig. I shows 
its block diagram. The solid lines represent data paths and the dotted lines represent 
control signals. The register file consists of 4 registers of n bits. PP~, PRB and PRC 
axe n bit pipeline registers. This pipelined ALU performs one of 16 axithmetic/Iogical 
operations on the register file according to the given input signals. There axe 11 bit input 
signals; I bit Enable signal, 4 bit Op.Co& signal, three 2 bit signals specifying source 
register A (Src_Reg_A), source register B (Src_Reg_B), and destination register (Dest_Reg) 
respectively. When Enable signal is asserted, this pipelined ALU performs its specified 
operation in 3 stage pipeline. In the first stage, the operands axe read from the register file 
to PRA and/or PRB. Simple modification on the operand data may be performed during 
this stage if necessary. In the second stage, the specified operation is performed and its 
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Figure 1: Block Diagram of a Pipelined ALU 

result is stored in PRC. In addition, this result can be used immediately as operands of 
an instruction on the next clock cycle. In the third stage, the content of PRC is written 
into the register file, as well as it can be used as operands of an instruction on this clock 
cycle. 

The specification of the ALU can be written as CTL formula in the similar manner 
stated in [5, 6]. Considering that the latency of this pipelined ALU is three, what we 
should verify are: 

�9 If Enable is asserted, the content of the destination register at three clock later will 
be the result of the specified operation on the source registers at two clock later. 

�9 For any register in the register file, if Enable is not asserted or it is not specified as 
a destination register, its content at three clock later will be the same as its content 
at two clock later. 

We used the n bit pipelined ALU explained above as benchmark tests for our model 
checking algorithms. It is referred to CALUn hereafter. CALUn contains 7n + 11 bit 
memory elements in total (the 4 word register file, 3 pipeline registers, a C-fag, and 10 
fipflops in the controller). In addition, PADDn, which is obtained from CALUn by fixing 
the Op_Code input signals to A D D  instruction and removing the C-flag. PADDn contains 
7n + 6 bit memory element in total. 
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of SBDD representing Sequential Machines and Kri 

Name 

PADD2 
PADD8 
PADD16 
CALU2 
CALU8 
CALU16 

Sequential 
MacMne 
(nodes) 

132 
540 

1,084 
541 

2,194 
4,566 

Kripke 
Structure 
(nodes) 

7,514 
54,734 

117,694 
183,065 

> 1,000,000 
> 1,000,000 

ratio 
K.S./S.M. 

56.9 
101.4 
108.6 
338.4 

~ke Structures 

Table 2: Verification time and space of the implicit and explicit versions 

Name 

PADD2 
PADD8 
PADD16 
CALU2 
CALU8 
CALU16 

Implicit version 
time (sec) size (nodes) 

3,718 
8,320 

14,864 
34,527 

252,997 
754,465 

time (sec) 
75.60 

6,025.88 
59,851.55 

t 
'"t 

- - t  

5.37 
90.67 

608.78 
24.35 

1,879.72 
16,648.28 

Explicit version 
size (nodes) 

34,539 
279,746 
607,354 

> 1,000,000 
> 1,000,000 
> 1,000,000 

Ratio 
time size 
14.08 9.29 
66.46 33.62 
98.31 40.86 

t Cannot be obtained because more than 1 million nodes are required. 

5.2 Effects of the  Implici t  Manipu la t ion  of Transi t ion Rela t ion  

In order to evaluate the effects of the implicit manipulation of transition relation stated 
in Section 3.2, we have implemented two symbolic model checker for sequential machine 
verification on a SPARC Station 1+: one is based on the algorithm explained in Section 3.1 
(Explicit version); the other is based on the algorithm stated in Section 3.2 (Implicit 
version). These two model checker can use up to 1 million SBDD nodes by using about 
23 M byte user area. We used SBDD package developed by Minato [13] for Boolean 
manipulations in the model checkers. 

Table 1 shows the number of SBDD nodes used to represent a sequential machine (i.e. 
its state transition functions and output functions)and the size of SBDD representing a 

Table 3: Benchmark results of the vectorized symbolic model checking 

PADD2 
PADD8 
PADD16 
CALU2 
CALU8 
CALUI6 

4.251 
56.132 

387.178 
18.686 

833.253 

t 

~ Q  II s/v 
0.659 6.45 
6.718 8.36 

38.730 10.00 
1.874 9.97 

40.991 20.33 
741.420 

t Not experimented because it may exceed CPU time limit. 
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characteristic function for transition relations of their corresponding Kripke structures. 
Kripke structures require much more space than sequential machines. 

Table 2 shows the comparison of the experiments of the two implementations. It 
shows the required time and the required number of SBDD nodes for verification. We can 
see from this table that the Implicit version is dramatically efficient compared with the 
Ezplicit version. It achieves up to 100 times and 40 times improvements in time and space 
respectively. The amount of improvements seems to become much larger if a sequential 
machine under verification becomes more complex. 

5.3 Effects o f  the  Vector iza t ion 

Considering the experimental results stated in the previous subsection, we adopt the 
Implicit mode checking algorithm to implement the vectorized symbolic model checker for 
sequential machines on a vector processor HITAC S-820/80. We call this implementation 
as Vector version. The Vector version uses the vectorized manipulation algorithms for 
SBDD proposed in Section 4.1. It can use 5 million SBDD nodes with 256 M byte user 
a r e a .  

Table 3 shows the scalar execution and the vector execution of the Vector version on 
HITAC S-820/80. It achieves about 6 to 20 vector acceleration ration. It verified CALU16 
in about 12 minutes. 

6 Concluding Remarks 

In this paper, we first compared the implicit and the explicit symbolic model checking 
algorithms of CTL for sequential machine verifications. It is shown that the implicit one 
is dramatically efficient and achieved 14 ,,~ 98 times and 9 ~ 38 improvement in time and 
space. The more complex sequential machines become, the more improvement factor it 
achieves. 

Next we proposed the vectorized symbolic model checking algorithm based on the new 
algorithm. It achieved 6 ,,, 20 acceleration ratio and succeeded to verify a 16 bit pipelined 
ALU of 16 arithmetic/logical operations on 4 word register file in only 12 minutes. 

Our current implementations do not support frontier set simplification [5, 6, 9] which 
is effective in fixed point calculations. We think it is not difficult to realize it in our model 
checkers. We would also like to support fairness constraint [5, 6] in the near future. 
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