
Vectorized Symbolic Model Checking of
Computation Tree Logic

for Sequential Machine Verification

H i r o m i Hi ra i sh i t, K i y o h a r u H a m a g u c h i t

H i r o y u k i Ochi$ a n d Shuzo Y a j i m a $

t D e p a r t m e n t of I n f o r m a t i o n a n d C o m m u n i c a t i o n Sciences

K y o t o S a n g y o U n i v e r s i t y

K i t a - k u , K y o t o 603, J A P A N

:~ D e p a r t m e n t of I n f o r m a t i o n Science, K y o t o U n i v e r s i t y
S a k y o - k u , K y o t o 606, J A P A N

Abstract

The major goal of this paper is to clarify how large and practical sequential
machines can be verified with the current most powerful supercomputers. The basic
algorithm used is an implicit symbolic model checking algorithm, which is shown to
be 100 times and 40 times more efficient in time and space than the conventional
symbolic model checking algorithms. Based on the algorithm, a vectorized symbolic
model checking algorithm, which is suitable for execution on vector processors,
is also proposed. Some benchmark results show that it achieves about 6 N 20
acceleration ratio and it can verify a 16 bit pipelined ALU with 4 word register file,
which supports 16 arithmetic/logical operations, in around 12 minutes on a vector
processor HITAC S-820/80.

1 I n t r o d u c t i o n

Various kinds of formal methods for automatic verification have been widely studied.
Among them, the symbolic model checking approaches based on a branching time tem-
poral logic called CTL (Computation Tree Logic) are one of the most efficient approaches
[5, 6, 7]. It uses a Boolean characteristic function, which is efficiently represented and
manipulated by using Shared Binary Decision Diagrams (SBDD)[1, 3], to express the
state transition relation of a state machine explicitly.

The size of the SBDD representation of the characteristic function, however, is apt
to become very large even if the size of the SBDD representation of the state transition
functions of a sequential machine is small. In order to avoid this problem, new improved
algorithms (we call them as implicit symbolic model checking) are proposed [4, 10, 15].
They do not use the Boolean characteristic function to represent the state transition
relation explicitly. Instead, they use the state transition functions of a sequential machine

215

directly without generating the characteristic function representing the state transition
relation of a sequential machine explicitly.

Our major goal is to clarify how large and practical sequential machines can be verified
based on the symbolic model checking algorithm of CTL by using one of the most advanced
current supercomputers. Aiming at verification of sequential machines, we adopted a kind
of implicit symbolic model checking algorithm of CTL. It is efficiently executed not only
on supercomputers but also on the current conventional workstations.

First, we implemented both algorithms, i.e. explicit and implicit ones, on SPARC Sta-
tion 1+ to see the effect of the implicit symbolic model checking algorithm. Experimental
results show that the implicit version achieves up to 100 times and 40 times improvements
in time and space respectively compared with the explicit version.

Next, we vectorized the implicit symbolic model checking algorithm so that it can
be executed efficiently on a vector processor. Since the most time consuming parts of
the symbolic model checking algorithm are manipulations of SBDD, we concentrated
on vectorizing manipulations of SBDD [14]. Although many SBDD manipulators have
been developed up to now, most of them are implemented on workstations [2, 13]. In
order to handle much larger SBDD in a reasonable time, the use of parallel machines
or connection machines is studied [12]. Their algorithms are based on depth first search
recursive algorithms and it is difficult to vectorize such recursive algorithms for efficient
execution on vector processors. Our vectorized algorithm is based on breadth first search
algorithm, instead, to enjoy the power of vector processors.

We also implemented and evaluated our vectoriz~d symbolic model checking algorithm
of CTL on a vector processor HITAC S-820/80 at the University of Tokyo. It achieves 6
to 20 acceleration ratio and it takes about 12 minutes to verify a 16 bit pipelined ALU
with 4 word register file which supports 16 arithmetic/logical operations.

This paper is organized as follows: Section 2 summarizes CTL, notations of sequential
machines, and SBDD. Section 3 describes our symbolic model checking algorithm of CTL
for sequential machine verification. Vectorization of our algorithm is discussed in section
4. In section 5 we explain the implementation of our algorithm and show some benchmark
results. Section 6 concludes this paper.

2 Pre l iminar ies

2.1 C o m p u t a t i o n Tree Logic

Computation Tree Logic (CTL)[8] is a branching time temporal logic. Let A P be a set
of atomic propositions. Let p be an atomic proposition and 77, ~ be CTL formulas. Then,
p,-Wh ~1 V ~, E X T h EGT1 and E[7/hl~] are also CTL formulas.

The semantics of CTL is defined over a Kripke structure K = (5, R, I), where S is a
non-empty finite set of states; R _c S • S is a total binary relation on S; I : S --* 2 Ap is
an interpretation function which labels each state with a set of atomic propositions true
at that state.

An infinite sequence of states r = sOSlS~.. , is called a path from So if (si, Si+l).E R
for Vi > 0. ~r(i) denotes the i - t h state of the sequence ~r (i.e. r(i) = s~).

The truth-value of a CTL formula is defined at a state of a Kripke structure and
K, s ~ 7/denotes that a CTL formula 7/hold at a state s of a Kripke structure K. If there
is no ambiguity, we will omit K and just write as s ~ T/. The relation ~ is recursively

216

defined as follows: s ~ p (e AP) iff p e I(s); s ~ -~r/iff s ~ 77; s ~ r/V ~ iff s ~ r /or
s ~ ~; s ~ E X ~ jff there exists some next state s' of s (i.e. (s, s') E R) such that s' ~ r/;
s ~ EGrl iff there exists some path r on K starting from the state s such that 7r(i) ~ r/
for Vi > 0; s ~ E[r/L/~] iff there exists some path r on K starting from the state s such
that qi > 0, r (i) ~ ~ and r (j) ~ 77 for 0 _< Vj < i.

2.2 S e q u e n t i a l M a c h i n e s

Let xi(1 < i < l), yj(1 < j < m) be input variables and state variables over B = {1, 0}
respectively, x and y are vectors < Xl, x2, . . , xt > over B t and < Yl, Y2, '"Y, , , > over B m
respectively. A sequential machine with l binary input signals, rn binary state variables
and n binary output signals is defined by the set of Boolean functions as follows:

* State transition functions: f j e [B t x B m -* B] (1 _< j < m)

f (x , y) = < fl(Xl, x2, .- �9 xl, Yl, Y2,"" Yra),*'' , fm(x , , Z2, ' '" Xt, Yl, Y2,' '" Y,,,) > ~ves
the next state yl of a current state y for an input x.

�9 Output functions:

- zk E [Bm -~ B] (1 < k < n) for a Moore-type machine;
z(y) = < z1(9~, 92,"" 9~)," �9 ", z~(y~, Y2,"" Y~) > gives the current output at a
state y.

- zk E [B t x B m --~ B] (1 < k < n) for a Mealy-type machine;
z(x, y) = < Zl(Xl, x2 , . . . T.I, 91,92,"" 9 m) , " ' , gnCXl, x 2 , ' " x l , 91,92,"" Yra) >
gives the current output at a state y for an input x.

In order to associate binary input signals, binary state variables, and binary output
signals of sequential machines with atomic propositions, p~, (1 < i < l), py~ (1 _< j _< m),
and P~k (1 < k _< n) are used as atomic propositions corresponding to xi, yj and zk
respectively, xl = 1 means p=:~ is true and so on.

2.3 S h a r e d B i n a r y Dec i s ion D i a g r a m

Boolean functions are efficiently represented by using a Shared Binary Decision Diagram
(SBDD)[1, 3]. SBDD is a kind of labeled acyclic directed graph representing Shannon's
expansion theorem according to a given fixed variable ordering, in which all isomorphic
subgraphs are shared and nodes corresponding to redundant variables are removed. Each
node is labeled by its corresponding variable name and has two outgoing edges called '0'
edge and '1' edge respectively. It represents a Boolean function f = x f l + ~f0, where
x is its label; f l and fo are Boolean functions pointed to by its '1' edge and '0' edge
respectively.

SBDD has various useful properties. If the ordering of the variables is fixed for the
whole graph, the graph is canonical, i.e. there are no two different nodes representing
a same Boolean function [1, 3]. In addition, the size of the graph is feasible for many
practical Boolean functions [11]. The manipulations for various operations on Boolean
functions represented by SBDD can be performed in time proportional to the size of the
SBDD [3].

In order to guarantee the uniqueness of SBDD representation, we need to manage
SBDD nodes so that no two different nodes represent a same function. This is usually

217

done by using a hash table called node table [13]. In addition, in order to perform various
operations on Boolean functions in time proportional to the size of their corresponding
SBDD, same operations on same Boolean functions should be prevented. This is usually
done by using another hash table called operation result table[13].

3 S y m b o l i c M o d e l C h e c k i n g f o r S e q u e n t i a l M a c h i n e s

For a Boolean function f E [B" ~ B] and a vector of variables x = < xl, x2 , . . , x,, > over
B", we use the following notations:

~xl.f(x) def f(Xx, X2,'" "X,-x, O, x i + l , " ' , x,~) V f (x i , x2 , " " xi-1, 1, x i + l , ' " , x.)
3x. f (x) ~f 3x lqx2 . . .3xn . f (x)

A subset S of B" is represented by a Boolean characteristic function Fs E [B" --4 B]
such that Fs(s) = 1 if and only if s E S.

3.1 Basic A l g o r i t h m

The algorithm shown in this sub-section is based on the symbolic model checking algo-
ri thm proposed in [5, 6, 7].

Since the semantics of CTL is defined over Kripke structure, a given sequential machine
has to be transformed to the corresponding Kripke structure for model checking.

Let x and y be a input vector and a state vector of a sequential machine respectively.
Let s be a state vector of the corresponding Kripke structure. Since a state transition
of a sequential machine corresponds to a state of the corresponding Kripke structure, s
can be expressed as x # y , where x # y represents a concatenation of two vectors x and y
(i.e. x # y d=.r < Xl, x2 , "" zt, Yl, Y2,"" V-, >). The set of states of the Kripke structure is
B l x B ' .

By introducing new vectors of Boolean variables x ' = < x'l, x '2 , . . , z'l > and y ' = <
Y'l, Y'2,"" Y',, > corresponding to x and y, s' is defined to be x ' # y ' . We use x' , y ' , and
s' to represent the input vector and the state vector of the sequential machine and the
state vector of the Kripke structure at the next time.

Let f j be a state transition function corresponding to a state variable yj. The Boolean
function representing the Kripke structure K, denoted by FK, is constructed as follows:

FK(g,s) = IX (Y~ -- f j (x , y))
O~_j~_m

This function means that FK(s' ,s) = 1 if and only if (s ' ,s) is an edge of the corre-
sponding Kripke structure. It is easy to see that FK(s', s) does not depend on x ' and we
can also regard it as a Boolean characteristic function which represents state transition
relation of the sequential machine.

Let Fn(s) be a characteristic function of a CTL formula 7/. It represents a set of states
where t/holds. We can get F,(s) in a bottom up manner as follows:

def �9 For atomic propositions, Fv, ̀ (s) def= Xi, Fpyj (S) def= YJ and Fp, k (s) = zk.

�9 Fn.~(s) ~t Fn(s). Fr where '. ' is any Boolean operator.

218

�9 F~x,(s) d~ 3~'.(F,(s')A F~(~',~)).

�9 FEa,(s) is obtained by the following fixed point calculations.

A0(s) d~j F,(s), Ai+x(s) deal Ai(s)A3s' .(Ai(s ')A FK(S',S))

�9 * FE[,ueI(s) is obtained by the following fixed point calculations.

Ao(s) d~ Fe(s), Ai+l(s) d el Ai(s) V 3g.(Ai(s') A F,(s) A FK(s',s))

3.2 Implicit Manipulation of Transition Relation

The size of an SBDD representing the characteristic function FK(S I, s) for the transition
relation can be very large, even if the total size for f j is small. In order to improve the
efficiency of the above algorithm, it is desired to prevent the calculation of Fg(g, s).

Note that Fg(s', s) is used only in the form of 3g.(C(s') A Fg(g, s)). This function is
equivalent to

3y'.((3x'.C(s')) A H (y~ - fj(x,y)))
l<j<,n

Therefore, we can get this function without constructing FK(g, s) explicitly as follows:
[Implicit Calculation of 3s'.(C(s') A Fg(s', s))]

Obtain the following m + 1 functions Di from Do to Dm sequentially. Dm is the result.

D0(y', s) dej 3x'.C(s')

D~+I(y~+~, y~+3,.--, ym, s) d~ (D~(1, y,+~, y~+3,..., ym, s) A/~+x(s))V
(Di(O, yi+2,yi+3,"" ,ym,S) A ~fi+l(S)), 0 < i < m - 2

D,~(s) d___d (Din_l(1, s) A f.,(s))V
(Dm_l(O, s) A ~f~(s))

4 Vectorization of SBDD Manipulation

Because most time consuming part of the symbolic model checking algorithm is the ma-
nipulation of Boolean functions represented by SBDD, we concentrate on vectorization of
SBDD manipulation.

Vector processors achieve more than several GFLOPS by vector instructions which
execute uniform operations on array-structured data using pipelined functional units, and
they usually have large main memory of several hundred mega bytes. In conjunction with
floating-point operations, they also support integer and bit-wise logical operations. Since
the performance of programs on vector processors are strongly affected by vectorization
ratio and vector length, we usually need to devise new algorithms suitable for vector
execution to enjoy power of vector processors.

4.1 Vectorized Algorithm for SBDD Manipulation

The conventional algorithm for manipulating SBDD's is based on a recursive procedure
(or depth-first operation), which is not suitable for vector processing. In this subsection,
we propose a breadth-first algorithm for manipulating SBDD's [14].

219

The proposed algorithm consists of two parts; an expansion phase and a reduction
phase. In the expansion phase, new nodes sufficient to represent the resultant function are
generated in a breadth-first manner from the root node toward leaf nodes. In the reduction
phase, the nodes generated in the expansion phase are checked and the redundant nodes
and the equivalent nodes are removed in a breadth-first manner from nodes nearby leaf
nodes toward the root node. The nodes generated in the expansion phase are called
temporary nodes, while the nodes which already exist are called permanent nodes.

4.1.1 Expans ion Phase

The input for the expansion phase is a triple (op, f, 9), where op is a Boolean operator to
be executed, and f and 9 are the root edges for operand Boolean functions. We refer to
this triple as a requirement. The requirement (op, f , 9) requires to compute the root edge
for the resultant function of op(f, 9). During processing a requirement, new requirements
will be generated for computing the operations between subfunctions or subsubfunctions
�9 .- of the operand functions. Actually a requirement corresponds to a procedure call in
the depth-first algorithm. We introduce a queue called.a requirement queue to manage
these requirements, which makes our procedure breadth-first. (The procedure would be
depth-first if we use a stack instead of the queue.)

For a given requirement (op, f, g), a new root node is not always generated. We should
not generate a new node if a node representing the result of op(f,g) already exists. For
example, if the result of op(f, g) is found trivially, or found by looking up the operation
result table, we do not generate a new node. These judgment can be done immediately
from f and g. However, we can not tell, in general, the existence of the node of the same
function as op(f, g) until we construct the whole graph for the subfunctions of op(f,g). In
our breadth-first algorithm, we once generate a temporary node in such cases. Whether
the temporary node is actually essential or not is examined in the reduction phase.
[Algori thm of the Expansion Phase]
Put the given requirement (op, f , g) to the requirement queue and repeat the following
operations for every requirement in the queue until the queue becomes empty.
(1) If the root node representing the result of op(f,g) is found trivially, return the edge

pointing to the node.

(2) If the root node representing the result of op(f,g) is found in the operation result
table, return the edge found in the table.

(3) Otherwise, generate a new temporary node and return the edge pointing to the
temporary node. At the same time, register the edge pointing to the temporary node
to the operation result table as the result of op(f, g) and put the new requirements
(op, fo,go) and (op, fl,gl) to the requirement queue, whose result will be '0' edge
and '1' edge of this temporary node respectively.

Since the total number of requirements processed in the above procedure is exactly
the same as the number of procedure calls in the conventional depth-first algorithm, there
is no serious increase on the computation cost. The only drawback of our algorithm is
the increase of the storage required for temporary nodes.

This procedure is suitable for vector processing because it is a simple reptition of
processing all requirements in the queue simultaneously and all the repeated operations
are vectorized.

220

4.1.2 Reduc t i on Phase

After the expansion phase is finished, there may be the following type of temporary nodes:
�9 Redundant node: A temporary node whose '0' and '1' edges point to the same node.

�9 Equivalent node: A temporary node whose label, '0' and '1' edges are the same as
one of the permanent nodes.

The main tasks of the reduction phase are to find redundant or equivalent nodes and
to remove them. They are performed in a breadth-first manner from the nodes nearby
the leaf nodes toward the root node. In addition, temporary nodes which are neither
redundant nor equivalent are registered to the node table. In practice, the removal of the
redundant nodes and the equivalent nodes should be done at the end of the reduction
phase because these nodes could be pointed to by some edges. Therefore, the redundant
nodes and the equivalent nodes are marked with slave nodes. Every slave node has a
pointer to its master node which takes the place of the slave node. When a slave node
is pointed to by '0' or '1' edges of other nodes, these edges are modified to point to the
master node.
[Algor i thm of the R e d u c t i o n Phase]
Repeat the following operations while there are temporary nodes. For every temporary
node whose '0' and '1' edges are not temporary nodes (i.e. permanent nodes or leaf nodes),
execute the followings:
(1) If its '0' and '1' edges are the same, mark the node as a slave node whose master

node is the node pointed to by its '0' edge.

(2) If there is an equivalent node registered in the node table, mark the temporary node
as a slave node whose master node is the node registered in the node table.

(3) Otherwise, register the node to the node table, and change its attribute to permanent
from temporary.

This procedure is also suitable for vector processing because all temporary nodes
whose '0' and '1' edges are not temporary nodes can be processed at a time, and almost
all operations are vectorizable.

5 Experimental Results
5.1 Pipelined ALU

The sequential machine we used as an example is an n bit pipelined ALU with a register
file. Its structures is similar to the sequential circuit used by Burch et all5, 6]. Fig. I shows
its block diagram. The solid lines represent data paths and the dotted lines represent
control signals. The register file consists of 4 registers of n bits. PP~, PRB and PRC
axe n bit pipeline registers. This pipelined ALU performs one of 16 axithmetic/Iogical
operations on the register file according to the given input signals. There axe 11 bit input
signals; I bit Enable signal, 4 bit Op.Co& signal, three 2 bit signals specifying source
register A (Src_Reg_A), source register B (Src_Reg_B), and destination register (Dest_Reg)
respectively. When Enable signal is asserted, this pipelined ALU performs its specified
operation in 3 stage pipeline. In the first stage, the operands axe read from the register file
to PRA and/or PRB. Simple modification on the operand data may be performed during
this stage if necessary. In the second stage, the specified operation is performed and its

221

Controller

Enable

Op_Code

Src_l~g.A

Src_Reg-B

Dest_Reg

. |

l J,
--,~ Selector I r ' t Selector I
_ _ - - - ~ - ~ J

T 0 -1
- - ~ Selector I i-~ Selector I

. t 1
�9 - - ~ PRA [r~b PRB]

. t 1

. . . .

1
. -~ P R C I

I

I

! I
!

u u

Data Addr: Data Addr
9.~.t..P?.~.t 9. i9.u.t..P?, rt. ~

Register File

Input Port
DataAddr

A ~ A A
! !

_ , , A !

Figure 1: Block Diagram of a Pipelined ALU

result is stored in PRC. In addition, this result can be used immediately as operands of
an instruction on the next clock cycle. In the third stage, the content of PRC is written
into the register file, as well as it can be used as operands of an instruction on this clock
cycle.

The specification of the ALU can be written as CTL formula in the similar manner
stated in [5, 6]. Considering that the latency of this pipelined ALU is three, what we
should verify are:

�9 If Enable is asserted, the content of the destination register at three clock later will
be the result of the specified operation on the source registers at two clock later.

�9 For any register in the register file, if Enable is not asserted or it is not specified as
a destination register, its content at three clock later will be the same as its content
at two clock later.

We used the n bit pipelined ALU explained above as benchmark tests for our model
checking algorithms. It is referred to CALUn hereafter. CALUn contains 7n + 11 bit
memory elements in total (the 4 word register file, 3 pipeline registers, a C-fag, and 10
fipflops in the controller). In addition, PADDn, which is obtained from CALUn by fixing
the Op_Code input signals to A D D instruction and removing the C-flag. PADDn contains
7n + 6 bit memory element in total.

Table 1: Size

222

of SBDD representing Sequential Machines and Kri

Name

PADD2
PADD8
PADD16
CALU2
CALU8
CALU16

Sequential
MacMne
(nodes)

132
540

1,084
541

2,194
4,566

Kripke
Structure
(nodes)

7,514
54,734

117,694
183,065

> 1,000,000
> 1,000,000

ratio
K.S./S.M.

56.9
101.4
108.6
338.4

~ke Structures

Table 2: Verification time and space of the implicit and explicit versions

Name

PADD2
PADD8
PADD16
CALU2
CALU8
CALU16

Implicit version
time (sec) size (nodes)

3,718
8,320

14,864
34,527

252,997
754,465

time (sec)
75.60

6,025.88
59,851.55

t
'"t

- - t

5.37
90.67

608.78
24.35

1,879.72
16,648.28

Explicit version
size (nodes)

34,539
279,746
607,354

> 1,000,000
> 1,000,000
> 1,000,000

Ratio
time size
14.08 9.29
66.46 33.62
98.31 40.86

t Cannot be obtained because more than 1 million nodes are required.

5.2 Effects of the Implici t Manipu la t ion of Transi t ion Rela t ion

In order to evaluate the effects of the implicit manipulation of transition relation stated
in Section 3.2, we have implemented two symbolic model checker for sequential machine
verification on a SPARC Station 1+: one is based on the algorithm explained in Section 3.1
(Explicit version); the other is based on the algorithm stated in Section 3.2 (Implicit
version). These two model checker can use up to 1 million SBDD nodes by using about
23 M byte user area. We used SBDD package developed by Minato [13] for Boolean
manipulations in the model checkers.

Table 1 shows the number of SBDD nodes used to represent a sequential machine (i.e.
its state transition functions and output functions)and the size of SBDD representing a

Table 3: Benchmark results of the vectorized symbolic model checking

PADD2
PADD8
PADD16
CALU2
CALU8
CALUI6

4.251
56.132

387.178
18.686

833.253

t

~ Q II s/v
0.659 6.45
6.718 8.36

38.730 10.00
1.874 9.97

40.991 20.33
741.420

t Not experimented because it may exceed CPU time limit.

223

characteristic function for transition relations of their corresponding Kripke structures.
Kripke structures require much more space than sequential machines.

Table 2 shows the comparison of the experiments of the two implementations. It
shows the required time and the required number of SBDD nodes for verification. We can
see from this table that the Implicit version is dramatically efficient compared with the
Ezplicit version. It achieves up to 100 times and 40 times improvements in time and space
respectively. The amount of improvements seems to become much larger if a sequential
machine under verification becomes more complex.

5.3 Effects o f the Vector iza t ion

Considering the experimental results stated in the previous subsection, we adopt the
Implicit mode checking algorithm to implement the vectorized symbolic model checker for
sequential machines on a vector processor HITAC S-820/80. We call this implementation
as Vector version. The Vector version uses the vectorized manipulation algorithms for
SBDD proposed in Section 4.1. It can use 5 million SBDD nodes with 256 M byte user
a r e a .

Table 3 shows the scalar execution and the vector execution of the Vector version on
HITAC S-820/80. It achieves about 6 to 20 vector acceleration ration. It verified CALU16
in about 12 minutes.

6 Concluding Remarks

In this paper, we first compared the implicit and the explicit symbolic model checking
algorithms of CTL for sequential machine verifications. It is shown that the implicit one
is dramatically efficient and achieved 14 ,,~ 98 times and 9 ~ 38 improvement in time and
space. The more complex sequential machines become, the more improvement factor it
achieves.

Next we proposed the vectorized symbolic model checking algorithm based on the new
algorithm. It achieved 6 ,,, 20 acceleration ratio and succeeded to verify a 16 bit pipelined
ALU of 16 arithmetic/logical operations on 4 word register file in only 12 minutes.

Our current implementations do not support frontier set simplification [5, 6, 9] which
is effective in fixed point calculations. We think it is not difficult to realize it in our model
checkers. We would also like to support fairness constraint [5, 6] in the near future.

Acknowledgments The authors would like to express their appreciations to Prof. E. M.
Clarke of CMU, Dr. N. Takagi of Kyoto Univ., Dr. N. Ishiura of Osaka Univ., and Dr. S.
Kimura of Kobe Univ. for their valuable discussions. This research is supported partially
by Japan-U.S.A. cooperative research of JSPS and NSF. It is also supported partially by
a grant-in-aid for scientific research of the Ministry of Education of Japan.

References

[1] S. B. Akers. Binary decision diagrams. IEEE Transactions on Computers, C-
27(6):509-516, June 1978.

[2] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient implementation of a BDD
package. In Proc. 2Tth Design Automation Conference, pages 40--45, June 1990.

224

[3] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677-691, August 1986.

[4] J. R. Butch, E. M. Clarke, and D. E. Long. Representing circuits more efficiently in
symbolic model checking. In Proc. 28th Design Automation Conference, June 1991.

[5] J. R. Butch, E. M. Clarke, K. L. McMiUan, and D. L. Dill. Sequential circuit verifi-
cation using symbolic model checking. Technical report, Carnegie Mellon University,
November 1989.

[6] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential circuit verifi-
cation using symbolic model checking. In Proc. 27th Design Automation Conference,
pages 46-51, June 1990.

[7] J. R. Butch, E. M. Clarke, K. L. McMiUan, D. L. Dill, and J. Hwang. Symbolic
model checking: 102~ states and beyond. In Proc. Logic in Computer Science, June
1990.

[8] E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching
time temporal logic. In Proc. Workshop on Logic of Programs, pages 52-71. Springer-
Verlag, 1981.

[9] O. Coudert, C. Berthet, and J. C. Madre. Verification of sequential machines using
functional vectors. In Proc. IMEC-IFIP Intrn. Workshop on Applied Formal Methods
for Correct VLSI Design, pages 111-128, November 1989.

[10] O. Coudert, J. C. Madre, and C. Berthet. Verifying temporal properties of sequential
machines without building their state diagrams. In Proc. Workshop on Computer-
Aided Verification, June 1990.

[11] N. Ishiura and S. Yajima. A class of logic functions expressible by polynomial-
size binary decision diagrams. In Proc. the Synthesis and Simulation Meeting and
International Interchange, pages 48-54, October 1990.

[12] S. Kimura and E. M. Clarke. A parallel algorithm for constructing binary decision
diagrams. In Proc. IEEE ICCD'90, September 1990.

[13] S. Minato, N. Ishiura, and S. Yajima. Shared binary decision diagram with attributed
edges for efficient boolean function manipulation. In Proc. ~Tth Design Automation
Conference, pages 52-57, June 1990.

[14] H. Ochi, N. Ishiura, and S. Yajima. Breadth-first manipulation of SBDD of boolean
functions for vector processing. In Proc. PSth Design Automation Conference, June
1991.

[15] H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli. Im-
plicit state enumeration of finite state machines using BDD's. In Proc. ICCAD,
1990.

