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Abstract 

Burch, Clarke, McMiUan, Dill and Hwang describe in [4] a symbolic model checking pro- 
cedure for p-calculus formulas. The algorithm is based on the representation of relations by 
binary decision diagrams (BDDs) [1]. In the area of synchronous digital circuits a functional 
instead of a relational representation results in more compact BDDs. This is the reason for 
extending the p-calculus and the symbolic model checking procedure with functions. 

1 I n t r o d u c t i o n  

Errors in the design phase of systems, like communication protocols or digital circuits, are a ma- 
jor reason for unexpected delays, costs and lack of reliability. Verification is today performed by 
techniques based on simulation and testing. However these are far away from being exhaustive 
and hence correctness can not be guaranteed. This has stimulated interest in formal verification 
techniques which can guarantee correctness with respect to the verified properties. 

The behaviour of many systems can be modeled adequately as finite-state systems and verifica- 
tion of them can often be performed automatically by examining their state-graphs. Based on this a 
number of methods, e.g., testing for various equivalences or model checking on finite-state systems, 
have been proposed and are further researched. Since all of the methods rely on an explicit repre- 
sentation of the state-graph in a table or something similar they are limited to systems with at most 
approximately 10 e states. A principal~problem in the application to larger realistic examples is the 
so called state ezplosion problem, that is the number of states grows exponentially with the number 
of components in the system. One approach to avoid the state explosion problem is to represent the 
state space symbolically. 

One kind of symbolic representation are binary decision diagrams (BDDs) [1]. BDDs are a 
canonical representation of boolean formulas by directed acyclic graphs and Bryant described in [1] 
efficient algorithms for manipulating them. Based on BDDs Butch, Clarke et al. described in [3] a 
model checking algorithm for a branching time temporal logic, CTL, and generalized the idea in [4] 
to a powerful version of the #-calculus. Their model checking algorithm is restricted to relations. 
From a theoretical point of view this is not really a restriction, since every function f : A -~ B 
can be seen as a relation r! C_ A • B. But, for a compact representation, BDDs exploit regularities 
in the structure of a function and often these regularities can not be exploited by BDDs in the 
corresponding relation. From our experiences in the area of digital circuits the BDD representations 
for the functions of circuits are in general more compact than the representation of the corresponding 
relations. 

This is the reason why I extended the p-calculus presented by Burch, Clarke et al. in [4] with 
functions. Section 2 describes the extended p-calculus and in Section 3 the BDD based symbolic 
evaluation algorithm is presented. Section 4 will give results about the practical examples, including 
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the simple pipeline design from [3], where the functional BDD representation is more efficient than 
the BDD representation of the model by relations. 

2 T h e  E x t e n d e d  # = C a l c u l u s  

The semantic model of the extended/z-calculus formulas will be vectors and functions over vectors. 
Since functions are normally defined only for vectors of a certain length, we have to introduce simple 
typing in the calculus in order to interpret the formulas in the semantic model. The set of basic 
types is I'. Let X be a set of variable symbols, where each z E X has a basic type r E 1 ~. F is a set 
of function symbols and every f E F has a type rl • ... • rn ~ rn+l with basic types ri G I'. There 
are two syntactical categories, individual terms and functional terms, both typed and inductively 
defined as follows. 

i n d i v i d u a l  t e r m s  
z where z G X. The type of this individual term is 

the type of the variable symbol z. 

g(tl ,  ..., t , )  where ti are individual terms with types ri and g 
must be a functional term with type rl x. . .  • r~ --+ 
r .  The type of this individual term is r .  

Vz t where t is an individual term with type r and 
z ~ X. The resulting type is r .  

f u n c t i o n a l  t e r m s  
f where f G F .  The type of this functional term is 

the type of the functional symbol f .  

Az l , . . . , z ,  t where t is an individual term and z l , . . . , z~  G X. 
The type of this functional term is rl  x ... x r~ - ,  r ,  
when rl is the type of xl and r the type of t. 

recf.g where g is a functional term and f E F ,  both with 
type rl • ... x T~ --+ r ,  which is also the resulting 
type. 

The individual and functional terms are interpreted with respect to a semantic structure .&4 = 
(D, I t ,  I x ,  IF). The domain D is a finite, non-empty, totally ordered set. / r  gives an interpretation 
of the basic types r E 1" as sets of vectors over D, I t ( r )  = D" ' .  Individual variables z E X with basic 
type r are mapped by the variable interpretation I x  to vectors over D, I x ( z )  E I r ( r )  = D ' .  In 
the same way function symbols f E F are interpreted by the functional variable interpretation IF as 
functions over D-vectors. Let rl • ... • r ,  --* r be the type of f, then IF( f )  E ( / r ( r l )  • ... •  --+ 

/r(~)). 
The semantic interpretation I(lx,lp) for a semantic structure (D, I t ,  I x ,  IF) maps individual terms 

t to vectors over D, I(Ix,i~)(t) E D"' ,  and functional terms g to functions over D-vectors, I(~xa~)(g ) E 
(D "~ • ... • D "k "-* D ~+~ ). I(1x,Xp) is inductively defined on the syntactic structure of individual and 
functional terms. In the following z is a variable, f a functional symbol, g a functional term, and 
tl ,  ..., t , ,  t are individual terms, r(z~) is the type of a variable symbol zi. The definition of I(zxap) 
on individual terms is given by the following equations: 

/C~xa,)(=) = I~(=)  
xcx, , , . )Cg(~, . . . ,~.))  = Xc~,,,.)Cs)(xc,,,, .)Ct,),.. . ,  xc ,x , . ) (~ . ) )  
I(,x.xr)(Vz t) = mirt(TI(zx(=.-,).,,)(t) I e e xr(=)}) 

mitt  for a set of vectors over D is defined as a vector, in which each component is the minimal  
value of all the values occuring in the corresponding component of all vectors in the set. The minimal  
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value is determined with respect to the total ordering on D. The interpretation of functional terms 
is also defined equationally: 

Ic~,,,~,,~(f) = 
l(~,,,~,)(,x=,, ..., =, t) = 

I(ix,iv)(recf.g) = 

I x ( f )  
h :  I t ( r ( = , ) )  • ... • l r ( ~ ( = . ) )  -~  I r ( ~ ( t ) )  

h ( e l  . . . .  , en ) de~ Z(ix ( . . . .  1 . . . . . . . . . .  ),IF)(~) 

l fp  h �9 ItF(f) . I(Ix.l,(/.h))(g) 

IF(f) stands as an abreviaton for Ir(~'i) • ... x Ir(r,) --+ It(r) when f has the type rl • ... • 
~', ~ r. This are all possible functions to which the function symbol f can be mapped by a 
semantic interpretation. Ifp h.g denotes the least fixpoint of the functional g with respect to the 
partial ordering C on functions, defined in the following. On the domain D a partial order E is 
defined by: a _ b iff a = b or a =• .L denotes the minimal value of D with respect to the 
total ordering on D. This extends to vectors of D by: (al,. . . ,a,) E (bi,...,b~) iff Vi : at E_ b~. 
The partial order _ can further be extended to functions f l , f2  E (D ~ -+ D ~) in the usual way: 
f~ _E f2 iff Vz E D" : f~(x) E f2(x). A functional g is monotone, iff s _ f2 implies g(f~) _ g(f2). 
A least fixpoint need not exist for every functional, but for monotone functionals over a finite domain 
it exists and is uniquely defined. So I(lx.Zp) is only well defined for functional terms reef.g where g 
is a monotone functional. 

In this paragraph I want to outline briefly how the p-calculus used by Butch, Clarke et al. in [4] 
is contained in the extended calculus. For this I assume the boolean domain, D = {0,1}, with the 
ordering 0 < 1, thus 0 serving as the bottom element .L. Any relation r C D" can be represented 
by its characteristic function f ,  : D" --, D with f (x )  = 1 ~=~ x E r. For characteristic functions f ,  
the ordering _E is exactly the set inclusion ordering on the corresponding relations r and so the rec 
operator is identical to the p operator. From the previous it is clear that the relational terms defined 
in Section 3 of [4] are a subset of the functional terms used in the calculus here. Also the formulas 
of [4] are special cases of the individual terms described here, if the boolean operators V, -I, = are 
available with their usual interpretation in IF. 

By using a finite domain D and the ordering _ we have a general calculus in which also e.g., 
3-valued logic or recursively defined functions can be expressed directly. However the examples of 
Section 4 will only use the boolean domain D = {0,1}. 

3 Symbolic Evaluation 

Evaluation of a term t means computing the semantic interpretation I(ix,lr)(t) with respect to a 
semantic structure (D, Ir, Ix ,IF).  An explicit representation of functions g : D n~+'''+nh --* D ~ by 
tables, would implicate the state explosion problem, as mentioned in the introduction. To avoid this 
problem BDDs are used here as a symbolical representation of functions. 

In [1] Bryant described binary decision diagrams (BDDs) as a normal form representation for 
boolean functions and efficient algorithms for manipulating them. BDDs are directed acyclic graphs 
with internal nodes labeled by variables Xl, ..., z ,  and encode the truth table of a boolean function 
by exploiting some regularities in the function. For a given variable ordering a boolean function has 
a unique BDD. In most cases the ordering of the variables is very critical for the size of the BDD. 
For certain boolean functions (e.g., integer multiplication [1]) the size of a BDD grows exponentially 
in the number of variables for every variable ordering, which is not surprising since the NP-complete 
satisfiability problem can be solved with BDDs. However from our experience the sizes of the BDDs 
representing boolean functions realized by digital circuits are small in most cases. The extension of 
BDDs to functions f : D" ~ D 'n, where D is a finite set is straigthforward. 

The symbolic evaluation algorithm described in the next part is based on a few operations on 
BDDs. BDD_var maps variable symbols x E X to vectors of BDD variables. Since BDDs are normal 
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forms for functions the equivalecnce check BDD_equal is a trivial operation. BDD_forall gets two 
arguments, a set of BDD variables and a BDD-vector, and evaluates a BDD-vector according to the 
semantic given in Section 2. The basic operation during the evaluation process is BDD.compose. 
Given the BDD-vectors for g(xl ,  ..., x , ) ,  f l ,  ..., f~ it computes the BDD-vector of the composite func- 
tion g](~=/~ ........ I,). The apply operation, as described in [1], can be seen as a special case of function 
composition. 

Based on BDDs, symbolic evaluation of individual terms and functional terms is performed by 
the routines evaLit and eval_ft as defined in the Figure below. The definitions of the semantic inter- 
pretation I(Ixd~) from Section 2 are directly computed, but for all possible variable interpretations 
insteaA of only a specific one. 

Hence, the result of the routine evaLit for an individual term t is not a value from D ~, but a 
BDD-vector tODD with variables from X. For a specific vaxiable interpretation I x  the interpretation 
Iffxd~)(t ) can be obtained from the BDD-vector [BDD by substituting all the BDD variables in tODD 
with their vaiues according to Ix ,  resulting in a vector over D. Iffx,l~)(t ) = tODD[=,=~x(=d. In the 
first case of evaLit a variable is just mapped to its corresponding vector of BDD variables. In the two 
other cases the paxts of the individual term axe evaluated first and afterwards the BDD operation, 
realizing the semantic (see Section 2), is applied. 

eval.it(x, IF) 
eval.Jt(f( Q, ..., t,), IF) 

eval_it(Vx t, IF) 

= BDD_var(x) 
= BDD_compose(eval.ft(f, IF), 

evai_it(t,, IF), ..., eval~t(t, ,  IF)) 
= BDD_forail(BDD_var(~), eval_it(t, IF)) 

The result of the routine eval_ft for a functional term g is a BDD-vector goDz) and a vector of vari- 
ables, indicating that these variables are serving as placeholders for the functions arguments. Again 
the interpretation Iffx,lr)(g ) for a variable interpretation I x  is obtained from gODD by substituting 
all variables not marked as placeholders by their values, according to Ix .  The resulting BDD-vector, 
containinig only placeholder variables, is a representation for the function I(xxdj,)(g). When g is a 
function symbol its BDD representation is obtained by a simple table lookup in IF. In the second 
case the individuaa term t is evaluated first, resulting in a BDD tBD D with variables of X. For the 
lambda abstraction it is sufficient to mark the variables xl, ..., x ,  as placeholders without affecting 
the BDD-vector tSDD. The least fixpoint recf.g of a monotone functional g is calculated by the 
standard fixpoint iteration, starting with the bottom element ~.  ~ is a vector of _L's, when _L is the 
minimal element of the domain D, with respect to the total ordering on D. The next function h~+l of 
the iteration is calculated from hi and g by evaluating the functional term g with the interpretation 
of the function symbol f set to h~. Monotonicity of g and finiteness of D guarantees termination of 
the iteration with the least fixpoint lfp f .g = h]p+l = hip. 

eval..ft(f, IF) = IF( f )  
eval_ft(Ax,, ..., x~ t, IF) = (evalAt(t, IF), (BDD_var(xl), ..., BDD_var(x,))) 
eval_ft(recf.g, IF) = h := l ;  

do 
hold := h; 
h := evai_ft(g, IF ( f  e-- hold)); 

unt i l  BDD_equal(h, hotd); 
return h 
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4 Empirical Results 

Using BDDs is only efficient in a heuristic sense, and so it is difficult to give estimates for the sizes 
of the BDDs. Therefore empirical results from practical circuits are needed in order to evaluate 
the method and to compare it with other approaches. For this reason two examples of synchronous 
digital circuits, reported previously in the literature, were considered: The MinMa~x circuit [8], which 
is a small signal processor proposed by IMEC as a benchmark for formal system design methods, 
and the simple pipeline used by Burch, Clarke et al. in [3]. 

4 . 1  MinMax Circuit 

This Section shows how equivalence of functionally represented automata can be expressed as a term 
in the extended #-calculus. So a symbolic comparison of the automata can be performed by evaluating 
that term with the symbolic evaluation algorithm of Section 3. Specification and implementation of 
synchronous digital circuits like the MinMa~x example can be modeled by finite-state systems, more 
precisely Mealy automata. A Mealy automaton is a tuple (S, ~2, A, 6, A, r), where S is the set of 
states, ~.. the input alphabet, A the output alphabet and r E S the initial state. The behaviour of 
a Mealy automaton is defined by the transition function ~ : ,9 • r. ~ S and the output function 
A : S • ~2 ~ A. In the case of digital circuits the domain of the states, inputs, and outputs are 
bitvectors. 

Behavioural equivalence of two Mealy automata .M,pec and .~impt can be defined with respect to 
their initial states: r~ ~, ri,~pt. Two states are behavioural equivalent iff for every input sequence 
the generated output sequences are equal. The relation ~ C_ Sop~ x S/rapt of behavioural equivalent 
states is defined inductively as the largest relation with the following property: 

s, ~ s2 iff V~ E r.: (Ao~eo(s,,~) = Ai~(s2,~) and ~,~oo(s~,o) ~ ~m,t(s~,o)). 

The largest fixpoint vf.g(f) of an recursive definition, as above, can also be expressed by a least 
fixpoint: -~pf.--,g(--,f). With this simple syntactic transformation the above equivalence definition 
for Mealy automata can be expressed directly in our calculus by the individual term -~ ~ (rop~, ri,npl), 
where ~ stands as an abreviation for the following functional term: 

rec ~ .  A~,  z~W(A.,oo(S~, o) = A,~,,(s~, ~) ^ -1 ~ (~,~oo(Sl, o), 6,,~,(s~, o)))  

This formula was evaluated for different bitsizes of the MinMax circuit and the results axe listed 
in Table 1. The first five columns give some characteristics about the circuit, width is the width of 
the data path, states is an approximation for the number of possible states, these are those reachable 
from initial states. The execution times, measured in minutes, of column time have been obtained on 
a Sun 3/60 workstation with the described method, implemented in a Prolog extended by unification 
in finite algebras [6]. As a comparison, the times in column time[7] are the ones Berthet, Coudert 
and Madre obtained with their approa~a for BDD-based automata equivalence checking [5] on a 
DPX5000 mini computer (about twice as fast as a VAX/780). 

width states time 
8 2.8 * 10 s 3 
9 2.5 * 10 r 4 
10 1.8 * 10 s 6 
16 4.4 * 1013 20 
32 9 .3 . I02r  109 

time [71 
1.5 
5 

23 

Table 1: MinM~ Empirical Results 

The time for evaluating the above term, expressing automata equivalence, grows polynomially 
with the bitsize N, about N 2"5, whereas execution times in [7] seem to grow exponentially, about 4 N. 
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4 . 2  S y n c h r o n o u s  P i p e l i n e  

This section gives an example for the verification of a simple pipeline design. The circuit was first 
described in [3] and also verified with the symbolic model checker of [3]. However Burch, Clarke et al. 
used relations for representing the circuit. In contrast to them in the following approach functions 
are used for the same task. 

The pipeline performs simple arithmetic and logical operations on a register file, according to an 
instruction register. The instruction register contains the source register addresses, the destination 
register address, the operation code, and a special stall bit. The operations are performed in three 
stages. In the first step the operands are read from the register file. In the next step an ALU 
operation is performed and in the third step the result is written back to the register file. Since the 
result of an operation can be used immediately in the next step as an operand there are register 
bypass paths. If the stall bit in the instruction register is set a "no-operation" is propagated through 
the pipe. A simple block diagram of the pipeline is shown below. 

Register Bypass Paths 

The pipeline can be modeled as a finite-state system. The state is composed of the register file 
state, the pipe registers and the state of the control part. A transition function ~ gives for each state 
and input, the state in the next step. From Table 2 the great difference in the representation by a 
transition relation, as done in [3], and the functional representation is evident. 

A specification of the pipeline can be obtained by taking into account the latency of the pipe 
which is three clock cycles. The result of an operation will not affect the register file until three cycles 
in the future, and the inputs of the operation should correspond to the state of the register file two 
cycles in the future, reg is a simple projection, giving the register file part of a pipeline state. The 
function select, selects the i-th part of an array of values, reg2(i), reg3(i) are used as abreviations 
for the value of the i-th register two, three steps in the future. 

The function aluop(op, x, y) gives the result of the operation op applied on the arguments x and 
y. With this abreviations the whole specification can be expressed by the following term in our 
calculus. 

~S, 0"i, a2, 0"3, X ~stazl  ~ reg3(c) = aluop(op, ,eg2(a) ,  ~eg2(b)) 
^ 

, t , ,u  v = # c ~ ,-eg~(=) = ,-~g2(x) 

The above formula was evaluated for different versions of the pipeline. The pipeline performed 
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addition and exor operations and was used with various register widths and numbers of registers. 
The first column width gives the width of the registers in bits. In the following columns the results for 
register files with 4, 8, and 16 registers are listed. BDD gives the number of nodes in the BDD-vector 
for representing the transition function g. The execution times, measured in seconds, of column time 
have been obtained on a Sun 3/60 workstation with the described method, implemented in a Prolog 
extended by unification in finite algebras [6]. As a comparison, the columns BDD[3] and time[3] are 
the results Burch, Clarke et al. obtained with their approach for the same task also on a Sun 3. 

width 4 registers 8 registers 16 registers 
BDD BDD[3] time time [3] BDD time BDD time 

2 161 18429 21 188 355 141 757 1178 
4 329 53924 66 1706 715 433 1517 
8 665 308 1435 1683 3037 
16 1337 1905 2875 6077 
32 2681 5755 12157.0 

Table 2: Pipeline Empirical Results 

In a new paper Burch, Clarke and Long described in [2] a method for representing circuits more 
efficiently in symbolic model checking. The key idea is to express a relation by conjunctions or 
disjunctions of relations, each with a compact BDD representation. Using this method the results 
have been improved considerably and seem to be in the same order of magnitude then the ones 
achieved with the functional extension. 

The functional BDD representation of the pipelines behaviour is much more compact than the 
pure relational one, by a factor of more than 100. It grows linearly with the width and the number 
of registers. The relational representation grows only linearly with the width, but cubically with the 
number of registers from our experience. The time needed for verification grows between quadratically 
and cubically with the width and the number of registers. The most time consuming operation 
during verification consists in computing the function reg3, which encodes all possible operand, i.e., 
register, combinations. Because in the BDD for reg3 nearly no sharing is possible between two 
different combinations, the BDD grows at least quadratically with the number of registers. 
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