
Functional Extension of Symbolic Model Checking

Thomas Filkorn

Siemens AG, Corporate Laboratories for Information Technology, ZFE IS INF
Otto-Hahn-Ring 6, D-8000 Munich 83, F.R.G.

Abstract

Burch, Clarke, McMiUan, Dill and Hwang describe in [4] a symbolic model checking pro-
cedure for p-calculus formulas. The algorithm is based on the representation of relations by
binary decision diagrams (BDDs) [1]. In the area of synchronous digital circuits a functional
instead of a relational representation results in more compact BDDs. This is the reason for
extending the p-calculus and the symbolic model checking procedure with functions.

1 I n t r o d u c t i o n

Errors in the design phase of systems, like communication protocols or digital circuits, are a ma-
jor reason for unexpected delays, costs and lack of reliability. Verification is today performed by
techniques based on simulation and testing. However these are far away from being exhaustive
and hence correctness can not be guaranteed. This has stimulated interest in formal verification
techniques which can guarantee correctness with respect to the verified properties.

The behaviour of many systems can be modeled adequately as finite-state systems and verifica-
tion of them can often be performed automatically by examining their state-graphs. Based on this a
number of methods, e.g., testing for various equivalences or model checking on finite-state systems,
have been proposed and are further researched. Since all of the methods rely on an explicit repre-
sentation of the state-graph in a table or something similar they are limited to systems with at most
approximately 10 e states. A principal~problem in the application to larger realistic examples is the
so called state ezplosion problem, that is the number of states grows exponentially with the number
of components in the system. One approach to avoid the state explosion problem is to represent the
state space symbolically.

One kind of symbolic representation are binary decision diagrams (BDDs) [1]. BDDs are a
canonical representation of boolean formulas by directed acyclic graphs and Bryant described in [1]
efficient algorithms for manipulating them. Based on BDDs Butch, Clarke et al. described in [3] a
model checking algorithm for a branching time temporal logic, CTL, and generalized the idea in [4]
to a powerful version of the #-calculus. Their model checking algorithm is restricted to relations.
From a theoretical point of view this is not really a restriction, since every function f : A -~ B
can be seen as a relation r! C_ A • B. But, for a compact representation, BDDs exploit regularities
in the structure of a function and often these regularities can not be exploited by BDDs in the
corresponding relation. From our experiences in the area of digital circuits the BDD representations
for the functions of circuits are in general more compact than the representation of the corresponding
relations.

This is the reason why I extended the p-calculus presented by Burch, Clarke et al. in [4] with
functions. Section 2 describes the extended p-calculus and in Section 3 the BDD based symbolic
evaluation algorithm is presented. Section 4 will give results about the practical examples, including

226

the simple pipeline design from [3], where the functional BDD representation is more efficient than
the BDD representation of the model by relations.

2 T h e E x t e n d e d # = C a l c u l u s

The semantic model of the extended/z-calculus formulas will be vectors and functions over vectors.
Since functions are normally defined only for vectors of a certain length, we have to introduce simple
typing in the calculus in order to interpret the formulas in the semantic model. The set of basic
types is I'. Let X be a set of variable symbols, where each z E X has a basic type r E 1 ~. F is a set
of function symbols and every f E F has a type rl • ... • rn ~ rn+l with basic types ri G I'. There
are two syntactical categories, individual terms and functional terms, both typed and inductively
defined as follows.

i n d i v i d u a l t e r m s
z where z G X. The type of this individual term is

the type of the variable symbol z.

g(tl , ..., t ,) where ti are individual terms with types ri and g
must be a functional term with type rl x. . . • r~ --+
r . The type of this individual term is r .

Vz t where t is an individual term with type r and
z ~ X. The resulting type is r .

f u n c t i o n a l t e r m s
f where f G F . The type of this functional term is

the type of the functional symbol f .

Az l , . . . , z , t where t is an individual term and z l , . . . , z~ G X.
The type of this functional term is rl x ... x r~ - , r ,
when rl is the type of xl and r the type of t.

recf.g where g is a functional term and f E F , both with
type rl • ... x T~ --+ r , which is also the resulting
type.

The individual and functional terms are interpreted with respect to a semantic structure .&4 =
(D, I t , I x , IF). The domain D is a finite, non-empty, totally ordered set. / r gives an interpretation
of the basic types r E 1" as sets of vectors over D, I t (r) = D" ' . Individual variables z E X with basic
type r are mapped by the variable interpretation I x to vectors over D, I x (z) E I r (r) = D ' . In
the same way function symbols f E F are interpreted by the functional variable interpretation IF as
functions over D-vectors. Let rl • ... • r , --* r be the type of f, then IF(f) E (/ r (r l) • ... • --+

/r(~)).
The semantic interpretation I(lx,lp) for a semantic structure (D, I t , I x , IF) maps individual terms

t to vectors over D, I(Ix,i~)(t) E D"' , and functional terms g to functions over D-vectors, I(~xa~)(g) E
(D "~ • ... • D "k "-* D ~+~). I(1x,Xp) is inductively defined on the syntactic structure of individual and
functional terms. In the following z is a variable, f a functional symbol, g a functional term, and
tl , ..., t , , t are individual terms, r(z~) is the type of a variable symbol zi. The definition of I(zxap)
on individual terms is given by the following equations:

/C~xa,)(=) = I~(=)
xcx, , , .)Cg(~, . . . ,~.)) = Xc~,,,.)Cs)(xc,,,, .)Ct,),.. . , xc ,x , .) (~ .))
I(,x.xr)(Vz t) = mirt(TI(zx(=.-,).,,)(t) I e e xr(=)})

mitt for a set of vectors over D is defined as a vector, in which each component is the minimal
value of all the values occuring in the corresponding component of all vectors in the set. The minimal

227

value is determined with respect to the total ordering on D. The interpretation of functional terms
is also defined equationally:

Ic~,,,~,,~(f) =
l(~,,,~,)(,x=,, ..., =, t) =

I(ix,iv)(recf.g) =

I x (f)
h : I t (r (= ,)) • ... • l r (~ (= .)) -~ I r (~ (t))

h (e l , en) de~ Z(ix (. . . . 1),IF)(~)

l fp h �9 ItF(f) . I(Ix.l,(/.h))(g)

IF(f) stands as an abreviaton for Ir(~'i) • ... x Ir(r,) --+ It(r) when f has the type rl • ... •
~', ~ r. This are all possible functions to which the function symbol f can be mapped by a
semantic interpretation. Ifp h.g denotes the least fixpoint of the functional g with respect to the
partial ordering C on functions, defined in the following. On the domain D a partial order E is
defined by: a _ b iff a = b or a =• .L denotes the minimal value of D with respect to the
total ordering on D. This extends to vectors of D by: (al,. . . ,a,) E (bi,...,b~) iff Vi : at E_ b~.
The partial order _ can further be extended to functions f l , f2 E (D ~ -+ D ~) in the usual way:
f~ _E f2 iff Vz E D" : f~(x) E f2(x). A functional g is monotone, iff s _ f2 implies g(f~) _ g(f2).
A least fixpoint need not exist for every functional, but for monotone functionals over a finite domain
it exists and is uniquely defined. So I(lx.Zp) is only well defined for functional terms reef.g where g
is a monotone functional.

In this paragraph I want to outline briefly how the p-calculus used by Butch, Clarke et al. in [4]
is contained in the extended calculus. For this I assume the boolean domain, D = {0,1}, with the
ordering 0 < 1, thus 0 serving as the bottom element .L. Any relation r C D" can be represented
by its characteristic function f , : D" --, D with f (x) = 1 ~=~ x E r. For characteristic functions f ,
the ordering _E is exactly the set inclusion ordering on the corresponding relations r and so the rec
operator is identical to the p operator. From the previous it is clear that the relational terms defined
in Section 3 of [4] are a subset of the functional terms used in the calculus here. Also the formulas
of [4] are special cases of the individual terms described here, if the boolean operators V, -I, = are
available with their usual interpretation in IF.

By using a finite domain D and the ordering _ we have a general calculus in which also e.g.,
3-valued logic or recursively defined functions can be expressed directly. However the examples of
Section 4 will only use the boolean domain D = {0,1}.

3 Symbolic Evaluation

Evaluation of a term t means computing the semantic interpretation I(ix,lr)(t) with respect to a
semantic structure (D, Ir, Ix ,IF). An explicit representation of functions g : D n~+'''+nh --* D ~ by
tables, would implicate the state explosion problem, as mentioned in the introduction. To avoid this
problem BDDs are used here as a symbolical representation of functions.

In [1] Bryant described binary decision diagrams (BDDs) as a normal form representation for
boolean functions and efficient algorithms for manipulating them. BDDs are directed acyclic graphs
with internal nodes labeled by variables Xl, ..., z , and encode the truth table of a boolean function
by exploiting some regularities in the function. For a given variable ordering a boolean function has
a unique BDD. In most cases the ordering of the variables is very critical for the size of the BDD.
For certain boolean functions (e.g., integer multiplication [1]) the size of a BDD grows exponentially
in the number of variables for every variable ordering, which is not surprising since the NP-complete
satisfiability problem can be solved with BDDs. However from our experience the sizes of the BDDs
representing boolean functions realized by digital circuits are small in most cases. The extension of
BDDs to functions f : D" ~ D 'n, where D is a finite set is straigthforward.

The symbolic evaluation algorithm described in the next part is based on a few operations on
BDDs. BDD_var maps variable symbols x E X to vectors of BDD variables. Since BDDs are normal

228

forms for functions the equivalecnce check BDD_equal is a trivial operation. BDD_forall gets two
arguments, a set of BDD variables and a BDD-vector, and evaluates a BDD-vector according to the
semantic given in Section 2. The basic operation during the evaluation process is BDD.compose.
Given the BDD-vectors for g(xl , ..., x ,) , f l , ..., f~ it computes the BDD-vector of the composite func-
tion g](~=/~ I,). The apply operation, as described in [1], can be seen as a special case of function
composition.

Based on BDDs, symbolic evaluation of individual terms and functional terms is performed by
the routines evaLit and eval_ft as defined in the Figure below. The definitions of the semantic inter-
pretation I(Ixd~) from Section 2 are directly computed, but for all possible variable interpretations
insteaA of only a specific one.

Hence, the result of the routine evaLit for an individual term t is not a value from D ~, but a
BDD-vector tODD with variables from X. For a specific vaxiable interpretation I x the interpretation
Iffxd~)(t) can be obtained from the BDD-vector [BDD by substituting all the BDD variables in tODD
with their vaiues according to Ix , resulting in a vector over D. Iffx,l~)(t) = tODD[=,=~x(=d. In the
first case of evaLit a variable is just mapped to its corresponding vector of BDD variables. In the two
other cases the paxts of the individual term axe evaluated first and afterwards the BDD operation,
realizing the semantic (see Section 2), is applied.

eval.it(x, IF)
eval.Jt(f(Q, ..., t,), IF)

eval_it(Vx t, IF)

= BDD_var(x)
= BDD_compose(eval.ft(f, IF),

evai_it(t,, IF), ..., eval~t(t, , IF))
= BDD_forail(BDD_var(~), eval_it(t, IF))

The result of the routine eval_ft for a functional term g is a BDD-vector goDz) and a vector of vari-
ables, indicating that these variables are serving as placeholders for the functions arguments. Again
the interpretation Iffx,lr)(g) for a variable interpretation I x is obtained from gODD by substituting
all variables not marked as placeholders by their values, according to Ix . The resulting BDD-vector,
containinig only placeholder variables, is a representation for the function I(xxdj,)(g). When g is a
function symbol its BDD representation is obtained by a simple table lookup in IF. In the second
case the individuaa term t is evaluated first, resulting in a BDD tBD D with variables of X. For the
lambda abstraction it is sufficient to mark the variables xl, ..., x , as placeholders without affecting
the BDD-vector tSDD. The least fixpoint recf.g of a monotone functional g is calculated by the
standard fixpoint iteration, starting with the bottom element ~. ~ is a vector of _L's, when _L is the
minimal element of the domain D, with respect to the total ordering on D. The next function h~+l of
the iteration is calculated from hi and g by evaluating the functional term g with the interpretation
of the function symbol f set to h~. Monotonicity of g and finiteness of D guarantees termination of
the iteration with the least fixpoint lfp f .g = h]p+l = hip.

eval..ft(f, IF) = IF(f)
eval_ft(Ax,, ..., x~ t, IF) = (evalAt(t, IF), (BDD_var(xl), ..., BDD_var(x,)))
eval_ft(recf.g, IF) = h := l ;

do
hold := h;
h := evai_ft(g, IF (f e-- hold));

unt i l BDD_equal(h, hotd);
return h

229

4 Empirical Results

Using BDDs is only efficient in a heuristic sense, and so it is difficult to give estimates for the sizes
of the BDDs. Therefore empirical results from practical circuits are needed in order to evaluate
the method and to compare it with other approaches. For this reason two examples of synchronous
digital circuits, reported previously in the literature, were considered: The MinMa~x circuit [8], which
is a small signal processor proposed by IMEC as a benchmark for formal system design methods,
and the simple pipeline used by Burch, Clarke et al. in [3].

4 . 1 MinMax Circuit

This Section shows how equivalence of functionally represented automata can be expressed as a term
in the extended #-calculus. So a symbolic comparison of the automata can be performed by evaluating
that term with the symbolic evaluation algorithm of Section 3. Specification and implementation of
synchronous digital circuits like the MinMa~x example can be modeled by finite-state systems, more
precisely Mealy automata. A Mealy automaton is a tuple (S, ~2, A, 6, A, r), where S is the set of
states, ~.. the input alphabet, A the output alphabet and r E S the initial state. The behaviour of
a Mealy automaton is defined by the transition function ~ : ,9 • r. ~ S and the output function
A : S • ~2 ~ A. In the case of digital circuits the domain of the states, inputs, and outputs are
bitvectors.

Behavioural equivalence of two Mealy automata .M,pec and .~impt can be defined with respect to
their initial states: r~ ~, ri,~pt. Two states are behavioural equivalent iff for every input sequence
the generated output sequences are equal. The relation ~ C_ Sop~ x S/rapt of behavioural equivalent
states is defined inductively as the largest relation with the following property:

s, ~ s2 iff V~ E r.: (Ao~eo(s,,~) = Ai~(s2,~) and ~,~oo(s~,o) ~ ~m,t(s~,o)).

The largest fixpoint vf.g(f) of an recursive definition, as above, can also be expressed by a least
fixpoint: -~pf.--,g(--,f). With this simple syntactic transformation the above equivalence definition
for Mealy automata can be expressed directly in our calculus by the individual term -~ ~ (rop~, ri,npl),
where ~ stands as an abreviation for the following functional term:

rec ~ . A~, z~W(A.,oo(S~, o) = A,~,,(s~, ~) ^ -1 ~ (~,~oo(Sl, o), 6,,~,(s~, o)))

This formula was evaluated for different bitsizes of the MinMax circuit and the results axe listed
in Table 1. The first five columns give some characteristics about the circuit, width is the width of
the data path, states is an approximation for the number of possible states, these are those reachable
from initial states. The execution times, measured in minutes, of column time have been obtained on
a Sun 3/60 workstation with the described method, implemented in a Prolog extended by unification
in finite algebras [6]. As a comparison, the times in column time[7] are the ones Berthet, Coudert
and Madre obtained with their approa~a for BDD-based automata equivalence checking [5] on a
DPX5000 mini computer (about twice as fast as a VAX/780).

width states time
8 2.8 * 10 s 3
9 2.5 * 10 r 4
10 1.8 * 10 s 6
16 4.4 * 1013 20
32 9 .3 . I02r 109

time [71
1.5
5

23

Table 1: MinM~ Empirical Results

The time for evaluating the above term, expressing automata equivalence, grows polynomially
with the bitsize N, about N 2"5, whereas execution times in [7] seem to grow exponentially, about 4 N.

230

4 . 2 S y n c h r o n o u s P i p e l i n e

This section gives an example for the verification of a simple pipeline design. The circuit was first
described in [3] and also verified with the symbolic model checker of [3]. However Burch, Clarke et al.
used relations for representing the circuit. In contrast to them in the following approach functions
are used for the same task.

The pipeline performs simple arithmetic and logical operations on a register file, according to an
instruction register. The instruction register contains the source register addresses, the destination
register address, the operation code, and a special stall bit. The operations are performed in three
stages. In the first step the operands are read from the register file. In the next step an ALU
operation is performed and in the third step the result is written back to the register file. Since the
result of an operation can be used immediately in the next step as an operand there are register
bypass paths. If the stall bit in the instruction register is set a "no-operation" is propagated through
the pipe. A simple block diagram of the pipeline is shown below.

Register Bypass Paths

The pipeline can be modeled as a finite-state system. The state is composed of the register file
state, the pipe registers and the state of the control part. A transition function ~ gives for each state
and input, the state in the next step. From Table 2 the great difference in the representation by a
transition relation, as done in [3], and the functional representation is evident.

A specification of the pipeline can be obtained by taking into account the latency of the pipe
which is three clock cycles. The result of an operation will not affect the register file until three cycles
in the future, and the inputs of the operation should correspond to the state of the register file two
cycles in the future, reg is a simple projection, giving the register file part of a pipeline state. The
function select, selects the i-th part of an array of values, reg2(i), reg3(i) are used as abreviations
for the value of the i-th register two, three steps in the future.

The function aluop(op, x, y) gives the result of the operation op applied on the arguments x and
y. With this abreviations the whole specification can be expressed by the following term in our
calculus.

~S, 0"i, a2, 0"3, X ~stazl ~ reg3(c) = aluop(op, ,eg2(a) , ~eg2(b))
^

, t , ,u v = # c ~ ,-eg~(=) = ,-~g2(x)

The above formula was evaluated for different versions of the pipeline. The pipeline performed

231

addition and exor operations and was used with various register widths and numbers of registers.
The first column width gives the width of the registers in bits. In the following columns the results for
register files with 4, 8, and 16 registers are listed. BDD gives the number of nodes in the BDD-vector
for representing the transition function g. The execution times, measured in seconds, of column time
have been obtained on a Sun 3/60 workstation with the described method, implemented in a Prolog
extended by unification in finite algebras [6]. As a comparison, the columns BDD[3] and time[3] are
the results Burch, Clarke et al. obtained with their approach for the same task also on a Sun 3.

width 4 registers 8 registers 16 registers
BDD BDD[3] time time [3] BDD time BDD time

2 161 18429 21 188 355 141 757 1178
4 329 53924 66 1706 715 433 1517
8 665 308 1435 1683 3037
16 1337 1905 2875 6077
32 2681 5755 12157.0

Table 2: Pipeline Empirical Results

In a new paper Burch, Clarke and Long described in [2] a method for representing circuits more
efficiently in symbolic model checking. The key idea is to express a relation by conjunctions or
disjunctions of relations, each with a compact BDD representation. Using this method the results
have been improved considerably and seem to be in the same order of magnitude then the ones
achieved with the functional extension.

The functional BDD representation of the pipelines behaviour is much more compact than the
pure relational one, by a factor of more than 100. It grows linearly with the width and the number
of registers. The relational representation grows only linearly with the width, but cubically with the
number of registers from our experience. The time needed for verification grows between quadratically
and cubically with the width and the number of registers. The most time consuming operation
during verification consists in computing the function reg3, which encodes all possible operand, i.e.,
register, combinations. Because in the BDD for reg3 nearly no sharing is possible between two
different combinations, the BDD grows at least quadratically with the number of registers.

232

R e f e r e n c e s

[1] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions
Computer, C-35(12):1035-1044, 1986.

[2] J.R. Butch, E.M. Clarke, and D.E. Long. Representing circuits more efficiently in symbolic model
checking. In ACM/IEEE Design Automation Conference, 1991.

[3] J.R. Burch, E.M. Clarke, K.L. McMillan, and David L. Dill. Sequential circuit verification using
symbolic model checking. In ACM/IEEE Design Automation Conference, 1990.

[4] J.R. Butch, E.M. Clarke, K.L. McMillaa, David L. Dill, and L.J. Hwang. Symbolic model
checking: 102~ states and beyond. In LICS, 1990.

[5] Olivier Coudert, Christian Berthet, and Jean-Christophe Madre. Verification of sequential ma-
chines using boolean functional vectors. In IMEC-IFIP International Workshop on Applied For-
mal Methods For Correct VLSI Design, 1989.

[6] Thomas Filkorn. Unifikation in endlichen Algebren und ihre Integration in Prolog. Master's
thesis, Technical University Munich, 1988.

[7] Jean-Christophe Marlre, Olivier Coudert, Michel Currat, Alain Debreil, and Christian Berthet.
The formal verification chain at BULL. In EURO ASIC 90, 1990.

[8] Diederik Verkest, Luc Claesen, and Hugo De Man. Special benchmark session on formal system
design. In IMEC-IFIP International Workshop on Applied Formal Methods For Correct VLSI
Design, 1989.

