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Abstract  

This paper deals with transformations in a process algebraic formalism that has 
been extended with an abstract data type language. We show how for a well-known 
class of processes (bags, queues, stacks, etc.) descriptions in terms of simple process 
definitions and complex state parameters can be transformed in a stepwise fashion 
into equivalent systems of interacting processes with state parameters of reduced 
complexity. The key to the solution are so-called context equations. 

0 I n t r o d u c t i o n  

Interchanging the complexity of the control structure and the parameter structure of 
a program is a well-known program transformation principle. In this paper we investi- 
gate this principle in the particular setting of a process algebraic formalism that has been 
complemented with an abstract data type (ADT) language for the definition of data struc- 
tures. The formalism resembles the ISO specification language LOTOS [BoBr87,ISO89], 
which contains a dialect of the ADT language ACT ONE [EhMa85]. It abstracts from the 
concrete syntactic structure of LOTOS, which has been optimized for the structured rep- 
resentation of the functionality of large distributed systems. Our results, however, can be 
directly translated back to any process algebraic formalism that has a sufficiently related 
abstract syntactic and semantic definition. 

Transformations that exchange the complexity of the state parameters for complexity of 
the control structure of processes or vice versa are widely studied as methods to improve 
their structure and/or efficiency. In the design of concurrent systems it is of interest to 
find transformations that can be used to decompose specifications of processes that are 
described in terms of an explicit global state into a number of concurrently interacting 
processes with less complicated local states. In fact, the various formal definitions can 
be differentiated in terms of their specification styles which relate the use of different 
operator signatures to the (informal) purpose of a specification, e.g. specification-oriented 
or implementation-oriented, see [VSSBg0]. 

*This work has been partly supported by the CEC as part of the ESPRIT/LOTOSPHERE project 
(ESPRIT project 2304) 
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So far, the main contributions of the process algebraic approach to distributed systems 
has been in providing useful semantic frameworks for proving the correctness of such 
transformations, see e.g. the implementation of a queue in [Mil80] and the correctness 
of the AB-protocol in [LaMi87 ]. It is, however, of great methodological interest to have 
methods to obtain such transformations. It is to this area that we claim to contribute. 
We show how for a well-known class of processes (bags, queues, stacks, etc.) descriptions 
in terms of simple process definitions and complex state parameters can be replaced by 
a systems of interacting processes whose parameters do not exceed the complexity of 
a single data element. This is done by deriving context equations (from the complex- 
state descriptions) as in [Larg0], but with the important difference that in our set-up the 
context is the unknown entity. By solving the equations we obtain the building bricks for 
the desired transformations. 

1 A p r o c e s s  a l g e b r a i c  c a l c u l u s  

We use a process algebraic language that is an abstract version of ISO specification lan- 
guage LOTOS [IS089]. It is also strongly related to other process algebraic calculi, most 
notably to TCSP [Hoa85], CIRCAL [Mil85] and CCS [MilS0,Mi189]. Parts of our results 
will therefore be, mutatis mutandis, transferable to other calculi. A more detailed ac- 
count of the language than is given here can be found in the full paper [BrKagl] and 
[EhMa85,Bri88,IS 089]. 

The basic calculus is built around a set Act providing the alphabet of actions, and a 
set PId of process identifiers. The set BExpr of behaviour expressions is defined by the 
following BNF-schema: 

B ::= s top [ a ;B I T;B I ~{B,  [ i e I }  [ B1 [[A B2 [ B / / A  ] B[S] [ p 

where a e Act, r q~ Act, { Bi [ i E I} an indexed set of behaviour expressions, A C Act, 
S : Act  ~ Act, and p E PId. For this language we define attributes such as the label 
sort L(B) etc. in the usual way. S is extended to Act O {r} by defining S(r) = r. The 
meaning of the process identifiers p is given by an environment of process definitions 
PE  = {pj := B~ [ j e J}. The SOS-rules defining the operational semantics of the 
language are contained in table 1. 

The main differences with respect to CCS are: 

�9 synchronization is on the basis of identical labels, not complementary ones; 

�9 synchronization does not result in the silent action r, but the action on which was 
synchronized; this enables synchronization between more than two processes; 

�9 restriction is 'built in' the (indexed) parallel combinator; 

�9 as hiding of actions cannot be achieved via synchronization, this requires an extra 
combinator; the treatment of parallelism, hiding and restriction is thus closer to 
that in TCSP [Hoa85]; 

�9 the relabelling function S can be non-injective. 

Some derived operators of this calculus are: 

�9 [l B2 = .  E{B , B2} 
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B rules condition 

stop 

#; B 

E{B~ l ieI} 

no rules 

t- #; B -/~--~ B 

B~ - ~ - ,  B; ~ ~{B~ l i e / }  -~,--* B; 

~ e A a  u {r} 

iEI  

B1 -#--+ B~,B2 -#--* B~ ~- B1 IIA B2 -~-*  B[ IIA Bh i, eA 

B//A B -I~--~ B' F- B//A - # ~  B ' / /A  ~ r  
B -#--* B' [- B/ /A  --T---* BI//A #EA 

B[S] B - ~ - ,  B' ~ B[S] -SO0-~ B'[S] 

p B -#---~ B' ~ p - i ~  B I p := B E PE 

Table 1: SOS rules for the basic calculus 

�9 B1 I[ B2 = .  B1 [[Ac* B2 

�9 B1 III B2 = .  B1110 B2 

�9 exi t  =d/6; s t op  for a reserved action name ~ E Ac t  marking successful termination; 

�9 B1 >> B2 =dr (Bl[ok/~] II{o~} ok; g 2 ) / / { o k } ,  where o k ~ L ( B 1 )  U L(B2) .  

To extend this basic caJculus with value-passing and parameterization constructs it is 
combined with an abstract data  type formalism. This formalism is used to define a Z- 
Mgebra A for a signature of sorts and operations ~, providing a data-type env ironment  for 
the specification of process behaviour. The signature is used to generate terms with which 
data~values can be represented. The sort bool of Boolean values with constants t rue  and 
false is assumed to be predefined. For every sort s, an operation if_then_else_ : bool, s, s --+ s 
is implicitly defined. 

In this setting we can endow the elements of Ac t  and PId with some substructure, viz. 

�9 Ac t  =df {a~ [ a E L, v E D} ,  where L is a set of port /gate / label-names and D is the 
domain of the defined ~3-algebra A; 

�9 PId  =dl {P, I peP,  veD*},  where P is a set of process names. 

In the extended language the attribute L(B),  and indexed combinators like ][A a n d / / A  
refer to subsets of L, but should, as usual, be interpreted as their obvious extensions to 
Act .  

The language of behaviour expressions is then extended with a number of new constructs: 

�9 a?x : s; B ( x )  =dr ~{a~; B(t~)  [ v e D~}, where D, C_ D is the subdoma~n of sort s 
in A, and t .  is a term with value v; we write a(-); B if the name of the variable is 
immaterial (e.g. when the.subsequent behaviour B does not depend on it); 

�9 a!t; B =af a,; B ,  where v is the value of term t; 

�9 [t] ---, B =~/ i f  A ~ t = t rue  then B else s top,  for Boolean terms t. 



247 

Process definitions are generalized to the format 

p ( z l  : s l , . . . ,  z . :  s.) := B(z  z .  :s.) 

which are interpreted as sets of elementary process definitions, viz. 

{p. := B( t l , . . .  , t . )  l v = ( v a l ( t l ) , . . . , v a l ( t , , ) ) e D . ,  x . . .  x D,,,}. 

In the context of this paper we will need the equations over the behaviour expressions 
induced by the strong bisimulation equivalence ,,, and the observation congruence ~-,~ (see 
e.g. [MilS9]). The resulting laws are the expected analogies of the laws as they are known 
for related calculi. The full paper [BrKa90] contains a list of those that  are needed for the 
proofs of our results. The reader may also consult [Bri88,ISO89] on this matter. 

2 C o n t e x t  e q u a t i o n s  

In this paper an important role is played by the concept of a context. It can be most 
easily imagined as a behaviour expression with a number of holes in it. It is convenient to 
introduce a set Var of process variables, whose elements we will denote with X, Y, . . . .  A 
context C[X1,. . . ,  X,~] then is a behaviour expression in which the variables X 1 , . . . ,  X ,  
may occur as sub-behaviour expressions. To deal successfully with issues of infinity due to 
infinite value domains, we allow contexts C that  are parameterized with possibly infinite 
(indexed) sets of process variables, which we denote by C[Xili E/]. A context C[Xili E/] is 
(weakly) guarded if every occurrence of an Xi (i E I) in C is contained in a subexpression 
/z; B with/z  6 Act U {r}. C[Xili E/7 is observably guarded if every occurrence of an Xi 
(i E I) in C is contained in a subexpression a; B with a E Act. A system of context equations 
is a set of the form {X~ = C~[X~IiEI ] I iEI}  where = denotes an appropriate instance of 
equivalence, in our case ,,~ or ,~c. The proof of the following theorem is a simple variation 
of analogous ones existing in the literature, e.g. the one in [Mil88]. 

T h e o r e m  1 
Let {Xi ,,, Ci[X~li 6 I] [ i E I} be a system of weakly guarded context equations then there 
exists a unique set of solutions (modulo ,,~) {B~ I i E I} such that  B~ ,,, C~[Bdi E/] for all 
iEI ,  viz. B, = p, defined by the process environment {p~ := Ci~oi[iE1] [ iEI}.  [] 

The generalization of this theorem to the ~c is more specific to the combinator signature 
of our calculus and results from the application of theorem 4.8.5 in [Bri88]. 

T h e o r e m  2 
Let {Xi ~ Ci[Xi[i E I] [ i E I} be a system of observably guarded context equations 
not containing applications of the hiding operator//A, then there exists a unique set of 
solutions (modulo ~ )  {B~ I i E I} such that  B~ ~,c Ci[Bdi E 1] for all i E I, viz. Bi = pl 
defined by the process environment {p~ := Ci[p~]i E I] [ i �9 I}. [] 

The transformations between data-oriented specifications and process-oriented specifica- 
tions as studied in this paper build on solving context equations with unknown contexts, 
i.e. to determine C[X] such that C[B1] = B2 for known B1, B2. It will be sufficient in this 
case to work with contexts C that  contain one occurrence of a process variable. Just as 
behaviours can be specified by listing the involved transitions B -a---, B', such contexts 
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Multiset( Nat) = 
s o r t s  : 
o p n s  : 

e q n s  : 

Nat + 
mult 
0 :-* mult 
add, rein : nat, mult ~ mult 
_E_ : nat, mult --* bool 
x, y : nat; m, n �9 mult 
add(z, add(y, m) ) = add(y, add(z, rn) ) 
rein(x, 0) = 0 
rein(x, add(y, m)) = if eq(x, y) then m else add(y, rein(x, rn)) 
xeO =false 
xEadd(y, m) = if eq(x, y) then true else zero 

Table 2: Multiset(Nat) 

may be characterized by transductions, see e.g. [Lar90]. Let Con be a set of context 
variables whose elements we denote by C, D, E , . . .  , then we write such transductions 
as C -[a/b] ~ C', meaning that  context C can change into context C I by consuming 
action b (from a process that  is substituted for X in C[X]) and producing an action a. It 
corresponds to an SOS-inference rule of the form X - b ~  X '  ~ C[X] - a ~  C/[X']. If a 
context moves independently of the process in it, this is denoted by C-[a/0]--* C ~, which 
corresponds to the SOS-rule F- C[X] - a ~  C'[X]. The following theorem is at the heart 
of our transformational methods. 

T h e o r e m  3 
Let Trans be a set of transductions over Con of the form C - [ a / 0 ] ~  C' or C - [a /a]~  C'. 
Let M C L, M'  =~ {a' ] a e M } ,  where ' : M  ~ L is an injection such that  M n M ~ = $, 
and let SM:L --.+ L with SM(a) = a ( a ~ M ' )  and SM(a') = a (a 'EM') ,  and {PC}CeCon a 
family of process identifiers defined by 

Pc := ~{al;  Pc, I C - [ a / 0 ] ~  C' e Trans} 
E{a; pc, I c C' e Trans} 

then for all CECon,  and for all X E B E x p r  such that  L ( X )  C M 

c [ x ]  ~ (pc IIM x)[sM] (1) 

3 T h e  b a g  

We will start with what is arguably the simplest of the reactive data structures that  we 
will study: the bag. The definition of the corresponding data type, the multiset of natural 
numbers can be found in table 2. 

The specification of the bag that  we wish to transform is: 

Bag := MSet(O) (2) 
MSet(v: mult) := in?x: nat; MSet(add(x, v)) 

D E{o t!w; MSet(rem(w,v)) I 

To transform this specification we will try to find a parameterized context C=[X] with 
x: nat and 

C=[MSet(v)] ,.~ MSet(add(x, v)) (3) 
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The intuitive idea behind (3) is that we simulate the effect of the add operation on 
multisets by the context C=[X]. By studying the transitions of MSet(add(x, v)) we find 
that it is sufficient if C=[X] satisfies the following transductions: 

C= -[out=/O]-* I 
C~ -[a~/a,~]~ C~ aE{in, out},wED,~ (4) 

where I denotes the identity context that is completely defined by I-[a/a] ~ I for all 
a E Act U {~-}. 

Applying theorem 3 we find the following solution for C.[X] under the assumption that 
L(X) C_ {in, out}: 

O,[X] := (po(x) HIi,~.o,,q X)[out/out'] (5) 
with po(x) := out'!x;pi ~ in(-); pc(x) I] out(-);po(x) 

p, := B o t(-);pl 
We can now immediately derive a solution to our transformation problem. Define 

NewBag := in?x: nat; C= [NewBag] (6) 

then we have the following theorem, which is obtained by applying theorem 1. 

T h e o r e m  4 Bag ,,~ NewBag 

When we expand (6) in its full form we get the following definition for NewBag 

NewBag:= in?x: nat; (Pc (x) [] {i,,,o,,,} NewBag)[out/out'] (7) 
with pc(x) := outqx; Pl U in(-); po(x) ~ out(-); pc(x) 

Pl := in(-); pl ~ out(-); pl 
Analysing the structure of pc(x) a bit we can prove the following lemma by application 
of standard laws for ,-, and theorem 1. 

L e m m a  5 pc(x) "~ outqx; s top Ill P/ (8) 

With this result we can get (7) in a much more agreeable form by using that Pz imitates 
the identity context I. 

Theorem 6 NewBag ~ in?x:nat; (out!x; stop][] NewBag) (9) 

Corol lary  7 Bag ,,~ NewBag ,,~ BestBag 
where BestBag := in?x:nat; (out!x; s top  Ill BestBag) 

This solution is of course well-known in the process-algebraic literature, and therefore we 
proceed with less transparent cases to show the usefulness of our method. 

4 T h e  q u e u e  

The data-oriented specification of an ordinary (FIFO) queue is paxameterized by values 
of the main sort of the data type String defined in table 3. 

The corresponding process definition is 

Queue := FIFO(empty) (10) 
FIFO(s:string) := in?x:nat; FIFO(add(x, s)) 

0 [-~Empty(s)] ~ out!first(s); FIFO(rest(s)) 
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8t .gC Nat ) = 
s o r t s  : 

o p n s  : 

e q n s  : 

Nat + 
s tr ing 
empty :---* s tr ing 
add : nat, s tr ing ~ s tr ing  
rest : s tr ing --* s tr ing 
first : s tr ing --* nat 
Empty  : s tr ing ~ bool 
x : nat; s, t : s tr ing 
Empty(empty )  = true 
Empty(add(x, s ) ) =/alse 
first(empty) = 0 
first(add(x, s ) )  = if Empty(s )  t h e n  x e l se  f irst(s) 
rest(empty) = empty 
rest(add(x, s)) = if Empty(s )  t h e n  empty e l se  add(x, rest(s)) 

Table 3: String(Nat) 

We could try to follow the same approach as with the Bag, i.e. to find a context D=[X] 
simulating the effect of the add operation, such that  D=[FIFO(s)] ,,~ FIFO(add(x, 8)). If 
we try this we find that  the transductions Dx -[inw/O]--* Dw o D= are necessary because 
add(w, add(x, 8)) # add(x, add(w, s) ), unlike the addition of elements to a Bag. Instead 
of trying to construct contexts that satisfy such transductions we decompose the queue 
in a different way. We search for contexts D~[X] such that  for s # empty 

D~rao)[FIFO(rest(s))] ,,, FIFO(a) (11) 

The idea here is to decompose the queue into the next element that  can be taken from 
the queue and the rest, instead of the element last put into the queue and the rest. 
Analysing the behaviour of FIFO(a) we find that the following transductions define a 
context satisfying (11). 

D=-[out=/O]--* I (12) 
D= -Jingling]--* D, w E D,~ 

i.e. the output is performed by the context, which then  disappears, whereas the inputs 
are delegated to the process in the context (i.e. the rest of the queue). Again, we have 
transductions that satisfy the general format for which we have a standard solution under 
the assumption that L(X) C {in, out}, viz.: 

D=[X] := (po(x) II{,.,o~,,} X)[out/out'] (13) 
with pD(x) := OUf!X;pl 0 in(-); pD(X) 

p, := D o t(-);px 

As before, we can now derive a first solution quite simply by: 

YewQueue := in?x:nat; D=[YewQueue] (14) 

T h e o r e m  8 Queue ,,~ NewQueue 

As before we will try to simplify this solution by transforming it. 

Lemma 9 pD(X) " (outqx; (out(-)) '~ [ll(in(-)) '~ 
where a(-) ~ := a(-); a(-) ~ 
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We thus obtain our simplification. 

Theorem 10 NewQueue ,., in?x:nat; (our'!x; (out(-))" [l{o,,~} NewQueue)[out/out'] (15) 

In the case of the Bag we were done with our transformations after having proved simpli- 
fication (9). The resulting specification BestBag could be regarded as a resource-oriented 
specification in which after each receipt of a new data element a new memory cell is 
allocated to store it and offer it to the environment independently (interpretation of [[[) 
of the subsequent behaviour. The equivalence (15), however, is still constraint-oriented 
[VSSB90,Bri89] in style, where after the storage of a new element the subsequent be- 
haviour is constrained via H{o~,~} by the memory cell. It is interesting as an example of 
how one can specify infinite FIFO-queues without using heavy parameterized process 
definitions and without introducing internal moves r into the specification. 

To obtain a resource-oriented variant of this specification that corresponds more closely 
to an implementation in terms of elementary, communicating memory cells, we want 
to replace the constraints in the form of continuous synchronization by a number of 
more sparsely exchanged signals. The basic idea is to replace the constraining behaviour 
outqx; (out(-)) ~ by out'!x; ok; stop, where ok signals the end of constraints on the oc- 
currence of out-actions. The synchronizing occurrence of ok is placed immediately before 
all out-actions that currently have to synchronize with the first out-action of (out(-)) ~, 
and [[{o,,,} is replaced by ][{ok}. The new ok-action is hidden to make it invisible for the 
environment. 

In the full paper [BrKa91] we carry out the proposed transformation in detail, where the 
main ingredient is the application of theorem 2, besides some more specialized operations 
on contexts. The resulting theorem is as follows. 

Theorem 11 NewQueue ~c AuxQueue//{ok} 
with AuxQueue := F[AuxQueue] 
where F[X] =d/ in?x: nat; ((ok'; out!x; ok; s top  II{oh} X)/ /  {ok } )[ok/ok~ 

Corol lary  12 Queue ,.~ NewQueue ~ BestQueue 
with BestQueue := AuxQueue // {ok } 

AuxQueue := F[AuxQueue] 

5 T h e  s tack 

The monolithic specification of a stack (or LIFO queue) has the same structure as that 
of the ordinary (FIFO) queue. The only difference is in the definition of the operations of 
the corresponding data type, which is specified in table 4. For reasons of clarity we have 
chosen identifiers for the specification of the stack that are in most cases different from 
those used for the queue. We leave it to the reader to convince himself of the structural 
similarity between the two specifications. 

Stack := LIFO(empty) (16) 
LIFO(s: stack(nat)) := in?x: nat; LIFO(add(x, s ) ) 

[-~Empty(s)] ~ out!top(s); LIFO(rest(s)) 

The decomposition principles that were chosen for the Bag, building a context that de- 
pends on the last value accepted, and for the Queue, a context depending on the next 
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Stack(Nat) = Nat + 
sorts : stack 
opns : empty :---* stack 

add : nat, stack ---* stack 
rest : stack ~ stack 
top : stack --* nat 
Empty : stack ---* bool 

eqns : x : nat; s : stack 
Empty(empty) = true 
Empty(add(x, s) ) = false 
top(empty) = 0 
top(add(x, s ) ) = x 
rest(empty) = empty 
rest(add(x, s)) = s 

Table 4: S t a c k ( N a t )  

value to be output,  coincide in the case of the S t a c k  because of the LIFO discipline. As 
there is no obvious alternative, we derive the implied context transductions based on the 
decomposition given by 

G=[LIFO(s ) ]  ,,, L I F O ( a d d ( x ,  s)  ) (17) 

yielding 

G= -[out=/O]--* I (18) 

These transductions do satisfy the requirements for a general solution as defined by theo- 
rem 3. This solution is not adequate, however, for our purposes, as the second transduction 
generates combined contexts G~ 1 o G~2 o . . .  9 G~, of arbitrary length. This implies that  
the corresponding processes Pvoa ..... a are paxameterized by an ever increasing number of 
parameters w l , . . . ,  wn, i.e. the complexity of the process states is not a priori bounded. 

To find again a solution in which the data  complexity of each of the concurrent processes 
is at most that  of one data  element, we prove another type of solution for context tra~s- 
ductions that  are like the ones in (18). Their main characteristic is that  all contexts that  
are unequal to the identity context I have only actions that  are independent of the initial 
actions of an argument process, i.e. their transductions are of the form C - [ a / 0 ] ~  C'. 

T h e o r e m  13 
Let Trans  be a set of transductions over Con of the form C - [ a / 0 ] ~  C' or I - [ a / a ] ~  I .  

Let {Pc}ceCo~  be a family of process definitions given by 

P c  := • { a ; p c ,  I C - [ a /0 ] -~  C'  e Trans}  if C # I 
Pz := ok; s top  

then for all C e  Con  \ {I}, X e B E x p r  with o k ~ L ( X )  

c[x] (pc ok; X)//{ok} (19) 
[] 
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Taking advantage of the fact that (Pc H{ok} ok; X)//{ok} in facts implements the LOTOS 
sequential composition >>, redefining Pl := exit, (19) may be reformulated to 

c[x] po >> x (20) 
If we now turn back to solving (18) we find that there is a solution of the form 

G| := (out!x; exit D inZy; q(x, y)) >> X (21) 

where q(x, y) corresponds to Pc, for C ~ = G~ o Gx. To meet our objective of having only 
processes with at most parameter complexity of a single data element, we must decompose 
q(x,y) into simpler processes. From (18) and (21) we find that for weD~,~ 

Gx[X] -in,~--* q(x, w) >> X 
a [x] o a [x] 

Rewriting G,~ o G~[X], using (21), and applying the associativity of >> ,  it follows that 

q(x, w) >> X ~ ((out!w; exit 1 in?y; q(w, y)) >>(out!x; exit  D in?y; q(x, y))) >> X 
Because X can be an arbitrary process we can conclude 

q(x, w) ~. (out!w; exit [1 in?y; q(w, y)) >>(out!x; exit  U in?y; q(x, y)) 
whence 

in?w; q(x, w) ~.c in?w; (out!w; exit ~ in?y; q(w, y)) >>(out!x; exit  [1 in?y; q(x, y)) 
i.e., in?w; q(x, w) is a solution of 

X(x) ~ in?w; (out!w; exit ~ X(w)) >>(out!x; exit  D X(x)) 
whose unique solution (modulo ~ )  by theorem 2 is 

Cell(x) := in?w; (out!w; exit  [1 Cell(w))>>(out!x; exit  U Cell(x)) 
It follows that G| ~ (out!x; exit [1 Cell(x))>> X. Using standard techniques we 
obtain our final result. 

Theorem 14 Stack ~.~ NewStack 
where NewStack := in?x; Top(x) >> NewStack 

Top(x) := (out!x; exit  I Cell(x)) 
Cell(x) := in?w; Top(w) >> Top(x) 

Puemark 
We could have tried to decompose the process q(x, y) corresponding to Pc, for C ~ = G~oG~ 
in the context of the solution for (18) generated by theorem 3 instead of that of theorem 
13, as we have done now. The reader is encouraged to check that this cannot succeed: the 
renaming strategy in (1) does not have the associativity properties of >>. 

6 Conc lus ion  

We have developed a technique to solve certain classes of context equations with unknown 
contexts in a fairly general process algebraic formalism. Using this technique we have 
shown how we may obtain specifications with an implementation-oriented substructure 
by distributing the global state of a high-level monolithic specification based on a single 
process definition and a complicated parameter structure in a controlled step-by-step 
fashion. In the full paper [BrKa91] we will report on our experience in applying this 
technique to more involved examples, and indicate ways to extend our results. 
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