
From data structure to process structure*

Ed Brinksma
Tele-Informatics Group

Dept. of Computer Science, University of Twente

PO Box 217, 7500 AE Enschede, The Netherlands

brinksma@cs.utwente.nl

Abstract

This paper deals with transformations in a process algebraic formalism that has
been extended with an abstract data type language. We show how for a well-known
class of processes (bags, queues, stacks, etc.) descriptions in terms of simple process
definitions and complex state parameters can be transformed in a stepwise fashion
into equivalent systems of interacting processes with state parameters of reduced
complexity. The key to the solution are so-called context equations.

0 I n t r o d u c t i o n

Interchanging the complexity of the control structure and the parameter structure of
a program is a well-known program transformation principle. In this paper we investi-
gate this principle in the particular setting of a process algebraic formalism that has been
complemented with an abstract data type (ADT) language for the definition of data struc-
tures. The formalism resembles the ISO specification language LOTOS [BoBr87,ISO89],
which contains a dialect of the ADT language ACT ONE [EhMa85]. It abstracts from the
concrete syntactic structure of LOTOS, which has been optimized for the structured rep-
resentation of the functionality of large distributed systems. Our results, however, can be
directly translated back to any process algebraic formalism that has a sufficiently related
abstract syntactic and semantic definition.

Transformations that exchange the complexity of the state parameters for complexity of
the control structure of processes or vice versa are widely studied as methods to improve
their structure and/or efficiency. In the design of concurrent systems it is of interest to
find transformations that can be used to decompose specifications of processes that are
described in terms of an explicit global state into a number of concurrently interacting
processes with less complicated local states. In fact, the various formal definitions can
be differentiated in terms of their specification styles which relate the use of different
operator signatures to the (informal) purpose of a specification, e.g. specification-oriented
or implementation-oriented, see [VSSBg0].

*This work has been partly supported by the CEC as part of the ESPRIT/LOTOSPHERE project
(ESPRIT project 2304)

245

So far, the main contributions of the process algebraic approach to distributed systems
has been in providing useful semantic frameworks for proving the correctness of such
transformations, see e.g. the implementation of a queue in [Mil80] and the correctness
of the AB-protocol in [LaMi87]. It is, however, of great methodological interest to have
methods to obtain such transformations. It is to this area that we claim to contribute.
We show how for a well-known class of processes (bags, queues, stacks, etc.) descriptions
in terms of simple process definitions and complex state parameters can be replaced by
a systems of interacting processes whose parameters do not exceed the complexity of
a single data element. This is done by deriving context equations (from the complex-
state descriptions) as in [Larg0], but with the important difference that in our set-up the
context is the unknown entity. By solving the equations we obtain the building bricks for
the desired transformations.

1 A p r o c e s s a l g e b r a i c c a l c u l u s

We use a process algebraic language that is an abstract version of ISO specification lan-
guage LOTOS [IS089]. It is also strongly related to other process algebraic calculi, most
notably to TCSP [Hoa85], CIRCAL [Mil85] and CCS [MilS0,Mi189]. Parts of our results
will therefore be, mutatis mutandis, transferable to other calculi. A more detailed ac-
count of the language than is given here can be found in the full paper [BrKagl] and
[EhMa85,Bri88,IS 089].

The basic calculus is built around a set Act providing the alphabet of actions, and a
set PId of process identifiers. The set BExpr of behaviour expressions is defined by the
following BNF-schema:

B ::= s top [a ;B I T;B I ~{B, [i e I } [B1 [[A B2 [B / / A] B[S] [p

where a e Act, r q~ Act, { Bi [i E I} an indexed set of behaviour expressions, A C Act,
S : Act ~ Act, and p E PId. For this language we define attributes such as the label
sort L(B) etc. in the usual way. S is extended to Act O {r} by defining S(r) = r. The
meaning of the process identifiers p is given by an environment of process definitions
PE = {pj := B~ [j e J}. The SOS-rules defining the operational semantics of the
language are contained in table 1.

The main differences with respect to CCS are:

�9 synchronization is on the basis of identical labels, not complementary ones;

�9 synchronization does not result in the silent action r, but the action on which was
synchronized; this enables synchronization between more than two processes;

�9 restriction is 'built in' the (indexed) parallel combinator;

�9 as hiding of actions cannot be achieved via synchronization, this requires an extra
combinator; the treatment of parallelism, hiding and restriction is thus closer to
that in TCSP [Hoa85];

�9 the relabelling function S can be non-injective.

Some derived operators of this calculus are:

�9 [l B2 = . E{B , B2}

246

B rules condition

stop

#; B

E{B~ l ieI}

no rules

t- #; B -/~--~ B

B~ - ~ - , B; ~ ~{B~ l i e / } -~,--* B;

~ e A a u {r}

iEI

B1 -#--+ B~,B2 -#--* B~ ~- B1 IIA B2 -~-* B[IIA Bh i, eA

B//A B -I~--~ B' F- B//A - # ~ B ' / /A ~ r
B -#--* B' [- B/ /A --T---* BI//A #EA

B[S] B - ~ - , B' ~ B[S] -SO0-~ B'[S]

p B -#---~ B' ~ p - i ~ B I p := B E PE

Table 1: SOS rules for the basic calculus

�9 B1 I[B2 = . B1 [[Ac* B2

�9 B1 III B2 = . B1110 B2

�9 exi t =d/6; s t op for a reserved action name ~ E Ac t marking successful termination;

�9 B1 >> B2 =dr (Bl[ok/~] II{o~} ok; g 2) / / { o k } , where o k ~ L (B 1) U L(B2) .

To extend this basic caJculus with value-passing and parameterization constructs it is
combined with an abstract data type formalism. This formalism is used to define a Z-
Mgebra A for a signature of sorts and operations ~, providing a data-type env ironment for
the specification of process behaviour. The signature is used to generate terms with which
data~values can be represented. The sort bool of Boolean values with constants t rue and
false is assumed to be predefined. For every sort s, an operation if_then_else_ : bool, s, s --+ s
is implicitly defined.

In this setting we can endow the elements of Ac t and PId with some substructure, viz.

�9 Ac t =df {a~ [a E L, v E D} , where L is a set of port /gate / label-names and D is the
domain of the defined ~3-algebra A;

�9 PId =dl {P, I peP, veD*}, where P is a set of process names.

In the extended language the attribute L(B), and indexed combinators like][A a n d / / A
refer to subsets of L, but should, as usual, be interpreted as their obvious extensions to
Act .

The language of behaviour expressions is then extended with a number of new constructs:

�9 a?x : s; B (x) =dr ~{a~; B(t~) [v e D~}, where D, C_ D is the subdoma~n of sort s
in A, and t . is a term with value v; we write a(-); B if the name of the variable is
immaterial (e.g. when the.subsequent behaviour B does not depend on it);

�9 a!t; B =af a,; B , where v is the value of term t;

�9 [t] ---, B =~/ i f A ~ t = t rue then B else s top, for Boolean terms t.

247

Process definitions are generalized to the format

p (z l : s l , . . . , z . : s.) := B(z z . :s.)

which are interpreted as sets of elementary process definitions, viz.

{p. := B(t l , . . . , t .) l v = (v a l (t l) , . . . , v a l (t , ,)) e D . , x . . . x D,,,}.

In the context of this paper we will need the equations over the behaviour expressions
induced by the strong bisimulation equivalence ,,, and the observation congruence ~-,~ (see
e.g. [MilS9]). The resulting laws are the expected analogies of the laws as they are known
for related calculi. The full paper [BrKa90] contains a list of those that are needed for the
proofs of our results. The reader may also consult [Bri88,ISO89] on this matter.

2 C o n t e x t e q u a t i o n s

In this paper an important role is played by the concept of a context. It can be most
easily imagined as a behaviour expression with a number of holes in it. It is convenient to
introduce a set Var of process variables, whose elements we will denote with X, Y, A
context C[X1,. . . , X,~] then is a behaviour expression in which the variables X 1 , . . . , X ,
may occur as sub-behaviour expressions. To deal successfully with issues of infinity due to
infinite value domains, we allow contexts C that are parameterized with possibly infinite
(indexed) sets of process variables, which we denote by C[Xili E/]. A context C[Xili E/] is
(weakly) guarded if every occurrence of an Xi (i E I) in C is contained in a subexpression
/z; B with/z 6 Act U {r}. C[Xili E/7 is observably guarded if every occurrence of an Xi
(i E I) in C is contained in a subexpression a; B with a E Act. A system of context equations
is a set of the form {X~ = C~[X~IiEI] I iEI} where = denotes an appropriate instance of
equivalence, in our case ,,~ or ,~c. The proof of the following theorem is a simple variation
of analogous ones existing in the literature, e.g. the one in [Mil88].

T h e o r e m 1
Let {Xi ,,, Ci[X~li 6 I] [i E I} be a system of weakly guarded context equations then there
exists a unique set of solutions (modulo ,,~) {B~ I i E I} such that B~ ,,, C~[Bdi E/] for all
iEI , viz. B, = p, defined by the process environment {p~ := Ci~oi[iE1] [iEI}. []

The generalization of this theorem to the ~c is more specific to the combinator signature
of our calculus and results from the application of theorem 4.8.5 in [Bri88].

T h e o r e m 2
Let {Xi ~ Ci[Xi[i E I] [i E I} be a system of observably guarded context equations
not containing applications of the hiding operator//A, then there exists a unique set of
solutions (modulo ~) {B~ I i E I} such that B~ ~,c Ci[Bdi E 1] for all i E I, viz. Bi = pl
defined by the process environment {p~ := Ci[p~]i E I] [i �9 I}. []

The transformations between data-oriented specifications and process-oriented specifica-
tions as studied in this paper build on solving context equations with unknown contexts,
i.e. to determine C[X] such that C[B1] = B2 for known B1, B2. It will be sufficient in this
case to work with contexts C that contain one occurrence of a process variable. Just as
behaviours can be specified by listing the involved transitions B -a---, B', such contexts

248

Multiset(Nat) =
s o r t s :
o p n s :

e q n s :

Nat +
mult
0 :-* mult
add, rein : nat, mult ~ mult
E : nat, mult --* bool
x, y : nat; m, n �9 mult
add(z, add(y, m)) = add(y, add(z, rn))
rein(x, 0) = 0
rein(x, add(y, m)) = if eq(x, y) then m else add(y, rein(x, rn))
xeO =false
xEadd(y, m) = if eq(x, y) then true else zero

Table 2: Multiset(Nat)

may be characterized by transductions, see e.g. [Lar90]. Let Con be a set of context
variables whose elements we denote by C, D, E , . . . , then we write such transductions
as C -[a/b] ~ C', meaning that context C can change into context C I by consuming
action b (from a process that is substituted for X in C[X]) and producing an action a. It
corresponds to an SOS-inference rule of the form X - b ~ X ' ~ C[X] - a ~ C/[X']. If a
context moves independently of the process in it, this is denoted by C-[a/0]--* C ~, which
corresponds to the SOS-rule F- C[X] - a ~ C'[X]. The following theorem is at the heart
of our transformational methods.

T h e o r e m 3
Let Trans be a set of transductions over Con of the form C - [a / 0] ~ C' or C - [a /a]~ C'.
Let M C L, M' =~ {a'] a e M } , where ' : M ~ L is an injection such that M n M ~ = $,
and let SM:L --.+ L with SM(a) = a (a ~ M ') and SM(a') = a (a 'EM') , and {PC}CeCon a
family of process identifiers defined by

Pc := ~{al; Pc, I C - [a / 0] ~ C' e Trans}
E{a; pc, I c C' e Trans}

then for all CECon, and for all X E B E x p r such that L (X) C M

c [x] ~ (pc IIM x)[sM] (1)

3 T h e b a g

We will start with what is arguably the simplest of the reactive data structures that we
will study: the bag. The definition of the corresponding data type, the multiset of natural
numbers can be found in table 2.

The specification of the bag that we wish to transform is:

Bag := MSet(O) (2)
MSet(v: mult) := in?x: nat; MSet(add(x, v))

D E{o t!w; MSet(rem(w,v)) I

To transform this specification we will try to find a parameterized context C=[X] with
x: nat and

C=[MSet(v)] ,.~ MSet(add(x, v)) (3)

249

The intuitive idea behind (3) is that we simulate the effect of the add operation on
multisets by the context C=[X]. By studying the transitions of MSet(add(x, v)) we find
that it is sufficient if C=[X] satisfies the following transductions:

C= -[out=/O]-* I
C~ -[a~/a,~]~ C~ aE{in, out},wED,~ (4)

where I denotes the identity context that is completely defined by I-[a/a] ~ I for all
a E Act U {~-}.

Applying theorem 3 we find the following solution for C.[X] under the assumption that
L(X) C_ {in, out}:

O,[X] := (po(x) HIi,~.o,,q X)[out/out'] (5)
with po(x) := out'!x;pi ~ in(-); pc(x) I] out(-);po(x)

p, := B o t(-);pl
We can now immediately derive a solution to our transformation problem. Define

NewBag := in?x: nat; C= [NewBag] (6)

then we have the following theorem, which is obtained by applying theorem 1.

T h e o r e m 4 Bag ,,~ NewBag

When we expand (6) in its full form we get the following definition for NewBag

NewBag:= in?x: nat; (Pc (x) [] {i,,,o,,,} NewBag)[out/out'] (7)
with pc(x) := outqx; Pl U in(-); po(x) ~ out(-); pc(x)

Pl := in(-); pl ~ out(-); pl
Analysing the structure of pc(x) a bit we can prove the following lemma by application
of standard laws for ,-, and theorem 1.

L e m m a 5 pc(x) "~ outqx; s top Ill P/ (8)

With this result we can get (7) in a much more agreeable form by using that Pz imitates
the identity context I.

Theorem 6 NewBag ~ in?x:nat; (out!x; stop][] NewBag) (9)

Corol lary 7 Bag ,,~ NewBag ,,~ BestBag
where BestBag := in?x:nat; (out!x; s top Ill BestBag)

This solution is of course well-known in the process-algebraic literature, and therefore we
proceed with less transparent cases to show the usefulness of our method.

4 T h e q u e u e

The data-oriented specification of an ordinary (FIFO) queue is paxameterized by values
of the main sort of the data type String defined in table 3.

The corresponding process definition is

Queue := FIFO(empty) (10)
FIFO(s:string) := in?x:nat; FIFO(add(x, s))

0 [-~Empty(s)] ~ out!first(s); FIFO(rest(s))

250

8t .gC Nat) =
s o r t s :

o p n s :

e q n s :

Nat +
s tr ing
empty :---* s tr ing
add : nat, s tr ing ~ s tr ing
rest : s tr ing --* s tr ing
first : s tr ing --* nat
Empty : s tr ing ~ bool
x : nat; s, t : s tr ing
Empty(empty) = true
Empty(add(x, s)) =/alse
first(empty) = 0
first(add(x, s)) = if Empty(s) t h e n x e l se f irst(s)
rest(empty) = empty
rest(add(x, s)) = if Empty(s) t h e n empty e l se add(x, rest(s))

Table 3: String(Nat)

We could try to follow the same approach as with the Bag, i.e. to find a context D=[X]
simulating the effect of the add operation, such that D=[FIFO(s)] ,,~ FIFO(add(x, 8)). If
we try this we find that the transductions Dx -[inw/O]--* Dw o D= are necessary because
add(w, add(x, 8)) # add(x, add(w, s)), unlike the addition of elements to a Bag. Instead
of trying to construct contexts that satisfy such transductions we decompose the queue
in a different way. We search for contexts D~[X] such that for s # empty

D~rao)[FIFO(rest(s))] ,,, FIFO(a) (11)

The idea here is to decompose the queue into the next element that can be taken from
the queue and the rest, instead of the element last put into the queue and the rest.
Analysing the behaviour of FIFO(a) we find that the following transductions define a
context satisfying (11).

D=-[out=/O]--* I (12)
D= -Jingling]--* D, w E D,~

i.e. the output is performed by the context, which then disappears, whereas the inputs
are delegated to the process in the context (i.e. the rest of the queue). Again, we have
transductions that satisfy the general format for which we have a standard solution under
the assumption that L(X) C {in, out}, viz.:

D=[X] := (po(x) II{,.,o~,,} X)[out/out'] (13)
with pD(x) := OUf!X;pl 0 in(-); pD(X)

p, := D o t(-);px

As before, we can now derive a first solution quite simply by:

YewQueue := in?x:nat; D=[YewQueue] (14)

T h e o r e m 8 Queue ,,~ NewQueue

As before we will try to simplify this solution by transforming it.

Lemma 9 pD(X) " (outqx; (out(-)) '~ [ll(in(-)) '~
where a(-) ~ := a(-); a(-) ~

251

We thus obtain our simplification.

Theorem 10 NewQueue ,., in?x:nat; (our'!x; (out(-))" [l{o,,~} NewQueue)[out/out'] (15)

In the case of the Bag we were done with our transformations after having proved simpli-
fication (9). The resulting specification BestBag could be regarded as a resource-oriented
specification in which after each receipt of a new data element a new memory cell is
allocated to store it and offer it to the environment independently (interpretation of [[[)
of the subsequent behaviour. The equivalence (15), however, is still constraint-oriented
[VSSB90,Bri89] in style, where after the storage of a new element the subsequent be-
haviour is constrained via H{o~,~} by the memory cell. It is interesting as an example of
how one can specify infinite FIFO-queues without using heavy parameterized process
definitions and without introducing internal moves r into the specification.

To obtain a resource-oriented variant of this specification that corresponds more closely
to an implementation in terms of elementary, communicating memory cells, we want
to replace the constraints in the form of continuous synchronization by a number of
more sparsely exchanged signals. The basic idea is to replace the constraining behaviour
outqx; (out(-)) ~ by out'!x; ok; stop, where ok signals the end of constraints on the oc-
currence of out-actions. The synchronizing occurrence of ok is placed immediately before
all out-actions that currently have to synchronize with the first out-action of (out(-)) ~,
and [[{o,,,} is replaced by][{ok}. The new ok-action is hidden to make it invisible for the
environment.

In the full paper [BrKa91] we carry out the proposed transformation in detail, where the
main ingredient is the application of theorem 2, besides some more specialized operations
on contexts. The resulting theorem is as follows.

Theorem 11 NewQueue ~c AuxQueue//{ok}
with AuxQueue := F[AuxQueue]
where F[X] =d/ in?x: nat; ((ok'; out!x; ok; s top II{oh} X)/ / {ok })[ok/ok~

Corol lary 12 Queue ,.~ NewQueue ~ BestQueue
with BestQueue := AuxQueue // {ok }

AuxQueue := F[AuxQueue]

5 T h e s tack

The monolithic specification of a stack (or LIFO queue) has the same structure as that
of the ordinary (FIFO) queue. The only difference is in the definition of the operations of
the corresponding data type, which is specified in table 4. For reasons of clarity we have
chosen identifiers for the specification of the stack that are in most cases different from
those used for the queue. We leave it to the reader to convince himself of the structural
similarity between the two specifications.

Stack := LIFO(empty) (16)
LIFO(s: stack(nat)) := in?x: nat; LIFO(add(x, s))

[-~Empty(s)] ~ out!top(s); LIFO(rest(s))

The decomposition principles that were chosen for the Bag, building a context that de-
pends on the last value accepted, and for the Queue, a context depending on the next

252

Stack(Nat) = Nat +
sorts : stack
opns : empty :---* stack

add : nat, stack ---* stack
rest : stack ~ stack
top : stack --* nat
Empty : stack ---* bool

eqns : x : nat; s : stack
Empty(empty) = true
Empty(add(x, s)) = false
top(empty) = 0
top(add(x, s)) = x
rest(empty) = empty
rest(add(x, s)) = s

Table 4: S t a c k (N a t)

value to be output, coincide in the case of the S t a c k because of the LIFO discipline. As
there is no obvious alternative, we derive the implied context transductions based on the
decomposition given by

G=[LIFO(s)] ,,, L I F O (a d d (x , s)) (17)

yielding

G= -[out=/O]--* I (18)

These transductions do satisfy the requirements for a general solution as defined by theo-
rem 3. This solution is not adequate, however, for our purposes, as the second transduction
generates combined contexts G~ 1 o G~2 o . . . 9 G~, of arbitrary length. This implies that
the corresponding processes Pvoa a are paxameterized by an ever increasing number of
parameters w l , . . . , wn, i.e. the complexity of the process states is not a priori bounded.

To find again a solution in which the data complexity of each of the concurrent processes
is at most that of one data element, we prove another type of solution for context tra~s-
ductions that are like the ones in (18). Their main characteristic is that all contexts that
are unequal to the identity context I have only actions that are independent of the initial
actions of an argument process, i.e. their transductions are of the form C - [a / 0] ~ C'.

T h e o r e m 13
Let Trans be a set of transductions over Con of the form C - [a / 0] ~ C' or I - [a / a] ~ I .

Let {Pc}ceCo~ be a family of process definitions given by

P c := • { a ; p c , I C - [a /0] -~ C' e Trans} if C # I
Pz := ok; s top

then for all C e Con \ {I}, X e B E x p r with o k ~ L (X)

c[x] (pc ok; X)//{ok} (19)
[]

253

Taking advantage of the fact that (Pc H{ok} ok; X)//{ok} in facts implements the LOTOS
sequential composition >>, redefining Pl := exit, (19) may be reformulated to

c[x] po >> x (20)
If we now turn back to solving (18) we find that there is a solution of the form

G| := (out!x; exit D inZy; q(x, y)) >> X (21)

where q(x, y) corresponds to Pc, for C ~ = G~ o Gx. To meet our objective of having only
processes with at most parameter complexity of a single data element, we must decompose
q(x,y) into simpler processes. From (18) and (21) we find that for weD~,~

Gx[X] -in,~--* q(x, w) >> X
a [x] o a [x]

Rewriting G,~ o G~[X], using (21), and applying the associativity of >> , it follows that

q(x, w) >> X ~ ((out!w; exit 1 in?y; q(w, y)) >>(out!x; exit D in?y; q(x, y))) >> X
Because X can be an arbitrary process we can conclude

q(x, w) ~. (out!w; exit [1 in?y; q(w, y)) >>(out!x; exit U in?y; q(x, y))
whence

in?w; q(x, w) ~.c in?w; (out!w; exit ~ in?y; q(w, y)) >>(out!x; exit [1 in?y; q(x, y))
i.e., in?w; q(x, w) is a solution of

X(x) ~ in?w; (out!w; exit ~ X(w)) >>(out!x; exit D X(x))
whose unique solution (modulo ~) by theorem 2 is

Cell(x) := in?w; (out!w; exit [1 Cell(w))>>(out!x; exit U Cell(x))
It follows that G| ~ (out!x; exit [1 Cell(x))>> X. Using standard techniques we
obtain our final result.

Theorem 14 Stack ~.~ NewStack
where NewStack := in?x; Top(x) >> NewStack

Top(x) := (out!x; exit I Cell(x))
Cell(x) := in?w; Top(w) >> Top(x)

Puemark
We could have tried to decompose the process q(x, y) corresponding to Pc, for C ~ = G~oG~
in the context of the solution for (18) generated by theorem 3 instead of that of theorem
13, as we have done now. The reader is encouraged to check that this cannot succeed: the
renaming strategy in (1) does not have the associativity properties of >>.

6 Conc lus ion

We have developed a technique to solve certain classes of context equations with unknown
contexts in a fairly general process algebraic formalism. Using this technique we have
shown how we may obtain specifications with an implementation-oriented substructure
by distributing the global state of a high-level monolithic specification based on a single
process definition and a complicated parameter structure in a controlled step-by-step
fashion. In the full paper [BrKa91] we will report on our experience in applying this
technique to more involved examples, and indicate ways to extend our results.

254

A c k n o w l e d g e m e n t s

The author gratefully acknowledges the help of SICS, Kim Larsen, Rom Langerak and
Pim Kars, who all contributed to the realization of this paper.

References

[BoBr87]

[BriS8]

[Bri89]

[Brga91]

[EhMa 5]

[Hoa85]

[ISO89]

[Lar90]

[LaMi87]

[MilS0]

[Mil85]

[Mil89]

[VSSB91]

Bolognesi, T., Brinksma, E.: Introduction to the ISO Specification Language
LOTOS. Computer Networks and ISDN Systems 14, 22-59 (1987).

Brinksma, E.: On the design of Extended LOTOS. Doctoral Dissertation,
University of Twente, The Netherlands, 1988.

Brinksma, E.: Constraint-Oriented Specification in a Constructive Formal
Description Technique, in: LNCS 430, pp. 130-152, Springer, 1989.

Brinksma, E., Kars, W.: From data structure to process structure. Memoran-
dum INF-91-38/TIOS-91-11, University of Twente, The Netherlands, 1991.

Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1. Springer,
1985.

Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, 1985.

ISO: LOTOS, A formal description technique based on the temporal ordering
of observational behaviour. International Standard ISO 8807, 1989.

Larsen, K.G.: Ideal Specification Formalism = Expressivity + Composition-
ality + Decidability + Testability + ... , in: Batten, J.C.M., Klop, J.W.
(eds.): CONCUR'90, LNCS 458, Springer, pp. 33-56 (1990).

Larsen, K., Milner, R.: Verifying a protocol using relativized bisimulation,
in: Proc. ICALP'87, LNCS 267, Springer, 1987.

Milner, R.: A Calculus of Communicating Systems. LNCS 92, Springer, 1980.

Milne, G.: CIRCAL and the Representation of Communication, Concurrency
and Time. ACM Trans. on Progr. Languages and Systems 7, 270-298 (1985).

Milner, R.: Communication and Concurrency. Prentice-Hall, 1989.

Vissers, C.A., Scollo, G., Van Sinderen, M., Brinksma, E.: Specification Styles
in Distributed Systems Design and Verification, to appear in: Special Issue
TCS Tapsoft'89.

