
A T w o - L e v e l F o r m a l V e r i f i c a t i o n M e t h o d o l o g y

u s i n g H O L a n d C O S M O S *

Carl-Johan H. Seger and Jeffrey J. Joyce
Department of Computer Science

University of British Columbia
Vancouver, B.C. V6T 1Z2 Canada

Abstract

Theorem-proving and symbolic simulation are both described as methods for the formal
verification of hardware. They are both used to achieve a common goaJ--correctly designed
hardware. However, they have different strengths and weaknesses. The main significance of
this paper--and its most original contribution--is the suggestion that symbolic simulation
and theorem-proving can be combined in a complementary manner. We also illustrate this
combined approach on an example that neither tool can handle well.

1 Introduction

Designing complex digital system in VLSI technology usually involves working at
several levels of abstraction, ranging from very high level behavioral specifications
down to physical layout at the lowest. One of the main difficulties in this process
is to verify the consistency of the different levels of abstraction. Simulation is often
used as the main tool for "checking" the consistency. Despite major simulation
efforts, serious design errors often remain undetected. Consequently, there has
been a growing interest in using formal methods to verify the correctness of designs.
There are three general approaches to formal hardware verification: theorem-
proving, state machine analysis, and symbolic simulation. These methods all have
their strengths and weaknesses. In this paper we will illustrate how theorem-
proving can be used in conjunction with symbolic simulation to gain a verification
methodology that draws on the strengths of each approach.

Most research on formal verification has relied on the use of computer-assisted
theorem provers [3, 8, 9, 12, 16] to establish equivalence between different circuit
representations. One of the main strengths of the theorem-proving approach is
its ability to describe and relate circuit behaviors at many different levels of ab-
straction. By being able to reason about the circuit at increasingly higher levels

*This research was supported by operating grants from the Natural Sciences and Engineering Research
Council of Canada.

300

of abstraction, we can eventually minimize the semantic gap between the formal
high-level specification and the informal, intuitive, specification of the circuit that
resides in the mind of the designer.

Unfortunately, theorem-proving based verification requires a large amount of
effort on the part of the user in developing specifications of each component and
in guiding the theorem prover through all of the lemmas. Also, in order to make
the proofs tractable, most a t tempts at this style of verification have been forced
to use highly simplified circuit models.

A verifier based on symbolic simulation applies logic simulation to compute the
circuit's response to a series of stimuli chosen to detect all possible design errors.
When a circuit has been "verified" by simulation, this means that any further
simulation would not uncover any errors. Since a symbolic simulator is based on
a traditional logic simulator, it is can use the same, quite accurate, electrical and
timing models to compute the circuit behavior. Also--and of great significance--
the switch-level circuit used in the simulator can be extracted automatically from
the physical layout of the circuit. Hence, the correctness results will link the
physical layout with some higher level of specification.

Recently, Bryant and Seger [6] developed a new type of symbolic simulators.
Here the simulator establishes the validity of formulas expressed in a very limited,
but precisely defined, temporal logic. By limiting the complexity of the logic, great
efficiency is obtained. Furthermore, the verification process is highly automated.
Unfortunately, the automation obtained by the symbolic simulator comes with a
price. First of all, for some behaviors, the computational requirements for carrying
out a correctness proof can make the approach infeasible for larger circuits. Sec-
ondly, the semantic gap between the intuitive, informal, specification the designer
has in mind and the specification used in the symbolic simulator is often quite
large.

When tabulating the strengths and weaknesses of theorem-proving and symbolic
simulation used for formal hardware verification, it is striking to see how well the
two approaches complement each other. Thus, it is very appealing to a t tempt to
integrate them into a two-level combined approach to formal hardware verification.
However, in order to achieve this integration, two problems need to be resolved: 1)
a mathematically precise interface must be developed so that the rigor of the formal
proof is not jeopardized, and 2) a practical interface between the two processes
must to be developed. In this paper we focus on the first issue and only briefly
mention ongoing work towards solving the second problem.

301

2 A T w o - L e v e l A p p r o a c h

Symbolic simulation, as achieved by the COSMOS simulator, can be viewed as a
highly specialized form of theorem-proving. COSMOS checks the validity of as-
sertions in a specification language (which we call CL) with respect to a model
structure ~I,. This model structure is a set of infinite state sequences determined
by an extracted circuit netlist C and a built-in switch-level and delay model of
circuit behavior. When viewed as a theorem-proving system, the COSMOS system
can be used to prove theorems of the form, ~I, ~ f , where f is a formula in CL.

A rigorous link with general-purpose theorem-proving, in particular, the Cam-
bridge HOL system, is achieved by semantically embedding the specification lan-
guage CL in higher-order logic. The semantic embedding of CL in higher-order
logic allows CL specifications to be expanded into a term of higher-order logic
and used to derive higher-level correctness results. That is, the HOL system can
be used to prove theorems of the form, ~- f ~ t , where f is a formula in CL
(embedded in higher-order logic) and t is a term in higher-order logic.

Thus, the two proof results, ~I, ~ f and ~- f ;- t constitute a s tatement of
correctness in our combined approach. They are obtained by symbolic simulation
and general-purpose theorem-proving respectively.

3 S y m b o l i c S i m u l a t i o n V i e w e d a s T h e o r e m - P r o v i n g

The main thesis of this section is that the verification system described in [6], based
on the COSMOS symbolic simulator, can be viewed as a proof system. We use the

0
0,1 in, out

0 , ~ , 1
1,(1
0

(a) (b)

Figure 1: Inverter and corresponding state machine.

302

simple example of an inverter, shown in Fig. l(a), to provide the reader with an
informal account of our approach. If we assume a binary circuit model and a unit
delay simulator, the inverter circuit is accurately described by the state machine
shown in Fig. l(b). The states of the machine are labelled with the current values
of the two nodes in the circuit, and a transition in the state machine corresponds
to a basic unit of time.

The state machine in Fig. l(b) implies certain properties. For example, it is
easy to see tha t we can conclude from the state machine that the value on the
output is always the complement of the value that was present on the input one
time unit ago. Informally, this could be written as:

for every state sequence [(in = a) 'z X(out = ~)]

where the X is a "next time" operator and ~ denotes the Boolean complement of
a. The main result of [6] is that the COSMOS symbolic simulator can be used to
prove this kind of statement. In other words, the COSMOS system can be used to
prove tha t the behaviors derived from an extracted netlist, using a sophisticated
switch-level and t iming model, implies certain formulas described in a logic with
precisely defined semantics.

3.1 C i r c u i t S t a t e M a c h i n e a n d T r a j e c t o r i e s

The circuit model used in [6] is a ternary model, i.e., nodes in the circuit can tal~e
on the values 0, 1, and X. The circuit state machine corresponding to some circuit
C is a non-deterministic finite state machine A4 = (S, A, O), where S is a finite
set of states, A, the transition relation, is a relation on S, and O is a function
O: S --* {0, 1, X}" relating every state in S to an assignment of 0s, ls, and Xs to
the nodes of the circuit. Intuitively, if the circuit currently is in the state s i and
(sit s i+1) E A, then the circuit can be in the state s i+1 one basic t ime unit later.
The circuit state machine is determined by three factors: 1) the extracted netlist,
2) the switch-level model, and 3) the delay model.

Given a circuit state machine, a state trajectory, X, is an infinite sequence of
states sl~ s2~..., such tha t s i E S and (s i, s i+1) E A for i _> 1. The circuit trajectory,
r corresponding to a state t rajectory X is an infinite sequence of ternary state
vectors al, a2, . . . , such tha t a i E {0, 1, X}" and a i = O(s i) for i > 1. Informally,
a circuit t rajectory can be viewed as an infinite sequence of "snap-shots" of the
operating circuit taken every unit of time. Finally, let ~I, denote the set of all
possible circuit trajectories for a given circuit. Intuitively, ~I, can be viewed as the
set of all possible circuit behaviors according to the switch-level and delay model
used.

303

3.2 Logic CL

The logic CL is defined in terms of another logic called CL ~. We begin by describing
CL ~ and then consider CL.

The logic CL ~ is defined over a set of nodes, Af = { n l , . . . , n~}, and over a set
of symbolic Boolean variables, Y. The formulas consists of constants (UNCONST),
atomic propositions (hi = 1 and ni = 0), conjunction (f l A f2), case restriction
(e --* f) , and next t ime operations (Xf) . In case restriction, (e --~ f) , e is a
Boolean expression over ~ and f is a CL ~ formula. The basic idea is to use a
Boolean function to limit the cases for which the CL' formula f is of interest.

Let]3 be a set of symbolic Boolean variables. An interpretation, r is a function
r]~ --* B assigning a binary value to each symbolic Boolean variable. Let r be
the set of all possible interpretations, i.e., r = {r Y --* B}.

The t ru th semantics of a CL ~ formula f is defined relative to an interpretat ion
r E �9 and a circuit t rajectory r = a 1, a 2, a3 , . . . E ~. For a precise definition
of the t ru th semantics, see [6]. Informally, the CL' formula UNCONST holds for
every r and r The formula ni = 0 (ni = 1) holds if and only if a~ = 0 (a~ = 1).
The conjunction of two CL ~ formulas holds if and only if both formulas hold. The
CL' formula e ~ f holds if either the Boolean formula denoted by the Boolean
expression e evaluates to 0 for interpretation r or if the CL' formula f holds.
Finally, X f holds for r and circuit t rajectory a 1, a 2, a3 . . . E �9 if and only if f
holds for r and circuit t rajectory a 2, a 3

The verification methodology used by the COSMOS system entails proving asser-
tions about the model structure. These assertions, wri t ten in the core logic CL,
are of the form A '.- C, where the antecedent A and the consequent C are CL'
formulas over A/" and r . This assertion is true, wri t ten ~ ~ (A ==~ C), if and
only if for every interpretation, i.e., every assignment of 0s and ls to the symbolic
Boolean variables, and for every possible circuit trajectory, the CL' formula C holds
or the CL' formula A does not hold.

3.3 A Decision Algorithm

A decision algorithm based on ternary symbolic simulation was given in [6] for
determining the validity of formulae in CL. Tha t is, the algorithm determines
whether or not for every interpretation every circuit t ra jectory satisfying the an-
tecedent A must also satisfy the consequent C. It does this by generating a sym-
bolic simulation sequence corresponding to the antecedent, and testing whether
the resulting symbolic state sequence satisfies the consequent. For details, see [6].

4

304

S e m a n t i c a l l y E m b e d d i n g C L i n H i g h e r - O r d e r L o g i c

As argued in [14], a major advantage of higher-order logic as a formalism for verify-
ing hardware is the ability to semantically embed more specialized formalisms into
this logic. This often results in more concise specifications and easier proofs. Fur-
thermore, as this paper demonstrates, the ability to semantically embed another
formalism in higher-order logic, in particular CL, provides a means of establishing
a rigorous link between general-purpose theorem-provers, such as HOL, and other
verification tools, such as COSMOS.

Although full details, including machine-readable syntax, are beyond the scope
of this paper, a sketch of how CL can be embedded in higher-order logic is given
below. As explained earlier, the truth semantics of a CL ~ formulae is relative to an
interpretation r and a circuit trajectory r Thus, operators of CL ~ axe defined as
functions of r and r An interpretation r is represented as a function that maps
Boolean expressions to Boolean values. Circuit trajectories axe also represented by
functions--in this case, functions that map position in a sequence to state vectors.

F&f UNCONST -- ~ r r t r ue

I-&i n_i----0 = ~ r r (head r ---- 0

F-de/ n _ i = l = A r r (head r = 1

I-def f l A f2 : A r r (f l r r A (f2 r r

Fdel e --* f = ~ r r (r ~ (f r r

I-~ i X f = A r r f r (tail(C))

[-d,I ~ ~ (A ==~ B) = V C � 9 1 6 2 1 4 9 (A r r ==~ (C r r

To avoid a proliferation of symbols in this informal account, we have used the
same symbol for conjunction and implication in both CL ~ and higher-order logic,
namely, A and ~ respectively.

5 A n E x a m p l e

To illustrate our two-level approach to formal hardware verification, consider the
circuit shown in Fig. 2. This is a 16-bit instance of a (pseudo) domino-logic design
for a circuit that tests whether: 1) input A is greater than input B and, 2) input

O~
q

~D

L
~

oo

O

p.
do

G
rq

V

v

.O
p

-~
-

I •

N

0

-0
-

iV

IV

O

C
~

O

cJ
I

306

B is greater than zero, when these inputs are interpreted as the unsigned binary
representation of two numbers. The goal of formal verification is to relate a top-
level specification of this circuit's intended function to a bottom-level specification
of its implementation (based on an underlying model of hardware). The top-level
specification should be sufficiently abstract to minimize the semantic gap between
it and the informal, intuitive, specification of the circuit that resides in the mind
of the designer. On the other hand, the bottom-level specification should be an
accurate model of the circuit. This includes not only an accurate electrical model
but also temporal properties of the circuit.

In the mind of the human specifier, the intended function of the circuit shown in
Fig. 2 is intuitively understood in terms of an arithmetic relation, i.e., "the output
should be 1 when A is greater than B and B is greater than 0". To minimize the
semantic gap, the top-level formal specification should also be stated in terms of
an arithmetic relation. At the bottom-level of specification, the actual operation
of the circuit shown in Fig. 2 cannot be accurately described by a simple model of
circuit behavior. A number of detailed features such as clocking, charge storage,
charge sharing, and sized transistors, need to be included in an accurate model of
this circuit. Hence, the verification problem, in this particular case, is to relate a
top-level specification expressed in terms of an arithmetic relation to a bottom-
level specification based on a detailed model of switch level circuit behavior.

Neither symbolic simulation or theorem-proving on their own is able to satisfac-
torily deal with this verification problem. Symbolic simulation would clearly be
unable to support a top-level specification stated in terms of arithmetic relations.
Theorem-proving is generally inappropriate for reasoning about detailed circuit
behavior. Below, we will outline how this proof could be carried out using our
combined verification approach. However, due to space considerations, we will not
include the actual code representing the specification to the COSMOS system nor
the actual HOL statements.

At the COSMOS level, we first define a function CmpBitLevel that takes a size
parameter n and two vectors of Boolean variables A and B and returns the Boolean
expression representing the bit level "compare and greater than zero operation".
We then define a function timing that takes a Boolean expression r e s as argument
and that essentially describes the timing conditions under which we wish to verify
the circuit in Fig. 2. To paraphrase this definition: on the assumption that, 1)
the clock signal phi is low for 100 time units and then is high for another 100
time units, and 2) the vectors of circuit nodes a and b are assigned the vectors
of symbolic Boolean variables A and B at time 95 and held stable until time 200,
then the circuit node denoted by out should be equal to the value r e s from at
least time 180 until time 200.

307

The functional specification expressed by CmpBitLevel and the t iming condi-
tions expressed by timing are combined in the top level COSMOS specification:
(timing (CrapBitLevel n A B));.

The COSMOS system is able to derive the following theorem which states that
the above specification is a logical consequence of the finite state machine derived
from the extracted netlist of the circuit shown in Fig. 2.

~ (timing (CmpBitLevel 16 A B))

We now wish to derive a more abstract correctness result which expresses cor-
rectness at the ari thmetic level. Currently, we hand-translate the COSMOS speci-
fications into higher-order logic. Eventually, when the interface language is seman-
tically embedded in higher-order logic, this translation will be a series of expansion
steps governed by the inference rules of higher-order logic.

To formally establish a relationship between a bit level correctness result and a
higher level correctness result expressed in terms of natural number arithmetic, we
need to formally define a relationship between bit vectors and natural numbers.
This is expressed by a definition called Bits ToNum which is a da ta abstraction
function that maps bit vectors to natural numbers. We also define the function
CmpNumLevel which is the ari thmetic level specification of the function we want
the circuit in Fig. 2 to compute.

The HOL system can now be used to prove that Vn A B:

(CmpBitLevel n A B) -- (CmpNumLevel (BitsToNum n A)(BitsToNum n B)).

Having established this equivalence, we can then derive a generalized correctness
result which relates the bit level specification of the compare circuit to an arith-
metic level specification for any value of n, i.e., we can show that Vn:

(timing (CmpBitLevel n A B))
~- (timing (CmpNumievel (BitsToNum n A)(BitsToNum n B)))

Finally, we instantiate this generalized result for n = 16 to obtain,

(timing (CmpBitLevel 16 A B))

(timing (CmpNumLevel (BitsToNum 16 A)(BitsToNum 16 B)))

which, together with the symbolic simulation result above constitutes a s ta tement
of correctness for the circuit in Fig. 2.

308

6 C o n c l u s i o n s

Different methods of formal verification involve tradeoffs between automation,
flexibility, expressibility, and accuracy. We conclude that a promising balance
of these tradeoffs can be achieved by using theorem-proving at higher levels and
symbolic simulation at lower levels. By embedding the "high-level" specification
logic used by COSMOS into HOL, we are able to efficiently verify systems from a very
detailed electrical and timing domain up to a very abstract behavioral domain.

We think that this two-level approach will be particularly useful in the case of
circuits where there is tight coupling between functional and temporal properties
of the circuit level and high level abstractions, e.g., when a gate level or RTL
abstraction is not available as an intermediate level. This is especially true in the
case of high performance designs. Also, by integrating these two methods, we open
up the possibility of verifying mixed software/hardware systems[i, 15].

We are currently in the process of formalizing the interface logic and imple-
menting a compiler for this language in the COSMOS system. This involves not
only modifying the existing, informal, compiler in COSMOS, but also to define the
precise semantics of the language and proving the correctness of the compilation
method.

R e f e r e n c e s

[1] W. Bevier, W. Hunt, J Moore, and W. Young, "An Approach to Systems
Verification", Journal of Automated Reasoning, Vol. 5, No. 4, November 1989.

[2] R. Boulton, M. Gordon, J. Herbert and J. Van Tassel, "The HOL Verification
of ELLA Designs", in: P. Subrahmanyam, ed., Proceedings of a Workshop on
Formal Methods in VLSI Design, 9-11 January 1991, Miami, Florida.

[3] R. S. Boyer and J.S. Moore, A Computational Logic Handbook, Academic
Press, 1988.

[4] R.E. Bryant, "A Switch-Level Model and Simulator for MOS Digital Systems,"
IEEE Trans. on Computers Vol. C-33, No. 2, February, 1984, pp. 160-177.

[5] R.E. Bryant, "Symbolic Verification of MOS Circuits", 1985 Chapel Hill Con-
ference on VLSI, May, 1985, pp. 419-438.

[6] R.E. Bryant, and C-J. Seger, "Formal Verification of Digital Circuits Using
Symbolic Ternary System Models", DIMAC Workshop on Computer-Aided
Verification, Rutgers, New Jersey, June 18-20, 1990 (to appear in Springer
Verlag's Lecture Notes in Computer Science).

309

[7] Albert John Ca.milleri, "Mechanizing CSP Trace Theory in Higher Order
Logic", IEEE Transactions on Software Engineering, Vol. SE-16, No. 9,
September 1990, pp. 993-1104.

[8] Paolo Camurati and Paolo Prinetto, "Formal Verification of Hardware Cor-
rectness", IEEE Computer, Vol. 21, No. 7, July 1988, pp. 8-19.

[9] M. J. C. Gordon, "Why Higher-Order Logic is a Good Formalism for Spec-
ifying and Verifying Hardware", in: G. Milne and P. Subra.hmanyam, eds.,
Formal Aspects of VLSI Design, Proceedings of the 1985 Edinburgh Confer-
ence on VLSI, North-Holland, 1986, pp. 153-177.

[10] Michael J. C. Gordon, "Mechanizing Programming Logics in Higher Order
Logic", in: G. Birtwistle and P. Subrahmanyam, eds., Current Trends in Hard-
ware Verification and Automated Theorem Proving, Springer-Verlag, 1989, pp.
387-439. Also Report No. 145, Computer Laboratory, Cambridge University,
September 1988.

[11] Roger W. S. Hale, Programming in Temporal Logic, Ph.D. Thesis, Report No.
173, Computer Laboratory, Cambridge University, July 1989.

[12] Warren A. Hunt, FM8501, A Verified Microprocessor, Ph.D. Thesis, Report
No. 47, Institute for Computing Science, University of Texas, Austin, Decem,

o ber 1985.

[13] Jeffrey J. Joyce, "A Verified Compiler for a Verified Microprocessor", Report
No. 167, Computer Laboratory, Cambridge University, March 1989.

[14] Jeffrey J. Joyce, "More Reasons Why Higher-Order Logic is a Good Formalism
for Specifying and Verifying Hardware", in: P. Subrahmanyam, ed., Proceed-
ings of a Workshop on Formal Methods in VLSI Design, 9-11 January 1991,
Miami, Florida.

[15] Jeffrey J. Joyce, "Totally Verified Systems: Linking Verified Software to Ver-
ified Hardware", in: Specification, Verification and Synthesis: Mathematical
Aspects, Proceedings of a Workshop, 5-7 July 1989, M. Leeser and G. Brown,
eds., Ithaca, N.Y., Springer-Verlag, 1989.

[16] Michael J. C. Gordon et al., The IIOL System Description, Cambridge Re-
search Centre, SP~I International, Suite 23, Miller's Yard, Cambridge CB2
1RQ, England.

