
Computing Distinguishing Formulas for Branching
Bisimulation

Henri Korver
Department os software technology, CV~rI

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

e-mail: henri@cwi.nl

Abstract

Branching bisimulation is a behavioral equivalence on labeled transition systems which has

been proposed by Van Glabbeek and Weijland as an alternative to Milner's observation

equivalence. This paper presents an algorithm which, given two branching bisimulation
inequivalent finite state processes, produces a distinguishing formula in Hennessy-Milner

logic extended with an 'until' operator. The algorithm, which is a modification of an al-

gorithm due to Cleaveland, works in conjunction with a partition-refinement algorithm for

deciding branching bisimulation equivalence. Our algorithm provides a useful extension

to the algorithm for deciding equivalence because it tells a user why certain finite state

systems are inequivalent.

Note: The research of the author is supported by the European Communit ies under RACE
project no. 1046, Specification and Programming Environment for Communicat ion Soft-
ware (SPECS). This article does not necessarily reflect the view of the SPECS project.

1 I n t r o d u c t i o n

The complexity of concurrent systems (parallel chips, computer networks) is still in-
creasing every day. To cope with this problem a lot of research has been spent on the
development of formal verification techniques that guarantee the reliability of these sys-
tems.

At the moment, the use of behavioral equivalences is considered as a promising ap-
proach towards system verification. In this approach, concurrent systems are modeled as
transition graphs, and verification amounts to establishing that the graph representing
the implementation of the system is equivalent to (behaves the same as) the graph rep-
resenting the specification of the system. The main advantage of this approach is that
behavioral equivalences can be decided fully automatically on finite transition graphs
and that several equivalences can be decided efficiently.

A number of equivalences have been proposed in the literature [3], and several au-
tomated tools include facilities for computing them [8]. One particularly interesting
equivalence is (strong) bisimulation equivalence [10], which serves as the basis for a num-
ber of other equivalences that can be described in terms of it. Bisimulation equivalence
has a logical characterization: two systems are equivalent exactly when they satisfy the

]4

same formulas in a simple modal logic due to Hennessy and Milner [6]. This fact sug-
gests a useful diagnostic methodology for tools that compute bisimulation equivalence:
when two systems are found not to be equivalent, one may explain why by giving a
(distinguishing) formula satisfied by one and not by the other.

Recently, Cleaveland developed an advanced technique to generate such distinguishing
formulas automatically. His method works in conjunction with the efficient partition-
refinement algorithm for computing bisimulation equivalence and is described in [1]. The
formulas generated by this algorithm are often minimal in a precisely defined sense.

In this paper, we apply this technique to branching bisimulation equivalence [4] which is
a more suitable for practical purposes than (strong) bisimulation equivalence. Branching
bisimulation equivalence resembles the well-known observation equivalence [10] and can
be decided more efficiently [5].

Branching bisimulation is characterized in terms of Hennessy-Milner Logic with an
Until-operator (HMLU) [2] and we develop a technique for determining a HMLU-formula
that distinguishes two branching bisimulation inequivalent finite-state systems, using the
idea of the advanced method of Cleaveland. To this end, we show how to use information
generated by an adapted version of the partition-refinement algorithm of Groote and
Vaandrager [5] to compute such a formula efficiently. On the basis of this result, tools
using branching bisimulation may be modified to give users diagnostic information in
the form of a distinguishing formula when a system is found not to be equivalent to its
specification.

The remainder of the paper is organized as follows. The next section defines branching
bisimulation equivalence and examines the connection between it and the Hennessy-
Milner Logic with Until. Section 3.1 describes the algorithm of Groote and Vaandrager
to compute branching bisimulation equivalence on the states of a transition graph. Then
section 3.2 describes how to generate a block tree which retains information computed
by the equivalence algorithm. Finally, in section 3.3 it is shown how to compute distin-
guishing formulas on the basis of this block tree; a small example is also presented to
illustrate the working of the new algorithm.

For proofs, the reader is referred to the full version of this paper [9].

Acknowledgements

In the first place, I would like to thank Rance Cleaveland for writing his article and for
answering all my questions. Special thanks to Jan Friso Groote for reading the previous
draft of this paper very carefully.

2 Transition Graphs Branching Bisimulation and
HMLU

Concurrent systems are often modeled by transition graphs. Vertices in these graphs
correspond to the states a system may enter as it executes, with one vertex being dis-
tinguished as the start state. The edges, which are directed, are labeled with actions
and represent the state transitions a system may undergo. The formal definition is the
following.

15

Definit ion 2.1 A labeled transition graph is a quadruple <S, s, Act, .--*>, where:

�9 S is a set of states;

�9 s E S is the start state;

�9 Act is a set of actions; the silent action ~- is not in Act; and

�9 ---,C S x Act~ x S is the transition relation where Actr = Act U {r}. A n element

(p, a, q) E'--~ is called a transition, and is usually writ ten as p a , q.

The silent action ~- is unobservable for the environment and is used to symbolize the
internal behavior of the system.

When a graph does not have a start state indicated, we shall refer to the corresponding
triple as a transition system. A state in a transition system gives rise to a transition graph
in the obvious way: let the given state be the start state, with the three components of
the transition graph coming from the transition system.

Transition graphs are often too concrete for representing concurrent systems. Mostly
one is only interested in the observational behavior of a complicated system and one is
not interested in the internal (low-level) computations. Branching bisimulation, which is
an interesting alternative for the well-known observation equivalence [10], remedies this
shortcoming. In [4] several definitions of branching bisimulation are given, which all lead
to the same equivalence. The following definition is in our setting most suitable.

Definit ion 2.2 (Branching bisimulation)

�9 Let <S, Act, ---*> be a transition system. A relation R C S • S is called a branching
bisirnulation i f it is symmetric and satisfies the following transfer property:

I f r R s and r a r', then either c~---r and r ' R s or; 3so , . . , sn , s' E S : s = so,
~0<i<n : si-1 --~ si] and s,~ - -~ s' such that V0<i<,, r R s i and r 'Rs ' .

�9 Two states r and s are branching bis imi lar , abbreviated r ,~B s or s ~ B r, i f there
exists a branching bisimulation relating r and s.

The arbitrary union of branching bisimulation relations is again a branching bisimulation;
~B is the maximal branching bisimulation and is an equivalence relation.

Let T1 = < S l , s l , A c t , - - * l > and T2 = < S2, s2, Act,--~2> be two transition graphs
satisfying $1 A $2 = @. Then T1 and T2 are branching bisimilar exactly when the two
start states, sl and s2 are branching bisimilar in the transition graph < S1 U S~., Act , "*l

U --~2 >.
Branching bisimulation has a logical characterization in terms of the Hennessy-Milner

Logic with Until (HMLU): two states are equivalent exactly when they satisfy the same
set of HMLV-formulas (see [2]). In [2] also two other logics are given that characterize
branching bisimulation. We think that HMLU is the most natural choice in this setting.
HMLU is a simple modal logic; the syntax of formulas is defined by the following gram-
mar, where a E Act~.

::= t t I - ~ I r A �9 I r

The semantics of the logic is given with respect to a transition system T = (S, Act, --*)

16

Ett]] T ----

~r =

~r ^r =

S

s - Er

{s e sI (~ = ~ and s �9 ~ r or

~0<i<~ : si-1 , si] and s,~ , s')}

Figure h The semantics of formulas in Hennessy-Milner Logic with Until.

and appears in Figure 1. In this figure each formula is mapped to the set of states for
which the formula is ' true'. We shall omit explicit reference to the transition system used
to interpret formulas when it is clear from the context. Intuitively, the formula tt holds
in any state, and ~ holds in a state if ~ does not. The formula ~1 A ~2 holds in a
state if both r and ~2 do. The until-proposition r holds in a state, if this state
can reach via a, a state in which ~2 holds while moving through intermediate states in
which ~1 holds.

Let ~ (s) be the set of HMLU-formulas that are valid in state s :

The next theorem is a specialization of a theorem proved in [2].

T h e o r e m 2.3 Let < S, Act,---*> be a finite-state transition system, with sl,s2 6 S.
Then ?-/(sl) = T/(s2) /f and only if Sl ~B s2.

It follows that if two states in a (finite-state) transition system are inequivalent, then
there must be a HMLU-formula satisfied by one and not the other. This is the basis
of our definition for distinguishing formula, although we shall in fact use the following,
slightly more general formulation taken from [1].

D e f i n i t i o n 2.4 Let < S, Act,---*> be a transition system, and let $1 C S and $2 c S.
Then HMLU-formula iI~ distinguishes $1 from $2 if the following hold.

i. s l c__ Eel.

z. s~ n I[r = O.

So r distinguishes $1 from $2 if every state in $1, and no state in $2, satisfies r
Theorem 2.3 thus guarantees the existence of a formula that distinguishes {sl} from
{s2} if Sl ~B s2.

Finally, we take the following criterion from [1] to indicate whether a distinguishing
formula contains extraneous information.

D e f i n i t i o n 2.5 Let r be a HMLU-formula distinguishing $1 from $2. Then r is min-
imal if no r obtained by replacing a non-trivial subformula of r with the formula tt
distinguishes $1 from $2.

17

Intuitively, �9 is a minimal formula for $1 with respect to $2 if each of its subformulas
plays a role in distinguishing the two. This notion of minimali ty is ra ther naive, but at
the moment we are not aware of a bet ter definition.

3 Computing Distinguishing Formulas
In this section, we describe a partition refinement algorithm for computing branching
bisimulation equivalence and show how to alter it to generate a block tree. Then given
such a block tree, we describe how to generate distinguishing formulas. Finally, a small
example is given that illustrates the use of the algorithm.

3 .1 C o m p u t i n g B r a n c h i n g B i s i m u l a t i o n

At the moment, 'partition-refinement' is the most efficient method to compute bisim-
ulation equivalences [7]. A partition-refinement algorithm exploits the fact that an
equivalence relation on the set of states may be represented as a partition, or a set
of pairwise-disjoint subsets (called blocks) of the state set whose union is the whole state
set. In this representation blocks correspond to the equivalence classes, so two states
are equivalent exactly when they belong to the same block. Beginning with the parti-
tion containing one block (representing the trivial equivalence relation consisting of one
equivalence class), the algorithm repeatedly refines a partit ion by splitting blocks until
the associated equivalence relation becomes a bisimulation.

In [5] the refinement strategy to obtain branching bisimulation is described. To refine
the current partition, the algorithm of Groote and Vaandrager looks at each block in
turn. If a state in block B can reach via action a, possibly after some initial stuttering,
a state in block B' and another state in B does not, then the algorithm splits B into
two blocks. The first block contains all the states which can reach via action a, possibly
after some initial stuttering, a state in block B'. The second block contains all the other
states. When no more splitting is possible, the resulting equivalence corresponds exactly
to branching bisimulation on the given transition system.

Below we present the definitions and the algorithm in more formal notation; the de-
scription is a slight modification of the one in [5].

D e f i n i t i o n 3.1
Let IS, Act, --,) be a transition system.

1) A collection {Bj IJ ~ J} of nonempty subsets of S is called a partition if UjeJ Bj = S
and for i # j : Bi f3 Bj = O. The elements of a partition are called blocks.
~) If 7 9 and 79~ are partitions of S then 79~ refines 79, if any block of 79t is included in a
block of 79.
3} The equivalence "~7~ on S induced by a partition 79 is defined by:

r "~7~ s @ 3B E 79 : r E B A s E B.
4) For B, B' we define the set pos,~(B, B') as the set of states in B from which, after
some internal r-stuttering, a state in B' can be reached:

pos~(B, B') = {s e BI3so, ..., s,~ e B, 3s' e B':
"1" o t

s0=s,[V0<i_<=:si-x , s i] ands ,~ , s ' }
5) We say that B ~ is a splitter of B with respect to action a iff

]8

B # B' or o~ # r, and O # p o s ~ (B , B ') # B.
6) I f 7 9 is a partition of S and B' is a splitter of B with respect to a, then Ref~(B, B')
is the partition 79 where B is replaced by pos~(B, B') and B - posa(B, B').
7) 79 is stable with respect to block B' if for no block B and for no action a, B' is a
splitter of B with respect to a. 79 is stable if it is stable with respect to all its blocks.

Algor i thm 3.2 The algorithm to compute branching bisimulation maintains a partition
79 that is initially 790 = {S}. It repeats the following step, until 79 is stable:

Find blocks B, B t E 79 and a label a E Act~- such that B t is a splitter wrt. a;
79 :=Ref;(B, B').

In [5] it is proved that the equivalence induced by the last partition computed by algo-
rithm 3.2 corresponds exactly to branching bisimulation equivalence. Also, the complex-
ity bounds given in [5] are presented.

T h e o r e m 3.3 Let (S, Act, ---*) be a finite transition system. Let 79f be the final partition
obtained by the algorithm above. Then "~Pl = .~B.

T h e o r e m 3.4 The time complexity of algorithm 3.2 is O(IS I *1--* I). And the space
complexity is 0(] ~ I).

3 .2 G e n e r a t i n g T h e B l o c k T r e e

In addition to computing the partition as described above, we now retain information
about how and why the blocks are split by construction of a labeled block 'tree'. The
following definitions are used to describe the generation procedure of such a block tree.

Def in i t ion 3.5 (Parent and its children)
79(B) is the parent of block S in the block tree. ~(B) is the left child of block B. 7E(B)
is the right child of block B. When B has a single child or no children at all then L(B)
and 7"~(B) are undefined.

Defini t ion 3.6 (Height of a block)
The height of a block B in the block tree is defined as follows:

h(B) := 0 where B is the root block.
h(B) := 1 + h(79(B)).

Def in i t ion 3.7 (Parent Partition)
The Parent Partition of block B in the block tree, is the partition where B is created.

7979(B) := {C I h(C) = h(79(B))}.

Defini t ion 3.8 (Blocks that can be reached from block B)
Let B be a block in the block tree.

�9 r,~(S) := {C e P79(B)] 3s e B, s' e C : s ~, s'}; r~(B) contains all the blocks in
the parent partition of B that can be reached from a state in B via a.

�9 r{(B) := {C 6 7979(B)[Bs 6 B, s' 6 C : s ~, s' A C # 79(B)}; r~(B) contains all
the blocks in the parent partition of B that can be reached from a state in B via T.
The superscript 'p' indicates that the parent of B is not included.

19

Algorithm 3.2 is modified as follows. Rather than discarding an old parti t ion after it is
refined, the new procedure constructs a tree of blocks as follows. The children of a block
are the new blocks that result when the algorithm splits the block; accordingly, the root
is labeled with the block S, and after each refinement the leaves of this tree represents
the current partition.

When a block P is split due to splitter block B' and action c~, we position the new
block L=pos~(P, B') as the left child and the new block R = P - pos~(P, B') as the right
child, and we label the arc connecting P to L with ~ and B'. We label the arc connecting
P to R with r~(R) and r~(R), these block-sets are given in definition 3.8. The blocks
in r~(R) bear witness to the states in R that cannot evolve in internal stuttering. The
blocks in r~(R) bear witness to the states in R that cannot reach the splitter block by
an a-step.

Recall that every state in L can reach via c~, possibly after some initial stuttering,
a state in B' and no state in R does. If a block is not split during a refinement, it is
assigned a copy of itself as its only child Figure 3 contains an example of such a tree.

The construction of the block tree during the partition-refinement algorithm does not
influence the t ime complexity. The space complexity has changed slightly from O([--*])
to O(ISI 2) due to the following theorem (note that [~:~fl -- IS[) .

T h e o r e m 3.9 The space requirement of the labeled block tree is O(ISl + IPsl2).
P r o o f . Strictly speaking, only the leaves in the tree need to be labeled with the
corresponding sets of states.

3 . 3 G e n e r a t i n g D i s t i n g u i s h i n g F o r m u l a s

Given a block tree computed by the extended partition-refinement algorithm above,
and two disjoint blocks B1 and B2, the following postprocessing step builds a formula
A(B1, B2) that distinguishes the states in B1 from those in B~.

First we compute the lowest common ancestor of Bt and B2 (and call it P) . By
lemma 3.11 we know that a formula distinguishing the children of P, also distinguishes
Bt from B2.

D e f i n i t i o n 3.10 (Lowest Common Ancestor)
The function s returns the Lowest Common Ancestor of two disjoint blocks B1 and
B2 in the block tree.

L e m m a 3.11
P = s B2) ^
r distinguishes s and n(P) f

===~ �9 distinguishes B1 and B2.

P r o o f . B1 and B2 are subsets of respectively s and 7~(P).

For easy notation, let L = F.(p) be the left child and R = 7~(P) the right child of
P. The arc connecting blocks P and L is labeled with c~ and B'; and the arc connecting
blocks P and H is labeled with respectively the block-sets r~(R) and ra(R) (call these
block-sets respectively rt and r2).

Prom the way that the block tree is generated, we know that every state in L can reach
via action a, possibly after some initial stuttering, a state in B' and that no state in R

20

does. Accordingly, one recursively builds formulas that distinguish P and blocks in rl,
and takes their conjunction (call it 01). And, if one also recursively builds formulas that
distinguish B' from each block in r2 and also takes their conjunction (call it r then
every state in L satisfies r162 (call this formula r and no state in R does. In case
a = % one has to add the extra conjunct A(B', R), to ensure that r is a distinguishing
formula; this is caused by the first disjunct at the right hand side of the last mapping'in
figure 1. The details are given below.

Algor i thm 3.12
When B1 and B2 are disjoint, A(B1, B2) can be computed recursively as follows.

1. Compute P := s B2).

2. Let L := s R := n (P) .
(Notice that B1 C. L and B2 C R, or B2 C_ L and B1 C R.)

3. Let a and B' be the labels on the arc connecting P and L; and
let rl := rrP(R) and r2 := ra(R) be the labels on the arc connecting P and R;

�9 if rl = 0 then r := tt else 01 := ACerlA(P, C);

�9 i f r 2 = 0 then 02 := tt else r := Ace~A(B',C).

~. Ira # r then �9 := r
else Oa := A(B', R);

r := A 0 3)

5. If B1 C L then return r else return -~0.

We now have the following theorem.

T h e o r e m 3.13 B1 N B2 = @ ==~ A(B1, B2) distinguishes B1 and B2.

Proof . By induction on the depth of B1 and B2 in the block tree.

It should be noted that exponential length formulas may be generated. However, one
may present such a formula (as a set of propositional equations) in space proportional to
[p/j2, where P l is the final partition computed by the algorithm (note that]7~/[_< IS[).
This results from the fact that there can be at most [Pl[- 1 recursive calls generated
by the above procedure and the fact that each distinguishing formula is of the form
('~)O1(a)r where r and r contain together at most [P / [- 1 conjuncts, each of the
form A(Bi, Bj) for some Bi and Bj.

T h e o r e m 3.14 An equational representation of A(B1, B2) may be calculated in O(]P/[2)
time, once the tree of blocks has been computed.

Proof . At each recursive call, computing the lowest common ancestor requires at most
O(lPsl) work. []

In general a formula A(sl, 82) will not be minimal in the sense of definition 2.5. In
[1] the following straightforward procedure is proposed to minimize A(sl , s2) once it has

2]

been computed. Repeatedly replace subformulas in the formula by tt and see if the re-
suiting formula still distinguishes Sl from s2. If so, the subformula may either be omitted
(if it is one of several conjuncts in a larger conjunction) or left at ft. The result of this
would be a minimal formula. The computational tractability of this procedure remains
to be examined.

We close this subsection with a general remark about our method. Our method gener-
ates a formula that distinguishes blocks that may contain more than one state, but mostly
one is only interested in a formula that distinguishes two particular states. In this case,
algorithm 3.12 can also be used to construct a formula distinguishing two inequivalent
states Sl and s2; first locate the disjoint blocks B1 and B2 such that si E Bi (i : 1, 2),
then build A(B1, B2).

3 . 4 A n E x a m p l e

To illustrate our algorithm we consider two transition graphs that are not branching
bisimulation equivalent. Figure 2 shows the transition system that includes the two
transition graphs. It is interesting to notice that these two graphs are an instance of the
second ~--law of observation equivalence (see e.g. [10]); so they are not differentiated by
HML without Until-operator. State sl is the start state of one graph, while state s5 is
the start state of the other. Figure 3 contains a tree of blocks generated by the altered
partition-refinement algorithm. Notice that sl ~B s5, as they are in different blocks. In
order to build a formula that S l satisfies and s5 does not, it suffices to generate A(B6, Bs),
the formula that distinguishes block B6 and Bs~ To do so, the algorithm first locates the
lowest common ancestor of the two blocks (B3, in this case). The left child is B5 and
the right child is Bs. The labels on the left arc indicate that the action causing the split
is a, and the splitter block is B2. The labels on the right arc indicate that r~(R)={B4}
and r~(R)=0. The formula that will be returned, then, will be

~(A(B3, B4) <a) tt);

this formula holds of Sl and not of ss. By repeating this process, it turns out that

A(B3,/34) = ttIb)tt

So the formula distinguishing Sl from s5 is

"~ ((tt(b) tt)<a) tt).

This formula explains why sl and s5 are inequivalent because s5 may engage in an a-
transition while in all the intermediate states (only s5 here) a b-transition is available.
This is not the case for state sl. Note that this formula is minimal in the sense of
definition 2.5.

4 C o n c l u s i o n s and Future Wor k

This paper has shown how it is possible to alter the partition-refinement of Groote and
Vaandrager for computing branching bisimulation equivalence to compute a formula in
the Hennessy-Milner Logic with Until that distinguishes two inequivalent states. The
generation of the formula relies on a postprocessing step that is invoked on a tree-based

22

Figure 2: Two branching bisimulation inequivalent transition graphs.

B = {81, 82, 83, 84, 85, 86, 87, 88, 89}

B1 = {81, s~, ~5, 88}

B3 = {81,85} B4 = {85, 86}

B5 = {85} B6 = { s l } 82, S6}

B2 : {s3, 84, s7, s8, 89}

{83~ 84, 87, 88, 89}

{83~ S4~ 87~ 88~, 89}

Figure 3: The generated tree of blocks.

23

representation of the information computed by the equivalence algorithm. The post-
processing step has no effect on the worst-case complexity of the equivalence-checking
algorithm, only the space complexity has changed slightly from O(I--* I) to O(ISI2).

The most important direction for future work is tackling the problem of generating
minimal formulas and moreover its complexity. Clearly, the complexity of the minimiza-
tion procedure mentioned in passing at the end of section 3.3 needs to be analyzed fully;
if this procedure is efficient enough, then it may be incorporated into the distinguishing
formula generation procedure.

Another area of investigation would be an implementation of our technique, as an ex-
tension of the equivalence-checking algorithm of Groote and Vaandrager which is already
implemented successfully.

References

[1] R. Cleaveland: On Automatically Distinguishing Inequivalent Processes. In Pro-
ceedings: 1990 Workshop on Computer-Aided Verification (R. Kurshan and E.M.
Clarke, editors), DIMACS technical report 90-31, Vol. 2, New Yersey, 1990. To
appear in Lecture Notes in Computer Science.

[2] R. DeNicola and F.W. Vaandrager: Three logics for branching bisimulation (ex-
tended abstract). In Proceedings 5 ~ Annual Symposium on Logic in Computer Sci-
ence, Philadelphia, USA, pages 118-129, Los Alamitos, CA, 1990. IEEE Computer
Society Press. Full version appeared as CWI Report CS-R9012.

[3] R.J. van Glabbeek: Comparative Concurrency Semantics and Refinement of Actions.
PhD thesis, Free University, Amsterdam, 1990.

[4] R.J. van Glabbeek and W.P. Weijland: Branching time and abstraction in bisimu-
lation semantics (extended abstract). In G.X. Ritter, editor, Information Processing
89, pages 613-618. North-Holland, 1989.

[5] J.F. Groote and F.W. Vaandrager: An efficient algorithm for branching bisimula-
tion and stuttering equivalence. In M.S. Paterson, editor, Proceedings 17 =~ ICALP,
Warwick, volume 443 of LNCS, pages 626-638. Springer-Verlag, 1990.

[6] M. Hennessy and R. Milner: Algebraic Laws for Nondeterminism and Concurrency.
Journal of the Association for Computing Machinery, v. 32, n. 1, pages 137-161,
January 1985.

[7] P. Kanellakis and S.A. Smolk~: CCS Expressions, Finite State Processes, and Three
Problems of Equivalence. In Proceedings of the Second ACM Symposium on the
Principles of Distributed Computing, 1983.

[8] H. Korver: The Current State of Bisimulation Tools. In report P9101, Programming
Research Group, Univerisity of Amsterdam, 1991.

[9] H. Korver: Computing Distinguishing Formulas for Branching Bisimulation (Full
Version). In report CS-R9121, CWI, Amsterdam, 1991.

[10] R. Milner: Communication and Concurrency. Prentice Hall, 1989.

