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Abstract 

Branching bisimulation is a behavioral equivalence on labeled transition systems which has 

been proposed by Van Glabbeek and Weijland as an alternative to Milner's observation 

equivalence. This paper presents an algorithm which, given two branching bisimulation 
inequivalent finite state processes, produces a distinguishing formula in Hennessy-Milner 

logic extended with an 'until' operator. The algorithm, which is a modification of an al- 

gorithm due to Cleaveland, works in conjunction with a partition-refinement algorithm for 

deciding branching bisimulation equivalence. Our algorithm provides a useful extension 

to the algorithm for deciding equivalence because it tells a user why certain finite state 

systems are inequivalent. 

Note: The research of the author is supported by the European Communit ies  under RACE 
project no. 1046, Specification and Programming Environment  for Communicat ion Soft- 
ware (SPECS). This article does not necessarily reflect the  view of the  SPECS project. 

1 I n t r o d u c t i o n  

The complexity of concurrent systems (parallel chips, computer networks) is still in- 
creasing every day. To cope with this problem a lot of research has been spent on the 
development of formal verification techniques that guarantee the reliability of these sys- 
tems. 

At the moment, the use of behavioral equivalences is considered as a promising ap- 
proach towards system verification. In this approach, concurrent systems are modeled as 
transition graphs, and verification amounts to establishing that the graph representing 
the implementation of the system is equivalent to (behaves the same as) the graph rep- 
resenting the specification of the system. The main advantage of this approach is that 
behavioral equivalences can be decided fully automatically on finite transition graphs 
and that several equivalences can be decided efficiently. 

A number of equivalences have been proposed in the literature [3], and several au- 
tomated tools include facilities for computing them [8]. One particularly interesting 
equivalence is (strong) bisimulation equivalence [10], which serves as the basis for a num- 
ber of other equivalences that can be described in terms of it. Bisimulation equivalence 
has a logical characterization: two systems are equivalent exactly when they satisfy the 
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same formulas in a simple modal logic due to Hennessy and Milner [6]. This fact sug- 
gests a useful diagnostic methodology for tools that compute bisimulation equivalence: 
when two systems are found not to be equivalent, one may explain why by giving a 
(distinguishing) formula satisfied by one and not by the other. 

Recently, Cleaveland developed an advanced technique to generate such distinguishing 
formulas automatically. His method works in conjunction with the efficient partition- 
refinement algorithm for computing bisimulation equivalence and is described in [1]. The 
formulas generated by this algorithm are often minimal in a precisely defined sense. 

In this paper, we apply this technique to branching bisimulation equivalence [4] which is 
a more suitable for practical purposes than (strong) bisimulation equivalence. Branching 
bisimulation equivalence resembles the well-known observation equivalence [10] and can 
be decided more efficiently [5]. 

Branching bisimulation is characterized in terms of Hennessy-Milner Logic with an 
Until-operator (HMLU) [2] and we develop a technique for determining a HMLU-formula 
that distinguishes two branching bisimulation inequivalent finite-state systems, using the 
idea of the advanced method of Cleaveland. To this end, we show how to use information 
generated by an adapted version of the partition-refinement algorithm of Groote and 
Vaandrager [5] to compute such a formula efficiently. On the basis of this result, tools 
using branching bisimulation may be modified to give users diagnostic information in 
the form of a distinguishing formula when a system is found not to be equivalent to its 
specification. 

The remainder of the paper is organized as follows. The next section defines branching 
bisimulation equivalence and examines the connection between it and the Hennessy- 
Milner Logic with Until. Section 3.1 describes the algorithm of Groote and Vaandrager 
to compute branching bisimulation equivalence on the states of a transition graph. Then 
section 3.2 describes how to generate a block tree which retains information computed 
by the equivalence algorithm. Finally, in section 3.3 it is shown how to compute distin- 
guishing formulas on the basis of this block tree; a small example is also presented to 
illustrate the working of the new algorithm. 

For proofs, the reader is referred to the full version of this paper [9]. 
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2 Transition Graphs  Branching Bisimulation and 
HMLU 

Concurrent systems are often modeled by transition graphs. Vertices in these graphs 
correspond to the states a system may enter as it executes, with one vertex being dis- 
tinguished as the start state. The edges, which are directed, are labeled with actions 
and represent the state transitions a system may undergo. The formal definition is the 
following. 
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Definit ion 2.1 A labeled transition graph is a quadruple <S, s, Act, .--*>, where: 

�9 S is a set of states; 

�9 s E S is the start state; 

�9 Act  is a set of  actions; the silent action ~- is not in Act; and 

�9 ---,C S x Act~ x S is the transition relation where Actr  = Act  U {r}. A n  element  

(p, a,  q) E'--~ is called a transition, and is usually writ ten as p a ,  q. 

The silent action ~- is unobservable for the environment and is used to symbolize the 
internal behavior of the system. 

When a graph does not have a start state indicated, we shall refer to the corresponding 
triple as a transition system. A state in a transition system gives rise to a transition graph 
in the obvious way: let the given state be the start state, with the three components of 
the transition graph coming from the transition system. 

Transition graphs are often too concrete for representing concurrent systems. Mostly 
one is only interested in the observational behavior of a complicated system and one is 
not interested in the internal (low-level) computations. Branching bisimulation, which is 
an interesting alternative for the well-known observation equivalence [10], remedies this 
shortcoming. In [4] several definitions of branching bisimulation are given, which all lead 
to the same equivalence. The following definition is in our setting most suitable. 

Definit ion 2.2 (Branching bisimulation) 

�9 Let <S, Act, ---*> be a transition system. A relation R C S • S is called a branching 
bisirnulation i f  it is symmetric  and satisfies the following transfer property: 

I f  r R s  and r a r',  then either c~---r and r ' R s  or; 3so , . . , sn ,  s' E S : s = so, 
~0<i<n : si-1 --~ si] and s,~ - -~  s' such that V0<i<,, r R s i  and r 'Rs ' .  

�9 Two states r and s are branching bis imi lar ,  abbreviated r ,~B s or s ~ B  r, i f  there 
exists a branching bisimulation relating r and s. 

The arbitrary union of branching bisimulation relations is again a branching bisimulation; 
~B is the maximal branching bisimulation and is an equivalence relation. 

Let T1 = <  S l , s l , A c t , - - * l >  and T2 = <  S2, s2, Act,--~2> be two transition graphs 
satisfying $1 A $2 = @. Then T1 and T2 are branching bisimilar exactly when the two 
start states, sl and s2 are branching bisimilar in the transition graph < S1 U S~., Act ,  "*l  

U --~2 >. 
Branching bisimulation has a logical characterization in terms of the Hennessy-Milner 

Logic with Until (HMLU): two states are equivalent exactly when they satisfy the same 
set of HMLV-formulas (see [2]). In [2] also two other logics are given that  characterize 
branching bisimulation. We think that HMLU is the most natural choice in this setting. 
HMLU is a simple modal logic; the syntax of formulas is defined by the following gram- 
mar, where a E Act~. 

::= t t  I - ~  I r A �9 I r  

The semantics of the logic is given with respect to a transition system T = (S, Act, --*) 
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Ett]] T ---- 

~r = 

~r ^r = 

S 

s -  Er 

{s e sI (~  = ~ and s �9 ~ r  or 

~0<i<~ : si-1 , si] and s,~ , s')} 

Figure h The semantics of formulas in Hennessy-Milner Logic with Until. 

and appears in Figure 1. In this figure each formula is mapped to the set of states for 
which the formula is ' true'.  We shall omit explicit reference to the transition system used 
to interpret formulas when it is clear from the context. Intuitively, the formula tt holds 
in any state, and ~ holds in a state if ~ does not. The formula ~1 A ~2 holds in a 
state if both r and ~2 do. The until-proposition r  holds in a state, if this state 
can reach via a, a state in which ~2 holds while moving through intermediate states in 
which ~1 holds. 

Let ~ ( s )  be the set of HMLU-formulas that are valid in state s :  

The next theorem is a specialization of a theorem proved in [2]. 

T h e o r e m  2.3 Let < S, Act,---*> be a finite-state transition system, with sl,s2 6 S. 
Then ?-/(sl) = T/(s2) /f and only if Sl ~B s2. 

It follows that  if two states in a (finite-state) transition system are inequivalent, then 
there must be a HMLU-formula satisfied by one and not the other. This is the basis 
of our definition for distinguishing formula, although we shall in fact use the following, 
slightly more general formulation taken from [1]. 

D e f i n i t i o n  2.4 Let < S, Act,---*> be a transition system, and let $1 C S and $2 c S. 
Then HMLU-formula iI~ distinguishes $1 from $2 if the following hold. 

i. s l  c__ Eel. 

z. s~ n I[r = O. 

So r distinguishes $1 from $2 if every state in $1, and no state in $2, satisfies r  
Theorem 2.3 thus guarantees the existence of a formula that  distinguishes {sl} from 
{s2} if Sl ~B s2. 

Finally, we take the following criterion from [1] to indicate whether a distinguishing 
formula contains extraneous information. 

D e f i n i t i o n  2.5 Let r be a HMLU-formula distinguishing $1 from $2. Then r is min- 
imal if no r obtained by replacing a non-trivial subformula of r with the formula tt 
distinguishes $1 from $2. 



17 

Intuitively, �9 is a minimal formula for $1 with respect to $2 if each of its subformulas 
plays a role in distinguishing the two. This notion of minimali ty is ra ther  naive, but at 
the moment  we are not aware of a bet ter  definition. 

3 Computing Distinguishing Formulas 
In this section, we describe a partition refinement algorithm for computing branching 
bisimulation equivalence and show how to alter it to generate a block tree. Then given 
such a block tree, we describe how to generate distinguishing formulas. Finally, a small 
example is given that  illustrates the use of the algorithm. 

3 .1  C o m p u t i n g  B r a n c h i n g  B i s i m u l a t i o n  

At the moment, 'partition-refinement' is the most efficient method to compute bisim- 
ulation equivalences [7]. A partition-refinement algorithm exploits the fact that  an 
equivalence relation on the set of states may be represented as a partition, or a set 
of pairwise-disjoint subsets (called blocks) of the state set whose union is the whole state 
set. In this representation blocks correspond to the equivalence classes, so two states 
are equivalent exactly when they belong to the same block. Beginning with the parti- 
tion containing one block (representing the trivial equivalence relation consisting of one 
equivalence class), the algorithm repeatedly refines a partit ion by splitting blocks until 
the associated equivalence relation becomes a bisimulation. 

In [5] the refinement strategy to obtain branching bisimulation is described. To refine 
the current partition, the algorithm of Groote and Vaandrager looks at each block in 
turn. If a state in block B can reach via action a, possibly after some initial stuttering, 
a state in block B' and another state in B does not, then the algorithm splits B into 
two blocks. The first block contains all the states which can reach via action a, possibly 
after some initial stuttering, a state in block B'. The second block contains all the other 
states. When no more splitting is possible, the resulting equivalence corresponds exactly 
to branching bisimulation on the given transition system. 

Below we present the definitions and the algorithm in more formal notation; the de- 
scription is a slight modification of the one in [5]. 

D e f i n i t i o n  3.1 
Let IS, Act, --,) be a transition system. 

1) A collection {Bj IJ ~ J}  of nonempty subsets of S is called a partition if UjeJ Bj  = S 
and for i # j : Bi f3 Bj = O. The elements of a partition are called blocks. 
~) If 7 9 and 79~ are partitions of S then 79~ refines 79, if  any block of 79t is included in a 
block of 79. 
3} The equivalence "~7~ on S induced by a partition 79 is defined by: 

r "~7~ s @ 3B E 79 : r E B A s  E B. 
4) For B, B'  we define the set pos,~(B, B') as the set of states in B from which, after 
some internal r-stuttering, a state in B'  can be reached: 

pos~(B, B') = {s e BI3so, ..., s,~ e B, 3s' e B': 
"1" o t  

s0=s,[V0<i_<=:si-x , s i ] ands ,~  , s ' }  
5) We say that B ~ is a splitter of B with respect to action a iff 
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B # B' or o~ # r, and O # p o s ~ ( B , B ' )  # B. 
6) I f  7 9 is a partition of S and B' is a splitter of B with respect to a, then Ref~(B, B') 
is the partition 79 where B is replaced by pos~(B, B') and B - posa(B, B').  
7) 79 is stable with respect to block B'  if for no block B and for no action a, B'  is a 
splitter of B with respect to a. 79 is stable if it is stable with respect to all its blocks. 

Algor i thm 3.2 The algorithm to compute branching bisimulation maintains a partition 
79 that is initially 790 = {S}. It repeats the following step, until 79 is stable: 

Find blocks B, B t E 79 and a label a E Act~- such that B t is a splitter wrt. a; 
79 :=Ref;(B,  B'). 

In [5] it is proved that the equivalence induced by the last partition computed by algo- 
rithm 3.2 corresponds exactly to branching bisimulation equivalence. Also, the complex- 
ity bounds given in [5] are presented. 

T h e o r e m  3.3 Let (S, Act, ---*) be a finite transition system. Let 79f be the final partition 
obtained by the algorithm above. Then "~Pl = .~B. 

T h e o r e m  3.4 The time complexity of algorithm 3.2 is O(IS I *1--* I). And the space 
complexity is 0(] ~ I). 

3 .2  G e n e r a t i n g  T h e  B l o c k  T r e e  

In addition to computing the partition as described above, we now retain information 
about how and why the blocks are split by construction of a labeled block 'tree'. The 
following definitions are used to describe the generation procedure of such a block tree. 

Def in i t ion  3.5 (Parent and its children) 
79(B) is the parent of block S in the block tree. ~(B)  is the left child of block B. 7E(B) 
is the right child of block B. When B has a single child or no children at all then L(B)  
and 7"~( B) are undefined. 

Defini t ion 3.6 (Height of a block) 
The height of a block B in the block tree is defined as follows: 

h(B) := 0 where B is the root block. 
h(B) := 1 + h(79(B)). 

Def in i t ion  3.7 (Parent Partition) 
The Parent Partition of block B in the block tree, is the partition where B is created. 

7979(B) := {C I h(C) = h(79(B))}. 

Defini t ion 3.8 (Blocks that can be reached from block B )  
Let B be a block in the block tree. 

�9 r,~(S) := {C e P79(B)] 3s e B, s' e C :  s ~, s'}; r~(B) contains all the blocks in 
the parent partition of B that can be reached from a state in B via a. 

�9 r{(B) := {C 6 7979(B)[ Bs 6 B, s' 6 C :  s ~, s' A C # 79(B)}; r~(B) contains all 
the blocks in the parent partition of B that can be reached from a state in B via T. 
The superscript 'p' indicates that the parent of B is not included. 
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Algorithm 3.2 is modified as follows. Rather than discarding an old parti t ion after it is 
refined, the new procedure constructs a tree of blocks as follows. The children of a block 
are the new blocks that result when the algorithm splits the block; accordingly, the root 
is labeled with the block S, and after each refinement the leaves of this tree represents 
the current partition. 

When a block P is split due to splitter block B' and action c~, we position the new 
block L=pos~(P, B') as the left child and the new block R = P -  pos~(P, B') as the right 
child, and we label the arc connecting P to L with ~ and B'.  We label the arc connecting 
P to R with r~(R) and r~(R), these block-sets are given in definition 3.8. The blocks 
in r~(R) bear witness to the states in R that  cannot evolve in internal stuttering. The 
blocks in r~(R) bear witness to the states in R that cannot reach the splitter block by 
an a-step. 

Recall that every state in L can reach via c~, possibly after some initial stuttering, 
a state in B' and no state in R does. If a block is not split during a refinement, it is 
assigned a copy of itself as its only child Figure 3 contains an example of such a tree. 

The construction of the block tree during the partition-refinement algorithm does not 
influence the t ime complexity. The space complexity has changed slightly from O([--* ]) 
to O(ISI 2) due to the following theorem (note that  [~:~fl -- IS[) . 

T h e o r e m  3.9 The space requirement of the labeled block tree is O(ISl + IPsl2). 
P r o o f .  Strictly speaking, only the leaves in the tree need to be labeled with the 
corresponding sets of states. 

3 . 3  G e n e r a t i n g  D i s t i n g u i s h i n g  F o r m u l a s  

Given a block tree computed by the extended partition-refinement algorithm above, 
and two disjoint blocks B1 and B2, the following postprocessing step builds a formula 
A(B1, B2) that  distinguishes the states in B1 from those in B~. 

First we compute the lowest common ancestor of Bt and B2 (and call it P) .  By 
lemma 3.11 we know that a formula distinguishing the children of P, also distinguishes 
Bt from B2. 

D e f i n i t i o n  3.10 (Lowest Common Ancestor) 
The function s returns the Lowest Common Ancestor of two disjoint blocks B1 and 
B2 in the block tree. 

L e m m a  3.11 
P = s B2) ^ 
r distinguishes s and n(P)  f 

===~ �9 distinguishes B1 and B2. 

P r o o f .  B1 and B2 are subsets of respectively s  and 7~(P). 

For easy notation, let L = F.(p) be the left child and R = 7~(P) the right child of 
P.  The arc connecting blocks P and L is labeled with c~ and B'; and the arc connecting 
blocks P and H is labeled with respectively the block-sets r~(R) and ra(R)  (call these 
block-sets respectively rt  and r2). 

Prom the way that  the block tree is generated, we know that  every state in L can reach 
via action a, possibly after some initial stuttering, a state in B'  and that  no state in R 
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does. Accordingly, one recursively builds formulas that distinguish P and blocks in rl, 
and takes their conjunction (call it 01). And, if one also recursively builds formulas that 
distinguish B' from each block in r2 and also takes their conjunction (call it r then 
every state in L satisfies r162 (call this formula r and no state in R does. In case 
a = % one has to add the extra conjunct A(B', R), to ensure that r is a distinguishing 
formula; this is caused by the first disjunct at the right hand side of the last mapping'in 
figure 1. The details are given below. 

Algor i thm 3.12 
When B1 and B2 are disjoint, A(B1, B2) can be computed recursively as follows. 

1. Compute P := s B2). 

2. Let L := s  R := n ( P ) .  
(Notice that B1 C. L and B2 C R, or B2 C_ L and B1 C R.) 

3. Let a and B' be the labels on the arc connecting P and L; and 
let rl := rrP(R) and r2 := ra(R) be the labels on the arc connecting P and R; 

�9 if rl = 0 then r := tt else 01 := ACerlA(P, C); 

�9 i f r  2 = 0 then 02 := tt else r := Ace~A(B',C). 

~. Ira # r then �9 := r 
else Oa := A(B', R); 

r := A 0 3 )  

5. If B1 C L then return r else return -~0. 

We now have the following theorem. 

T h e o r e m  3.13 B1 N B2 = @ ==~ A(B1, B2) distinguishes B1 and B2. 

Proof .  By induction on the depth of B1 and B2 in the block tree. 

It should be noted that exponential length formulas may be generated. However, one 
may present such a formula (as a set of propositional equations) in space proportional to 
[p/j2, where P l  is the final partition computed by the algorithm (note that ]7~/[ _< IS[). 
This results from the fact that there can be at most [Pl[ - 1 recursive calls generated 
by the above procedure and the fact that each distinguishing formula is of the form 
('~)O1(a)r where r and r contain together at most [ P / [ -  1 conjuncts, each of the 
form A(Bi, Bj) for some Bi and Bj. 

T h e o r e m  3.14 An equational representation of A(B1, B2) may be calculated in O(]P/[ 2) 
time, once the tree of blocks has been computed. 

Proof .  At each recursive call, computing the lowest common ancestor requires at most 
O(lPsl) work. [] 

In general a formula A(sl,  82) will not be minimal in the sense of definition 2.5. In 
[1] the following straightforward procedure is proposed to minimize A(sl ,  s2) once it has 
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been computed. Repeatedly replace subformulas in the formula by tt and see if the re- 
suiting formula still distinguishes Sl from s2. If so, the subformula may either be omitted 
(if it is one of several conjuncts in a larger conjunction) or left at ft. The result of this 
would be a minimal formula. The computational tractability of this procedure remains 
to be examined. 

We close this subsection with a general remark about our method. Our method gener- 
ates a formula that  distinguishes blocks that may contain more than one state, but mostly 
one is only interested in a formula that  distinguishes two particular states. In this case, 
algorithm 3.12 can also be used to construct a formula distinguishing two inequivalent 
states Sl and s2; first locate the disjoint blocks B1 and B2 such that  si E Bi  (i : 1, 2), 
then build A(B1, B2). 

3 . 4  A n  E x a m p l e  

To illustrate our algorithm we consider two transition graphs that  are not branching 
bisimulation equivalent. Figure 2 shows the transition system that  includes the two 
transition graphs. It is interesting to notice that these two graphs are an instance of the 
second ~--law of observation equivalence (see e.g. [10]); so they are not differentiated by 
HML without Until-operator. State sl is the start state of one graph, while state s5 is 
the start  state of the other. Figure 3 contains a tree of blocks generated by the altered 
partition-refinement algorithm. Notice that  sl ~B s5, as they are in different blocks. In 
order to build a formula that  S l satisfies and s5 does not, it suffices to generate A(B6, Bs), 
the formula that  distinguishes block B6 and Bs~ To do so, the algorithm first locates the 
lowest common ancestor of the two blocks (B3, in this case). The left child is B5 and 
the right child is Bs. The labels on the left arc indicate that the action causing the split 
is a, and the splitter block is B2. The labels on the right arc indicate that r~(R)={B4} 
and r~(R)=0.  The formula that will be returned, then, will be 

~(A(B3, B4) <a) tt); 

this formula holds of Sl and not of ss. By repeating this process, it turns out that  

A(B3,/34) = ttIb)tt 

So the formula distinguishing Sl from s5 is 

"~ ( ( tt(b) tt)<a) tt). 

This formula explains why sl and s5 are inequivalent because s5 may engage in an a- 
transition while in all the intermediate states (only s5 here) a b-transition is available. 
This is not the case for state sl. Note that this formula is minimal in the sense of 
definition 2.5. 

4 C o n c l u s i o n s  and Future  Wor k  

This paper has shown how it is possible to alter the partition-refinement of Groote and 
Vaandrager for computing branching bisimulation equivalence to compute a formula in 
the Hennessy-Milner Logic with Until that  distinguishes two inequivalent states. The 
generation of the formula relies on a postprocessing step that is invoked on a tree-based 



22 

Figure 2: Two branching bisimulation inequivalent transition graphs. 

B = {81, 82, 83, 84, 85, 86, 87, 88, 89} 

B1 = {81, s~, ~5, 88} 

B3 = {81,85} B4 = {85, 86} 

B5 = {85} B6 = { s l }  82, S6} 

B2 : {s3, 84, s7, s8, 89} 

{83~ 84, 87, 88, 89} 

{83~ S4~ 87~ 88~, 89} 

Figure 3: The generated tree of blocks. 
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representation of the information computed by the equivalence algorithm. The post- 
processing step has no effect on the worst-case complexity of the equivalence-checking 
algorithm, only the space complexity has changed slightly from O(I--* I) to O(ISI2). 

The most important direction for future work is tackling the problem of generating 
minimal formulas and moreover its complexity. Clearly, the complexity of the minimiza- 
tion procedure mentioned in passing at the end of section 3.3 needs to be analyzed fully; 
if this procedure is efficient enough, then it may be incorporated into the distinguishing 
formula generation procedure. 

Another area of investigation would be an implementation of our technique, as an ex- 
tension of the equivalence-checking algorithm of Groote and Vaandrager which is already 
implemented successfully. 
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