
PARTIAL-ORDER MODEL CHECKING:
A GUIDE FOR THE PERPLEX'ED

David K. Probst and Hen F. Li
Department of Computer Science

Concordia University
1455 de Malsonneuve West
Montreal, Quebec H3G 1M8

ABSTRACT

Practicing verifiers of finite-state concurrent systems should be able to adapt our partial-order
methods for verifying delay-insensitive systems to other verification problems. We answer the
question, is it poss~le to control state explosion arising from various sources during automatic
verification (model checking) of delay-insensitive systems? State explosion due to concurrency is
handled by introducing a partial-order representation for processes, and defining system correctness
as a simple relation between two partial orders on the same set of system events. State
explosion due to nondeterminism is handled when the system to be verified has a compact, finite
recurrence structure. Backwards branching through representations is a further optimization. In
system verification, we start with models of system components that explicitly distinguish
concurrency, choice and recurrence structure; during model checking, this a priori structure of
components allows us to construct a compact, finite representation of the specification-constrained
implementation -- without prior composition of system components. The fully-implemented POM
verification system has polynomial space and time performance on traditional asynchronous-circuit
benchmarks that are exponential in space and time for other verification systems; in general, the
cost of running our verification algorithm is proportional to the size of the constructed system
representation.

Keywords delay-insensitive system, model checking, state explosion, partial-order representation,
recurrence structure, state encoding.

1. Introduction

Delay-insensitive systems are motivated inter alia by difficulties with clock distribution and
component composition in clocked systems [1,2,6,11]. In a delay-insensitive system, modules may
be interconnected to form systems in such a way that system correctness does not depend on
delays in either modules or interconnection media. An important question is, what restrictions
must be placed on finite-state concurrent systems in order that efficient model-checking algorithms
are possible? Among concurrent systems, delay-insensitive systems have the particularity of
containing regular patterns of handshakes between input and output events. Our work on
delay-insensitive model checking can be adapted to handle delay-constrained reactive systems where
inputs enable outputs, and outputs enable inputs [10]. Delay insensitivity has a natural link to
controlling state explosion during automatic verification; the simple enabling relations in
delay-insensitive systems make it easy to discover a solution to the state-explosion problem based
on causality checking. To build an efficient automatic verifier based on causality checking, you
need the following items for each system component: (i) an expressive finite partial-order
representation that explicitly distinguishes concurrency, choice and recurrence, and (ii) a
"goal-directed" state encoding that is both causality comprehensive (includes all causality) and
state minimal (has fewest states). Given this, you can combine the best features of automata-
and partial-order-based methods, and obtain a verification algorithm whose cost in space and time
is proportional to the size of the constructed system representation. This size is often polynomial
in the number of system components.

The automata we use to represent processes are called behavior automata, which can be
unrolled to produce infinite event structures called pomtrees. The latter are essentially sets of
partially-ordered computations where the branching structure due to conflict resolution has been
made explicit [6-10]. Partial orders and schedule/automaton duality are covered in [3-4].
Restrictions on behavior automata trade off between expressiveness and processability (e.g., the
efficiency of verification algorithms).

This research was supported by the Natural Sciences and Engineering Research Council of
Canada under grants A3363, A0921 and MEF0040121. Emall: probst@crim.ca.

323

The following method allows us to keep the termination table small. We provide a behavior
automaton tha t distinguishes concurrency, choice and recurrence s tructure for each implementation
component and for specification P. We label arrows in behavior au tomata to encode the process
s ta te corresponding to an arbitrary partial execution. Sys tem correctness is defined as a simple
relation on an "enriched" sys tem pomtres S tha t contains both causal and noncausal partial
orders. This pomtree represents the imaginary closed sys tem (also called S) produced by linking
the mirror mP of specification P to the implementation network Net. During model checking, we
use the a priori information about component structure to define a small set of loop cutpointe in
a finite representat ion of sys tem pomtree S, implicitly constructing a behavior automaton for the
specification-constrained implementation. The explicit s t ructure allows a convention to be followed
during model checking tha t makes the mapping from P s ta tes to S s ta tes one-to-few ra ther than
one-to-many, leading to a small termination table. Intuitively, when we cycle in P, we can
arrange to cycle in S. Results obtained since [8] include: (i) simpler views of correctness and
state, (ii) backwards branching in behavior automata , and (iii) a clear s ta tement of algorithm
complexity.

2. Abstract specification of as,ynchronous processes

Our specifications define externally-visible computational behaviors of processes; in partial-order
representations, they specify precedence constraints [5,6]. A process P has a set of input ports
and a set of output ports; a process action is a (port, token) pair, where the token represents a
control or da ta value. Each performance of an action is a separate event. Processes are
modelled by pomtrees, which are identical to computation trees except tha t their ares are finite
posets, and their vertices are input or output choice points. A process behavior p e P is a
maximal conflict-free set of events of P, i.e., some full use of P by P's environment. I f P is a
process, then P's input actions are under the control of P's environment, while P's output actions
are under the control of P. A requirements specification of a reactive process with asymmetry of
control for input and output need not be equivalent to an w-regular language containment problem
of the traditional kind.

Safety properties (in DI systems, precedence properties) constrain both the process and its
environment. A safety violation is the performance of an input or output action tha t is not
enabled. A process receiving unsafe input logically fails ("explodes"). Liveness properties (in DI
systems, response properties) constrain only the process. A livenees (progress) violation is the
nonperformance of a required process output action. Fairness properties also constrain only the
process; they asser t fairness of conflict resolution in repeated process choice among output
alternatives. Such fairness is the default assumption in all our specifications. Behavior
automata allow integrated specification of safety and livenese properties, but fairness properties
mus t be provided as a supplementary condition.

2.1. Pomsets

A labelled partial order (lpo) is a 4-tuple (V, Z, r , #) consisting of (i) a countable set V of
events in a computational behavior, (ii) a finite set ~ of process actions, (iii) a partial order r
on V tha t expresses the necessary temporal precedences among the events in V, and (i v) a
labelling function # : V ~ ~. mapping each event v e V to the process action a E P. it
performs [3]. The successor relation f} is the transit ive reduction of r . A pomeet is an
isomorphism class of lpo's. Process behavior p e P is an infinite pomset. Process P is an
infinite pomtree. Each behavior segment (pomtree arc) of process P is a finite poser. ~(p) is

the set of finite prefmes of p. p - a is the suffix in p of a E r(p). Op is the set of action

labels of initial events of p. In a determinate (single-behavior) process, O(p _ a) is the set of
actions concurrently performable after a. I f a is a choice point in a nondeterminate
(multiple-behavior) process, then there are sets of actions concurrently enabled after a, but not
concurrently performable [6,9].

2.2. Behavior automata

Behavior automata are constructed in three phases. First , there is a deterministic
finite-state machine (stick figure) D tha t expresses both conflict resolution (choice) and recurrence
structure. D is a "small" autematen relative to the transit ion sys tem dual to the pomtree [4].
Second, there is an expansion of dfsm transit ions (sticks) into finite posete, with additional
machinery (sockets) to specify nonsequential concatenation of peeets. Third, there is an iterative
process of labelling successor arrows in posets, which terminates with an appropriate s tate
encoding.

324

We sketch the formal definition of behavior automaton. Given the disjoint alphabets Act
(the set of process actions), Arr (the set of successor arrow labels), Com (the set of dfsm D
transitions) and Soc (the set of sockets), first define Pos as the set of finite labelled posets over
Act u Soc. Each member of Pos is a labelled poset (]3, r , u), where (i) r is a partial order
over B _c Act o Soc, and (ii) u: fl ~ Arr assigns a label to each element in the successor
relation fl (the transit ive reduction of r) . A behavior automaton is a 8-tuple (D, e, r where
(i) D is a dfsm over Corn, (ii) e: Corn ~ Pos maps dfsm transit ions to labelled posets, and
(iii) ~: Sec --* powerset(Act) maps sockets to sets of process actions. Map r defines which
process actions can "plug in" to an empty socket when a poser command is concatenated to a
sequence of earlier poset commands as defined by dfsm D. There is also an imaginary reset
action e.

A Petri ne t is uniquely characterized by the presets and postsets of its transitions.
Similarly, sockets can be removed from a behavior automaton by concatenating commands, and
considering predecessor and successor arrows of individual actions. A process action consumes its
predecessor arrows (removes them from the old state), and produces its successor arrows (adds
them to the new state). Behavior automata are typeset by writing the poset transitions
separately, and using "digit colons" to identify dfsm vertices. These vertices are not s tate
encedings. Commands are also called productions.

Fig. I shows a behavior automaton for a C-element. Each arrow in the production is

assigned a distinct label. The semantics is straightforward. For example, action a + is enabled
in any s ta te containing arrow 1; when it is performed, arrow 1 is removed from the state and

arrow 3 is added. Similarly,
s ta te containing arrows 3 and

s ta te and arrows 5 and 6 are

given by: {7, 8} c - {1, 2}.
program convenience, behavior
arrows, action, successor arrows), retaining

+ $

O: o s

~, ~ b+ ~ "~

Fig. 1 Behavior

action c + is enabled and required (because of the bracket) in any
4. When it is performed, arrows 3 and 4 are removed from the

added. Since r = {o, c-}, action c- has its preset and postset

The postset follows from the labels on arrows leaving o. For
automata are decomposed into atoms of the form (predecessor

the stick figure D as a structuring device.

I a-7

c + =7 " " - A c-] :0

automaton for a C-element.

The use of dashed and solid arrows is a reminder that a process specification includes beth
an interprocess protocol (given by the dashed arrows) and an intraprocess protocol (given by the
solid arrows). Since the state is encoded as the set of arrows crossing a consistent cut, using
fewer arrow labels would alter the enabling relation of the C-element; hence, this state encoding
(arrow labelling) is flied up to isomorphism.

Fig. 2 shows a behavior automaton for a delay-insensitive arbiter. Clients follow a four-cycle

protocol. (A) = c +] _7__> a- and (B) = d +] -~-> b- are the two critical sections. The o in

command I is filled only by -, i.e., r = {.}. The top o in command 2 is filled only by a +,

i.e., r = {a+}. The bottom o in command 3 is filled only by b +, i.e., r = Co+). The

or b-, i.e., r = {., a-, b-}. middle o's in commands 2 and 3 can be filled by., a

+ o, c-I o> + a - - a

0: o/~ :1 1: o---~ (A)-- :1 1: o - - -) (B) \

~'.~b+ ~C 0 4 ' ~ J c l -] - t - > b +

Fig. 2 Behavior automaton for a delay-insensitive arbiter.

:1

325

When sockets have been removed, this set of actions generates the transit ion sys tem of the
fifteen-state arbiter dfsm [0]. However, care mus t be taken to keep the s ta te encoding causality

comprehensive. Arrow 1 in the C-element is two arrows in disguise (o - - > a +, _ c - - - > a+);
this is not a problem because of the special nature of o. Arrows 0 and 4 in the arbiter are
similar, but arrow t is six arrows in disguise (three sources, two sinks). Consider performing

action _c + in s ta te {1, 5, t}. Checking arrow t requires backing up in the behavior automaton to

beth procese-actien sources of t, viz., a - and b - . Again, �9 is not a problem. These are
distinct causality arrows tha t mus t be checked separately. An arrow with multiple process-actien
sources is called an equivalenced arrow; all its sources are recorded in a table. In s ta te

{1, 5, t}, c + and _d + are concurrently enabled but conflicting actions; hence, causality checking in
this s ta te requires beth forwards and backwards branching through the behavior automaton.

2.3. Restrictions on processes

Which finite-state concurrent systems can be model checked efficiently? The efficiency gains
in our algorithms s tem from two sources: (i) making causality checking the pr imary activity, and
(ii) recording as few sys tem states as pess~le. Delay insensitivity per s e is not a precondition
for causality checking. However, weU-behavednese conditions do restrict the class of event
s t ructures on which our programs operate. Among these are rules tha t allow processes to be
used as components of delay-insensitive systems [6,11]. Each rule is a genuine restriction on
concurrent systems. I t is an important metarule t ha t branching and recurrence structure be
made explicit.

General rules

Rule a l There is no autoconcurrency. Formally, any two events a t the same pert in
p e P are ordered by I'. (A good general rule).

Rule a2 Processes are finite s tate. Formally, there is an upper bound on the number of fl
arrows crossing a consistent cut of any p ~ P. (Arrow labels can then be used to encode the
process state).

Rule a3 A process has a representation with a compact, finite recurrence structure as
defined by its dfsm D. Given finiteness, it is enough to require the independence of concurrent
choices. Formally, if two choices are concurrent (causally independent), then neither can affect
the existence or outcome of the other. (A reasonable general assumption).

Delay-insensitivity rules

Rule b l There is handshaking between any two successive events a t the same pert.
FormaUy, any two events a t the same pert in p E P are separated in fl by at least one event
a t some other port. (A DI-specific rule related to zero buffering).

Rule b2 There is no specified successor relationship between two input events or two output
events. Formally, each line in p E P consists of an infmite sequence of strictly al ternat ing input
and output events. (Simplifies causality checking by introducing a simple notion of preset).

Rule b3 If a set of enabled output actions can be performed concurrently, then they, or
some conflicting set of concurrently performable output actions, m u s t be performed. Formally, if p
E P, then all output events in p are bracketed. (A reasonable assumption in hardware systems).

One might ask if requiring concurrent choices to be independent is similar to requiring tha t
Petri nets be free choice; the answer is no (arbiters are not free choice). In partial-order
representations, finding a reasonable restriction on the generality with which conflicts can occur is
the key issue in trading off between decision power and modelling power. Behavior machines are
"free choice" only a t the level of dfsm D, which explicitly distinguishes conflict resolution and
recurrence structure.

Our algorithms verify systems efficiently when all processes sat isfy rules a l through b3.
Rule a l eliminates artificial examples. Rule a2 is central to finite checkability. Rule a3
eliminates nonphysical nondeterminism. The simplest way to sat isfy rule a3 is to s t a r t with a
dfsm D composed exclusively of determinate behavior segments and input or output choice points.
In principle, rules b l and b2 could be replaced -- provided there is still some notion of cross
enabling (input enables output, output enables input). Rule b3 promotes efficient checking.

326

2.4. Semantics of behaviors

Fig. 3 shows an unlabelled behavior automaton for a determinate process. Action labels are
pure names, but output actions are underlined. The partial order in this behavior is the
transitive closure of a successor relation fl = N u ~, where N is a relation from input events to
output events, and .= is a relation from output events to input events. Because of control
asymmetry, we say that N is a causal relation and .= is a noncausal relation. Each output
(input) action has a causal (noncausal) preset defined by the sources of its incoming solid
(dashed) arrows. A process may perform an output action when the causal preset has occurred.
An environment may perform an input action when the noncausal preset has occurred.

+ a a -

o./ ~ ~_-

0: b § "~ h - / / v :o

o - - - - > d + ~ > +] - - ' > d - > e -]

Fig. 3 Unlabelled behavior automaton (determinate process).

2.5. States in partial-order representations

The reduced finite-state machine for a delay-insensitive arbiter has fifteen states [0]; one of
them is a choice state where the arbiter can give the token to either client. Reduction of the
fsm means there is no record in the state of who returned the token. In the arbiter behavior
automaton, either (i) we use different labels for different token arrows, or (ii) we use the same
label (namely, t). Different labels distinguish the states resulting from the return of the token
by different clients. Reduced fsms correspond to using equlvalenced arrows. Verification by
causality checking is complete when each distinct instance of causality has been checked. In
particular, arrows leaving different critical sections must be checked separately. Nonreduced
transition systems can be used to support completeness arguments for verification algorithms
based on causality checking. This is the motivation for the distinction between execution state
and behavior state [8]. In causality checking, behavior states can be used either explicitly (if
equivalenced arrows are renamed to identify their sources) or implicitly (if tables of sources are
kept). Conceptually, we explore all the distinct ways each process action can be enabled. Our
current preference is to use equivalenced arrows and tables of sources; we perform "state-based ~
causality checking: an enabled action has its causality checked, not with respect to a particular
past, but rather with respect to any past that would have resulted in the same state; in
general, this requires backwards branching through systems of behavior automata.

3. Correctness as a graph predicate

We define correctness in a causality-based scheme by using the mirror nap of specification P
as a conceptual implementation tester [1]. We form an imaginary closed system S by linking
the mirror mP of specification P to the implementation network of processes Net. This produces
an "enriched" pemtree of system events with two partial orders; system correctness is defined as
a simple, easily-checked relation between the two orders. The intuitive notion of correctness is as
follows, given that implementations may be input liberal and output conservative [6,9]. Is there
a failure somewhere, causing system S to become undefined? Does the system just stop,
violating fundamental liveness? Is some progress requirement of P violated? Is there
(program-detectable) nondeterminate livelock in S so that an appeal to fairness of system
components is necessary to assert progrees? Is some conflict corresponding to output choice in P
resolved unfairly?

Mirror mP is formed by inverting the type of P's actions and the causal/noncansal
interpretation of P's successor arrows, turning P's dashed arrows into solid arrows and vice versa.
Brackets are preserved unchanged. Every action that can be performed in S is a linked
(output action, input action) pair. As a result, we can check whether intraprocess protocols
support interprocees protocols in closed system S.

We bootstrap the dashed (noncausal, interprocess protocol) and solid (causal, intraprocess
protocol) relations from process actions to system actions, defining an event structure called an
"enriched" pemtree, with a noncausal enabling relation on top of the usual causal enabling one.
For example, a noncausal predecessor of system action a is found by locating the embedded
process input action, stepping back along a dashed process arrow, and returning to the system

327

alphabet. This defines the noncausal preset of a system action. Essentially, the safety
correctness relation is: whenever a dashed arrow links two system actions, a chain of solid
arrows must also link the two actions.

Let ~ be a system action that is causally enabled in S. There is a safety violation at a
unless (i) its noncausal preset is causally enabled in S, and (ii) each member of its noncausal
preset is a causal ancestor of c. The causal preset of a is defined only when a is a bracketed
system action: it is the set of nearest performances of linked mP output actions on any causal
chain coming into c. In order that a bracketed ~ in S is neither a safety nor a progress
violation, it is necessary that the causal and noncausal presets of ~ match exactly. When
backwards branching is used to resolve multiple sources of equivalenced arrows, conditions for
either safety or safety/progress must hold in each distinct past (backwards branch).

Fig. 4 is a simple illustration of correctness with only external events; solid arrows cover up
dashed arrows in the system figure (covered dashed arrows are trivially supported). The dashed
arrow from a to c in S is supported by a chain of solid arrows, so there is no safety violation
at c. However, the noncausal preset of c, viz., {a}, does not match the causal preset, viz., {d},
so there is a progress violation at c.

a / f] a
'

cJ ~ e_ / c e

mirror mP implementation P" system S

Fig. 4 Partial orders and total correctness of an open system as a graph predicate.

Fig. 5 shows a second illustration. Every dashed arrow is supported by a chain of solid
arrows, and all causal and noncausal presets of bracketed system actions match exactly. The
implementation is correct. Although safety correctness is containment of the causal language in
the noncausal language, this is not implementation language in the specification language. Since
S represents the specification-constrained implementation, coupled system processes can prune each
other's branching structure; this is the problem with traditional language containment.

mirror

Fig. 5

> _ _ > _ _

implementation P" system S

Partial orders and total correctness of an open system as a graph predicate, bis.

4. Model checking

The algorithm is also straightforward. We enumerate system actions and visit one system
cut per action. We consider each enabled action in the context of a state we have reached.
First, we repeatedly step back across single dashed arrows to compute the action's noncausal
preset. Second, we repeatedly (finitely) chain back across multiple solid arrows to compute the
action's partial causal ancestor set, or causal preset if the action is bracketed. When
equivalenced arrows are encountered, we branch backwards to check each pose~le source. The
speedup is due to two factors: (i) we effectively check cuts (through the generated past) we have
not visited, and (ii) for equivalenced arrows, we effectively check cuts in pasts we have not
generated. This kills state explosion due to concurrency and nondeterminism. We traverse each
determinate segment (stick) of the implicitly constructed system behavior automaton (stick figure)
precisely once. Backwards branching catches all causality that would have arisen had we
traversed the system stick figure in some other way.

328

We keep the termination table small by making the mapping from P states to S states
one-to-few rather than one-to-many. This is possible when all behavior automata have visible
branching and recurrence structure. Hence, when we cycle in P, we can arrange to cycle in S.
The top level of the algorithm visits system actions and tries to complete P sticks. The lower
level of the algorithm does arrow checking.

The following algorithm assumes there is additional machinery to detect determinate livelock,
or that such detection is not a problem. Logically, checkpoints are taken at system states
corresponding to specification loop cutpoints. But which system states correspond to specification
states, given that any number of internal system actions can be performed without performing
any external system action? A branching loop cutpoint in P corresponds to some number of
causal branch points in S. A nonbranching loop cutpoint in P can be made to correspond to one
nonbranching loop cutpoint in S. For each loop cutpoint in P, we identify a small number of
system states we can consistently come back to. For this purpose, checkpoints are taken at
(i) unique system states corresponding to nonbranching loop cutpoints in P, and (ii) causal branch
points in S. We make each specification loop cutpoint, whether determinate (green problem) or
nondeterminate (red problem), correspond to as few system states as possible, to minimize the
number of entries in the termination table. Execution continues until no new checkpoints are
found.

During model checking, we identify maximal determinate behavior segments of system
pomtree S (the rod problem). We do this by recognizing causal choice actions ~ in closed system
S. Each initial action of a Pi production leaving an output branch point, and each initial action

of a P production leaving an input branch point, is marked with a rod dot. Each causal choice
action ~ in system S is marked with a red dot. To ensure termination, we must also identify
maximal path prefixes fle ~r(S) that correspond to determinate loop cutpoints in P's behavior
automaton (the green problem). When we return to a P dfsm vertex,, we want to return to as
few system states as possible. Each initial action of a P production leaving a determinate loop
cutpoint is markod with a green dot. Since P productions are the highest level of control for the
performance of S actions, each initial system action ~ of an S production leaving a determinate
or nondeterminato loop cutpoint in S's (constructed) behavior automaton is now marked with a
red or green dot.

We move forward cleanly to a branch point of S by not performing any red action as long
as there are nonred actions still enabled. Branch points of S are scheduled for expansion in the
usual way. Similarly, we move forward cleanly to a system path prefix fl E ~r(S) that
corresponds to a determinate loop cutpoint in P by not performing any green action as long as
there are nongreen actions still enabled. Whenever (constructed) system determinate loop
cutpoints or system causal branch points are encountered, the system state -- the vector of
(raP, PI' "'" Pn) states -- is entered into the termination table, using the chosen process-state

encoding. If the system state is already in the table, then system path prefL~ fl is not extended
further.

During verification, we perform actions that are causally enabled in the closed system,
starting from initialization. When we perform a system action, we update the state of both
processes to which the action is attributed. We perform these actions in arbitrary order, subject
only to the constraint that unmarked actions are performod before marked actions. As we
perform actions, we check the graph predicate of the previous section. Occasionally, we discover
a safety violation immediately, i.e., without any graph searching: a system action is causally
enabled, but the corresponding input action is noncausally not enabled, i.e., forbidden. This is the
only discovery mode in model checking based on sequence enumeration. More typically, we
compute the noncausal preset of the system action (from the behavior automaton of the process
that owns the input action) and search backwards in the system computation to determine
whether each member of the noncausal preset is a causal ancestor of the system action.

When a bracketed system action is causally enabled (and is not an immediate safety
violation), it is more efficient to do combined safety/liveness checking. The noncausal preset is
computed as in the previous paragraph. From the semantics of brackets, an mP dashed arrow
can only be supported by a chain of solid arrows not containing an mP solid arrow. Using this,
we search backwards in the system computation along each causal chain to fred the first
performance of an mP output action, thereby computing the causal preset. In order that there
not be a safety/liveness violation, the two presets must be equal. Exploration of a system
segment that begins with marked actions may cause a new specification production to be loaded.
Failure to complete this production, once loaded, indicates the presence of progress violations not
detectable by combined safety/liveness arrow checking; this special kind of progress violation occurs
when actions performed in S form a noncausal preset of an mP input action, but do not causally
enable the linkod output action. The moving algorithm completes system sticks (modulo violations

329

of fundamental liveness), and tries to complete P sticks, once they have been loaded. Two ideas
make this algorithm work: (i) maintain the asymmetry of mP within S; use the special
semantics of bracketed system actions, and use P productions as templates to schedule the
performance of system actions, and (ii) construct a refnement mapping from P states of P dfsm
vertices to system states in which the image sets are as small as possible. State-based
causality checking (backwards branching in behavior automata) is a further optimization.

5. Empirical results

Benchmarks are a double-edged sword; your program may work well only when it happens
to work well. To some extent, this state of affairs can be remedied by a theory of the causes
of state explosion that defines the class of concurrent systems that can be verified efficiently. A
more concrete result is that the cost in space and time of our verification algorithm is
proportional to the size of the constructed system representation; when this is polynomial, our
verification algorithm is polynomial. Our two primary benchmarks (ring of DME's, n-place buffer)
were chosen because both producer/consumer and mutual-exclusion solutions are fundamental
building blocks of concurrent systems. Since the polynomial cost functions are clearly benchmark
sensitive, there is a clear need for a suite of benchmarks.

A complete verification package has been written by Lin Jensen in the Trilogy programming
language running on an IBM PC. The POM system has polynomial space and time performance
on benchmarks that are exponential in space and time for other verification systems. Consider
the ring of DME elements benchmark. The runtime for verification of beth safety and liveness
properties is quadratic in n, the number of DME elements. The number of system states grows

exponentially with n. For example, when n = 9, the time is 180 s (roughly 109 states); when

n = 10, the time is 220 s (roughly 1010 states). The space requirements for these problems do
not exceed 64K bytes, i.e., one IBM PC data segment. What are the asymptotic space
requirements? One must store the input; this is linear. One must store the termination table;
this is quadratic. Given reasonable garbage collection, the working storage to do backwards
chaining in a system computation is linear, because we construct and compare simple presets.
The asymptotically limiting resource is the quadratic space for the termination table. With 64K
bytes, we never enter the asymptotic region; the linear space term predominates. Fig. 6
illustrates the algorithm's complexity on this benchmark more graphically. The size of the
termination table is the number of vertices (o's) times the size of a system state, which is O(n);

this gives e(n 2) for space. The runtime is the time taken to traverse each stick of the system
stick figure precisely once. The number of sticks grows linearly, and the time to traverse a

variable-size stick is e(n); this gives e(n 2) for time.

:r \ z i
2-DME 3-DME 4-DME

Fig. 6 System stick figures for the n-DME verification problem.

6. Conclusion

For a given benchmark, the state encoding strategy is the primary determinant of the
number of system sticks that must be examined. Heap exhaustion (within the compiler-imposed
bound of 64K bytes) obviously limits the size of problems we can verify. To facilitate distn]mtion
and further experimentation, we will rewrite the POM system in a more widely-used programming
language such as LISP or C. It is easy to explain why rings of DME's cause such problems for
traditional sequence-based verification algorithms, but not for ours; given a system stick figure, it
is clear that it can be traversed efficiently, and that successful termination implies total
correctness of the implementation. The nontrivial part of our approach is the predefined strategy
for constructing a set of system vertices, which are not given beforehand. This strategy is
explained in section 4, and may be essential in any efficient partial-order algorithm for network
verification. If branching and recurrence structure are not provided for components, then we lose

330

the one-to-few mapping from P states to S states. We would then need a replacement strategy
for constructing a "small" autematen for S (this allows recording few system states). Other
partial-order approaches to model checking, based in part on pruning pemset languages prior to
checking language containment, appear to be less powerfal in cor~trolling state explosion. In any
case, they address the problem of checking safety and livenese properties of (presumably large)
precomposed closed systems, while we check the safety and liveness properties of (presumably
large) open networks of processes.

Space is generally considered to be the critical resource in automatic verification. The
asymptotic space complexity depends on the number of vertices in the constructed system behavior
automaton. The asymptotic time complexity depends on the number and search complexity of
individual sticks. Are there system behavior automata whose size is exponential in the number
o f system components? A simple-minded application of our techniques to show tha t there is no
deadlock in a system of n dining philosophers with a circulating poison pill (or appetite
suppressant) would examine a choice state in which n - 2 forks choose, producing as many
branches as there are subsets of an (n - 2)-set. A priori, none of them could result in
deadlock, so there is no point in generating exponentially-many branches. The space complexity is
not a problem because there is only one choice state. The time complexity could conceivably be a
problem if one were forced to explore every branch. A suite of nontrivial benchmarks for dining
philosophers problems (something less symmetrical than deadlock detection) might allow meaningful
cemparisen of different partial-order approaches. Combinatorial explosion of system behavior
automata is a fruitful topic for future study.

References

[0] D.L. Black, "On the existence of delay-insensitive fair arbiters", Distributed Computing, Vol.
1, No. 4, October 1986, pp. 205-225.

[1] D.L. Dill, '~l'race theory for automatic hierarchical verification of speed-independent circuits",
Ph. D. Thesis, Department of Computer Science, Carnegie Mellon University, Report
CMU-CS-88-119, February 1988. Also MIT Press, 1989.

[2] A.J. Martin, "Compiling communicating processes into delay-insensitive VLSI circuits",
Distributed Computing, Vol. 1, No. 4, October 1986, pp. 226-234.

[3] V.R. Prat t , '~Iodelling concurrency with partial orders", Int. J. of Parallel Prog., Vol. 15,
No. 1, February 1986, pp. 33-71.

[4] V.R. Prat t , "Modelling concurrency with geometry", Proc. 18th Ann. ACM Symposium on
Principles of Programming Languages, January 1991, pp. 311-322.

[5] D.K. Probst and H.F. Li, "Abstract specification of synchronous data types for VLSI and
proving the correctness of systolic network implementations", IEEE Trans. on Computers, Vol.
C-37, No. 6, June 1988, pp. 710-720.

[6] D.K. Probst and H.F. Li, "Abstract specification, composition and proof of correctness of
delay-insensitive circuits and systems", Technical Report, Department of Computer Science,
Concordia University, CS-VLSI-88-2, April 1988 (Revised March 1989).

[7] D.K. Probet and H.F. Li, "Partial-order model checking of delay-insensitive systems". In R.
Hobsen et al. (Eds.), Canadian Conference on VLSI 1989, Proceedings, Vancouver, BC,
October 1989, pp. 73-80.

[8] D.K. Probst and H.F. Li, '~Using partial-order semantics to avoid the state explosion problem
in asynchronous systems". In E.M. Clarke and R.P. Kurshan, (Eds.), Workshop on
Computer-Aided Verification '90, June 1990, DIMACS Series, Vol. 3, 1991, pp. 15-24. Also
Lect. Notes in Comput. Sei., Springer Verlag, forthcoming.

D.K. Probst and H.F. Li, "ModeJling reactive processes using partial orders". In M.
Kwiatkowska et al. (Eds.), Semantics for Concurrency, Leicester 1990, Leicester, UK, July
1990, Workshops in Computing, Springer Verlag, 1990, pp. 324-343.

[9]

331

~0] D.K. Probst and L.C. Jensen, "Controlling state explosion during automatic verification of
delay-insensitive and delay-constrained VLSI systems using the POM verifier". In S.
Whitaker, (Ed.), Third NASA Symposium on VLSI Design, Moscow, ID, October 1991,
Proceedings, pp. 8.2.1-8.2.8.

[11] J.v.d. Snepscheut, '~l~race theory and VLSI design", Lect. Notes in Comput. Sci. 200,
Springer Verlag, 1985.

[12] J.T. Udding, "A formal model for defining and classifying delay-insensitive circuits",
Distrl"outed Computing, Vol. 1, No. 4, October 1986, pp. 197-204.

TABLE I TABLE H

Time to verify an n-arbiter
implemented by a ring of n DME's

(n system states in the table)

Time to verify an n-buffer
implemented by n 1-buffers

(one system state in the table)

n seconds n seconds

2 20.60
3 32.08
4 47.13
5 65.63
6 87.77
7 114.03
8 144.51
9 179.60

10 220.03

2 6.32
3 8.08
4 9.83
5 11.43
6 13.13
7 14.89
8 16.59
9 18.35

10 20.05
11 21.92
12 23.67
13 25.49
14 27.30
15 28.84
16 30.70
17 32.57
18 34.44
19 36.37
20 38.28
21 39.21
22 41.36
23 43.39

