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A b s t r a c t  This paper describes, by means of an example, how one may mechanically 
verify delay insensitive circuits on an automated theorem prover. It presents the 
verification of both the safety and liveness properties of an n-node delay insensitive 
fifo circuit [8]. The proof system used is a mechanized implementation of Unity [2] on 
the B oyer-Moore prover [1], described in [5]. 

This paper describes the circuit formally in the Boyer-Moore logic and presents the 
mechanically verified correctness theorems. The formal description also captures the 
protocol that the circuit expects its environment to obey and specifies a class of 
suitable initial states. 

This paper demonstrates how a general purpose automated proof system for 
concurrent programs may be used to mechanically verify both the safety and liveness 
properties of arbitrary sized delay insensitive circuits. 

1. Introduction 
General purpose theorem provers may be used to verify both safety and liveness properties 
of delay insensitive circuits. Although such mechanized proofs are not automatic, 
correctness properties may be both non-propositional and describe circuits of arbitrary 
size. Mechanical verification increases the trustworthiness of a proof. This paper 
describes the verification of an n-node first in first out (FIFO) queue. 

The proof system used here is a version of a mechanized implementation of Unity [2, 5] o n  
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the Boyer-Moore prover [1]. The Unity logic is suitable for reasoning about programs 
under the interleaved model of concurrency. In this model, statements in a program run 
sequentially, but in an unknown order. Correctness properties are true only if they hold for 
all possible orderings. 

Many researchers have used the interleaved model of concurrency as a basis for modeling 
delay insensitive circuits [8, 10, 2]. By restricting the power of program statements and 
assuming a non-deterministic yet weakly fair scheduling paradigm, interleaving adequately 
models circuit behavior. This paper does not propose criteria for determining whether a 
circuit is truly delay insensitive. Rather, given a delay insensitive circuit, it describes how 
to verify its correctness properties under the interleaved model of concurrency. The 
example here formalizes an n-node (FIFO) queue and presents the verification of its safety 
and the liveness properties. The basic element in this circuit is described in [8]. 

This paper is organized in the following way. Section 2 briefly describes the Boyer-Moore 
logic, its prover, and the mechanized implementation of Unity. Section 3 defines the FIFO 
circuit. Section 4 presents the correctness theorems, which are proved in section 5. 
Section 6 discusses related work and offers concluding remarks. 

2. The Proof System 

Mechanized Unity is implemented in the Nqthm version of the Boyer-Moore logic [1] 
enhanced with a facility for defining fully quantified definitions and the Kaufmann proof 
checker [7]. Nqthm is a quantifier-free fn'st order logic with a prefix syntax and semantics 
similar to pure Lisp. Quantifiers are necessary for defining predicates describing 
properties of infinite sequences. The Kaufmann proof checker permits the user to guide 
the theorem prover at a low level, while still allowing calls to the entire automated system; 
this permits both efficient proof discovery and easy use of rewrite rules that have free 
variables in their hypotheses. 

Mechanized Unity defines most of its specification predicates with respect to an 
operational semantics characterizing an arbitrary fair execution of a concurrent program. 
A fair execution is an infinite sequence of states, obtained from some initial state by the 
sequential application of program statements. The only restriction on the scheduling of 
statements is weak fairness: every statement must be scheduled infinitely often. Since 
specifications are defined with respect to an arbitrary fair execution, proved specifications 
are true for all fair executions. Consequently, specifications neither assume nor guarantee 
any particular timing characteristics of the program. 

Specifications in this logic are proved by the use of proof rules that have been adapted 
from the Unity logic. These proof rules permit concise non-operational correctness proofs. 
The proof rules are sound because they are theorems of the operational semantics of 
concurrency described earlier. 

We now ill{lstrate terms in the logic by introducing the proof system's specification 
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predicates. Assuming the term (INITIAL-CONDITION IC PRG) implies that xC holds 
on the initial state of any execution of the program PEG. In a similar way, the predicates 
for safety and liveness properties are defined: 

�9 The term (INVARIANT P PRG) means that P holds on every state in the 
execution of pEG. To prove this, one may have to make assumptions about the 
initial state. 

�9 The term (LEADS-TO P Q PRG) means that every P state in an execution of 
PRG is eventually followed by a Q state (Q may hold true immediately). 

The Boyer-Moore Logic defines many other functions, including the logical operators AND, 
OR, NOT, and r.MPLIES, which have the obvious meaning. One may extend the logic by 
adding recursive definitions, providing termination is proved. 

A program in Mechanized Unity is a list of statements, where each statement has the form 
' (LIST FUNCTION-NAME ARG-I . . .  ARG-N). The arguments may be wire names, if 
one wishes to use the same function in several statements. For example, the statement 
representing a NOR gate may be (LIST 'NOR-GATE A B C), where A and B are 
understood to be input wires and C is the output wire. The literal ' NOR-GA~Z refers to the 
function NOR-C~TE which will be defined later. 

Each function implementing a statement takes two arguments in addition to the ones 
specified in the statement. These two arguments represent the states before and after the 
execution of the statement. The function returns TRUE only if the t~'mg state is a possible 
successor state to the OLD state. It is useful for statements to be defined by functions that 
have access to both the previous and next states, since this permits non-deterministic 
transitions. Non-determinism simplifies modeling a circuit's environment, for example. 

3. T h e  F I F O  C i r c u i t  

This FIFO circuit is composed of a producer and a consumer which push values upon and 
pop values from the internal nodes of the queue. The internal nodes are a sequence of 
similar nodes, each differing from the other by an index. Each node contains at most one 
bit; it may be TRUE, FALSE, or empty. A node attains its predecessor's value once it 
determines that its value has been copied to its successor. A node does not become empty 
simply because its value is copied to its successor. Therefore, in order for this circuit to 
operate correctly, the producer must push an empty value upon the queue between pushes 
of non-empty values. Furthermore, a popped value is considered non-empty only if it is 
non-empty and the previous popped value was empty. Intuitively, a value propagates 
along the queue leaving a trail of identical values. These copies are cleaned up by the 
empty value that is pushed upon the queue to delimit the next non-empty value. 

An N node queue has N-1 internal nodes, indexed N- l ,  . . . ,  1. The x'th internal node 
in the FIFO circuit has the following components: 
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The labels on the wires are wire names; notice that each of the output wires from the 
C-elements [9] actually fork; one branch connects to the input of the successor node's 
corresponding C-element; the other connects to the predecessor's NOR gate. We take 
these forks to be isochronic [8] (assume that the signal propagates simultaneously to the 
gates at the end of each fork). 

Each node behaves in the following way: A bit is encoded by double-rail coding. TRUE is 
represented by the C-element [9] CT being TRUE, and the other C-element CF being 
FALSE. FALSE is represented by the opposite configuration. If the node is empty, both 
C-elements are FALSE; never will both C-elements be TRUE simultaneously. This is 
because this circuit requires (and maintains) that if two adjacent nodes are non-empty, they 
must also represent the same value. 

A node copies a new value from its predecessor when its successor differs from its 
predecessor. For example, assume that the successor is empty, and the predecessor is non- 
empty. Therefore, the incoming TEMP becomes ~Oqz and permits the other C-elements to 
become true, if their other inputs are TRUE. 

In Mechanized Unity, this node is described by three statements corresponding to the two 
C-elements and single NOR gate components. The NOR gate is represented by the 
following function: 
Definition: Nor-Gate 

(NOR-GATE OLD ~mw A B c) 

(AND (IFF (VALUE NEW C) 
(NOT (OR (VALUE OLD A) 

(VALUE OLD B)))) 
(CHANGED OLD NEW (LIST C))) 

The term (VALUE Or- A) looks up the value of the variable named A in state OLD. 
(CSANGED OLD NEW (LIST C) ) states that only the variable C may change between 
states o r -  and NEW. This function says that the value of C in state NEW becomes the n o r  of 
the values of A and B in state OLD. OLD and NEW represent successive states in the 
execution of the program. The statement for the NOR gate in the x'th node of the queue 
must instantiate A, B, and C to be the appropriate wire names. The statement is: 

(LIST 'NOR-GATE (CT (SUB1 I)) (CF (SUB1 I)) (TEb~ I)) 
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A statement is a list; the first element is the name of the function representing the VLSI 
component, remaining elements are the names of the input and output wires of that 
component. Since wire names are indexed, the functions CT, CF and TEMP take arguments. 

Similarly, the C-element is described by the following function: 
Definition: C-Element 

(C-ELr~.~T OLD NEW A ,a C) 

(IF (IFF (VALUE OLD A) 
(VALUE OLD B)) 

(AND (IFF (VALUE NEW C) (VALUE OLD A)) 
(CHANGED OLD NEW (LIST C))) 

(CHANGED OLD NEW NIL)) 

This function states that c in state NEW becomes equal to the inputs, if both inputs A and B 
are equivalent in state OLD; otherwise, all variables remain unchanged (NXL is the empty 
list). This function is used in the following two statements, each representing a single 
C-element: 

(LIST 'C-ELEMENT (CT (ADD1 I)) (TEMP I) (CT I)) 
(LIST 'C-ELEMENT (CF (ADD1 I)) (TEMP I) (CF I)) 

A single node of the FIFO circuit is a collection of the two statements representing the two 
C-elements and the single statement representing the NOR gate. We define the term 
(F'rFO-NODE "r) to collect the three statements in node "r. 

The TEMP wire is truly an isochronic fork because (TEMP I) is the output of the NOR 
gate, and is an input to two C-elements. Adding a function that copies TEMP tO another 
wire would add complexity to the verification without changing the overall behavior of the 
circuit. The output of each C-element is also an isochronic fork. 

The internal nodes in our n-node queue will have indices (N-I ,  . . . .  1).  Nodes N and 
0 will be, respectively, producer and consumer nodes. These nodes must obey the four- 
phase signalling that this queue expects, and keep track of the pushed and popped values. 
The producer node is defined as follows: 
Definition: In-Node 

(rN-NODE Or.n NEW I) 

(IF (IFF (VALUE OLD (TEMPI)) 
(EMPTY-NODE OLD I)) 

(IF (EMPTY-NODE OLD I) 
(OR (CHANGED OLD NEW NIL) 

(AND (OR (TRUE-NODE NEW I) 
(FALSE-NODE NEW I)) 

(EQUAL (VALUE NEW ' INPUT) 
(CONS (TRUE-NODE NEW I) 

(vALUE OLD , INPUT) ) ) 
(CHANGED OLD NEW (LIST (CT I) (CF I) ' INPUT) ) ) ) 

(OR (CHANGED OLD NEW NIL) 
(AND (EMPTY-NODE NEW I) 

(CHANGED OLD NEW (LIST (CT I) (CF I)))))) 
(CHANGED OLD NEW NIL)) 
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The term (EMPTY-NODE OLD I )  tests whether this I ' th  node is empty in state OLD. 
(Neither C-element in node x is TRUE.) Terms (TRUE-NODE NEW X) and (FALSE-NODE 
NEW "r) test whether the "r'th node in state NEw contains a TRUE or FALSE bit, 
respectively. In our example, the producer node will have index N. Its behavior is as 
follows: If the value of the tail of the queue (node N) has already been copied into node 
N-1 (as indicated by the value of (TEMP N) ) and the tail of the queue is empty, then a new 
value may be placed upon the tail of the queue. If the new value is TRUE or FALSE, then 
the variable INPUT is updated to reflect the newly pushed value. If the tail of the queue is 
not empty, yet has already been copied, then an empty value may be placed upon the tail of 
the queue. If the tail of the queue has not yet been copied, no change occurs. 

The producer node is non-deterministic, since it never need push a new value. That is, this 
statement may execute repeatedly without ever changing any values. Therefore, the 
environment may stop. 

The consumer node is defined as follows: 
Definition: Out-Node 

(OUT-NODE OLD NEW) 
T. 

(AND (IFF (VALUE NEW (CT 0)) 
(vALUE OLD (CT Z) ) ) 

(IFF (VALUE NEW (CF 0) ) 
(vALUE oLD (CF Z) ) ) 

(IF (AND (EMPTY-NODE OLD 0) 
(NOT (EMPTY-NODE NEW 0) ) ) 

(EQUAL (VALUE NEW ' OUTPUT) 
(CONS (TRUE-NODE NEW 0) 

(VALUE OLD ' OUTPUT) ) ) 
(EQUAL (VALUE NEW ' OUTPUT) (VALUE OLD ' OUTPUT) ) ) 

(CHANGED OLD NEW (LIST (CT 0) (CF 0) 'OUTPUT))) 

The consumer node's index is 0. Node 1 is copied into the head of the queue. If the head 
of the queue is thereby changed from empty, to non-empty, then the variable OUTPUT 
representing popped values is updated appropriately. Since the schedule of statements is 
unknown, the internal nodes in the queue cannot depend upon the rate at which values are 
popped. 

The entire queue, consisting of a consumer, the internal nodes, and a producer (with the 
extra (TEMP N) line), is represented using the following three functions. The first collects 
the internal nodes: 
Definition: Internal-Nodes 

(INTERNAL-NODES N) 

(IF (ZEROP N) 
NIL 

(APPEND (FIFO-NODE N) 
(INTERNAL-NODES (SUB1 N) ) ) ) 

The next function collect the statements describing the external nodes: 
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Definition: External-Nodes 
{aXTEaSaL-NODES N) 

(LIST (LIST ' IN-NODE N) 
(LIST ' OUT-NODE) 
(LIST 'NOR-GATE (CT (SUB1 N)) (CF (SUB1 N)) (TEMP N))) 

Finally, the entire circuit is captured by the term ( F I F O - Q W E I T E  N )  " 

Definition: Fifo-Queue 
(FIFO-QUEUE N) 

(APPEND (EXTERNAL-NODES N) 
(INTERNAL-NODES (SUB1 N) ) ) 

In the correctness specifications, we use the term (FIFO-QUEUE N) denoting a FIFO 
queue of length N. As with all variables, N is universally quantified, so the theorems are 
true for queues of any length. (A hypothesis in these theorems requires that N exceed 1, 
implying the existence of at least one internal node.) 

4. T h e  C o r r e c t n e s s  Spec i f i ca t ions  

The important correctness properties, that pushed values are not lost, and that pushed 
values are eventually popped, both depend upon a invariant that characterizes legal states. 
Recall that the correct operation of the circuit depends upon adjacent non-empty nodes 
being equivalent. In addition, if a node differs from its successor, then its incoming TEMP 
wire must be up-to-date. These requirements arc formalized in the following way: 
Definition: Proper-Node 

(PROPE*~-NODE STATE I) 

(AND (IMPLIES (AND (NOT (EMPTY-NODE STATE I)) 
(EMPTY-NODE STATE (SUB1 I) ) ) 

(VALUE STATE (TEMP I) ) ) 
(IMPLIES (AND (EMPTY-NODE STATE I) 

(NOT (EMPTY-NODE STATE (SUB1 I) ) ) ) 
(NOT (VALUE STATE (TEMPI)) ) ) 

(OR (TRUE-NODE STATE I) 
(FALSE-NODE STATE I) 
(EMPTY-NODE STATE I)) 

(IMPLIES (NOT (EMPTY-NODE STATE I)) 
(OR (EMPTY-NODE STATE (SUB1 I)) 

(IF (TRUE-NODE STATE I) 
(TRUE-NODE STATE (SUB1 I)) 

(FALSE-NODE STATE (SUE1 I) ) ) ) ) ) 

The term (PROPER-NODES STATE N) checks whether nodes (N .... , i) are proper. 

The invariance property is stated as follows: 
Theorem: Proper-Nodes-Invariant 

(IMPLIES (AND (LESSP 1 N) 
(INITIAL-CONDITION ' (PROPER-NODES STATE 

(QUOTE ,N) ) 
(FIFO-QUEUE N) ) ) 

(INVARIANT ' (PROPER-NODES STATE (QUOTE , N) ) 
(FIFO-QUEUE N) ) ) 
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This theorem states that if the initial state is legal, then all subsequent states are legal. The 
legal state predicate is encoded as a backquoted term, in the following way: The first 
element of the term is the function symbol PROPER-NODES, SO PROPER-NODES is the 
function that is invariant. The second element is STATE, which is a dummy literal: upon 
evaluating the backquoted term in the context of some state in the execution, STATE is 
bound to that state. The third element is (QUOTE ,N) which is a shorthand for 
introducing a variable into the formula. That is, the N in the hypothesis is the same N that 
is in the conclusion, and is the same universally quantified N specifying the size of the 
queue that we are describing via the function (FIFO-QUEUE N). 

The next invariant states that values are consumed in the order in which they are produced. 
To specify this, we define the term (QUEUE-VALUES STATE N) that returns a list of the 
values in the, queue: 
Definition: Queue-Values 

(QUEUE-VALUES STATE N) 

(IF (ZEROP N) 
NIL 

(IF (AND (NOT (EMPTY-NODE STATE N)) 
(EMPTY-NODE STATE (SUB1 N) ) ) 

(CONS (TRUE-NODE STATE N) 
(QUEUE-VALUES STATE (SUB1 N) ) ) 

(QUEUE-VALUES STATE (SUB1 N) ) ) ) 

Specifically, a node only c o u n t s  if it is non-empty and its successor is empty. The 
invariant depends upon the queue being in a legal configuration and is specified in the 
following way: 
Theorem: Queue-Values-Invariant 

(IMPLIES (AND (INITIAL-CONDITION 
' (AND (PROPER-NODES STATE (QUOTE , N) ) 

(EQUAL (VALUE STATE (QUOTE INPUT)) 
(APPEND (QUEUE-VALUES STATE 

(QUOTE , N) ) 
(VALUE STATE 

(QUOTE OUTPUT) ) ) ) ) 
(FIFO-QUEUE N) ) 

(LESSP 1 N)) 
(INVARIANT ' (EQUAL (VALUE STATE (QUOTE INPUT)) 

(APPEND (QUEUE-VALUES STATE 
(QUOTE , N) ) 

(VALUE STATE 
(QUOTE OUTPUT) ) ) ) 

(FIFO-QUEUE N) ) ) 

This invariant states that the produced values always equal the concatenation of the values 
in the queue and the consumed values. Interestingly, this invariant can be satisfied by an 
incorrect program: we must also prove that the variables XNPUT and OUTPUT only grow. 
These statements have been proved also. 

The liveness condition requires that values be passed through the queue. Without tagging 
queue values, this must be stated in the following way: if the queue is non-empty, then 
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eventually the number of consumed values increases. This is expressed in the following 
~S-TO property: 
Theorem: Output-Grows 

(IMPLIES (AND (INITIAL-CONDITION '(PROPER-NODES STATE N) 
(FIFO-QUEUE N) ) 

(LESSP 1 N)) 
(LEADS-TO '(AND (LISTP (QUEUE-VALUES STATE N)) 

(EQUAL (LENGTH (VALUE STATE 
(QUOTE OUTPUT) ) ) 

(QUOTE ,K))) 
' (LESSP (QUOTE ,K) 

(LENGTH (VALUE STATE 
(QUOTE OUTPUT) ) ) ) 

(FIFO-QUEUE N) ) ) 

These correctzess properties have been mechanically verified on the Boyer-Moore prover, 
using many intermediate theorems. 

5. T h e  C o r r e c t n e s s  P r o o f  

The proof of the invariance theorems proceeded by case analysis on the various statements 
in the program. Since the functions specifying both legal states and queue values are 
defined recursively, the proofs of these theorems were inductive and required that 
generalizations of the invariance theorems be proved first. It is unfortunate that the legal 
state invariant cannot be decomposed: although, the invariant is really three conjuncts, the 
stability of each depends upon all three. 

The liveness property is a more interesting proof. We wish to prove that non-empty values 
on the queue are eventually popped off the queue; this was formalized by stating that the 
length of the history variable OUTPUT recording popped values eventually increases. We 
prove this by demonstrating a decreasing measure: non-empty values move forward in the 
queue; when one reaches node 1, it is popped and the length of OUTPWr grows. We prove 
the decreasing measure in a restricted sense: if a queue value is non-empty and the entire 
subqueue ahead of it is empty, then that queue value moves forward. It is obvious that any 
non-empty queue also has a most forward element, so it is sufficient to prove this theorem. 

6. Conclusion 

This paper demonstrates how techniques for reasoning about concurrent programs maybe 
applied to delay insensitive circuits. In this case, a proof system mechanizing Unity has 
been used to specify and verify both safety and liveness properties for an n-node FIFO 
circuit. This specification of the queue formalizes the assumptions about its environment. 
Mechanized Unity permits the mechanically verified proof of circuits of arbitrary size. 

This work is similar to Synchronized Transitions [10] which was mechanized on the Larch 
Prover. Synchronized Transitions uses a syntax similar to Unity for specifying hardware. 
It can only be used, however, to prove invariance properties. The invariance property of a 
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high level specification of a FIFO circuit was mechanically verified in [10]. Synchronized 
Transitions does provide a nice composition mechanism for hierarchical circuit design. 

The Boyer-Moore prover has been used to verify parameterized clocked hardware as well. 
[6] verified a microprocessor; its ALU was verified for arbitrary register sizes. [4] verified 
several combinational designs as well. The circuits discussed there are synchronous and 
depend upon a clock. Ideally, one would like to merge verification techniques, in order to 
be able to reason about asynchronous collections of synchronous hardware. 

Other research has produced promising techniques for fully automatic verification of 
certain safety [3] and liveness properties using trace theory and model checking. These 
systems check whether a finite state machine satisfies a formula by, essentially, completely 
simulating the machine. If the machine does not satisfy the formula, the system can return 
an offending trace; this facility is useful for debugging. Such systems may be more useful 
than semi-automatic techniques for verifying fixed size circuit components, since 
invariants specifying legal states become very complicated. However, these systems 
cannot reason about arbitrary sized components or about non-propositional correctness 
properties. Also one must still determine the circuit's suitable initial states, which, in the 
general case, is similar to determining invariants. A useful system (which does not yet 
exist) might combine automatic techniques for verifying fixed sized circuit components 
with semi-automatic techniques for combining these components. 

Martin proposes synthesis, where VLSI components are specified as production rules in a 
non-deterministic program, and are obtained by correct refinements from higher level 
specifications [8]. 

There are two assumptions underlying this work. The first is that the behavior of delay 
insensitive circuits is accurately modeled by the interleaved model of concurrency. This 
assumption permits one to ignore isochronic forks and use the same wire in several inputs. 
The second is that the circuit being verified is truly delay insensitive. Several criteria have 
been proposed to test delay insensitivity: Martin checks whether his production rules map 
to VLSI components and the rules' preconditions are mutually exclusive. Straunstrup r 
al, propose the two conditions of consumed values and correspondence, while Chandy and 
Misra suggest stability of preconditions. Since these conditions sometimes conflict, 
characterizing delay insensitive circuits remains an incompletely answered question. In 
this paper, an arbitrary sized circuit known to be delay insensitive was verified under the 
interleaved model of concurrency. 
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