
A linear time process algebra

ALAN JEFFREY

ABSTRACT. This paper presents a variant of Milner's Calculus for Communicating Systems enriched
with a notion of time. Time here is considered to be a totally ordered monoid rather than a particular
numerical domain. A set of laws for the algebra are presented, as well as a transition system semantics.
The laws are then shown to be consistent and complete.

1 Introduction

Milner's Calculus for Communicating Systems (CCS) [Mil80, Mi189] is a weU devel-
oped theory of untimed concurrency. This has recently been extended to include a
notion of time by Wang [Wan90, Wan91], Hennessy and Regan [HR90], and Moiler
and Tofts [MT90]. In addition, Bergstra and Klop's ACP [BW90] has been given
timed variants by Baeten and Bergstra [BB91] and Nicollin and Sifakis INS90]; and
Hoare's CSP [Hoa851 has a timed model given by Reed and Roscoe [RR86].

Despite these models being developed independently, they have many features in
common, one being that they are all real time models- - the notion of time is assumed
to be either N or [0, oo). In this paper we develop a generalization of Wang's Timed
CCS, with three new concepts.

�9 Time is considered to be an abstract notion. We do not specify what the
time domain should be, as long as it is a totally ordered monoid, with a few
extra conditions. This means that Wang's calculus and Hennessy and Regan's
calculus can be seen as examples of the model presented here. If we take the
trivial time domain {0} with only one time, we have a model isomorphic to
Miiner's untimed CCS.

�9 We can produce a complete axiomatization. Wang has a complete axiomati-
zation for regular agents, that is ones built without parallelism, restriction, or
alphabet transformation. However, due to the lack of an expansion theorem, he
was unable to provide a complete axiomatization for parallelism. He has sug-
gested [Wan91] a different prefixing operator a@t.Pt to alleviate this problem.
Here, we suggest another prefix, c~:P, and show an expansion theorem using it.

�9 We explicitly allow time-stop processes. In many other calculi, time-stops are
implicitly allowed through constructs like #x.x. Here, we are allowing them
because of the interaction of maximal progress and unbounded sum. If we
assume that T:P will not allow time to pass, but insists on performing its v
action, then the process ~{e t : r :P [t ~ 0} will not allow time to pass, bu t

Presented to Computer Aided Verification 1991.
Copyright (~) 1991 Alan Jeffrey.
Also available as Programming Methodology Group Technical Report 61.
Author's address: Department of Computer Sciences, S-412 55 G6teborg, Sweden.
E-maih jeffrey~}cs.chalmers.se.

433

cannot perform a v action. Hence it is a time-stop. It might be possible to
restrict ourselves to a language where such processes were not possible, but it
turns out to be algebraically much simpler just to allow time-stops. We can
regard these as the 'complex numbers ' of this calculus-- they do not correspond
to anything we might have a computational intuition for, but they simplify the
algebra.

Unfortunately, this paper is by no means complete.

* The language considered here only allows finite processes, and has no primitive
for recursion. This should not be too difficult to rectify, although finding a
complete set of laws to include recursion might be slightly tricky.

�9 The calculus includes an uncountable sum operator ~-~. This is the operator that
gives our calculus its expressive power, but with an obvious loss--equivalence is
no longer decidable. It is an interesting question as to whether we can restrict
ourselves to some notion of decidable sum. We still want to be able to make
uncountable summations (such as in the definition of # ~ t . P) but we may be
able to restrict ourselves so as to recover decidability. For example, if our time
domain has a topological structure, we might be able to restrict ourselves to
summation over closed sets.

This model is a transition sys tem model, in the tradition of Milner [Mfl80] and
Plotkin [Plo81] so there is an implicit assumption that all history can be made
linear. This is the reason we are limited to totally ordered time domains. In [Jef91],
the author showed how timed process algebra could be applied to partially ordered
time domains.

2 A s s u m p t i o n s

We are going to produce a timed variant of Milner's CCS, and so we will need the
same notion of name.

ASSUMPTION 1. There is a set ,4 o f names, ranged over by a, b and c.

A label is either a name a or its complement 5.

DEFINITION 2. The set f.. o f labels is ,4 U ,4, where ,4 = {'~ [a E A } . f-. is ranged
over by I. Le t ~ = a.

An action is either a label, the special silent action v.

DEFINITION 3. The set Ac$ of actions is s U {T}, ranged over by a and ~.

So far, we have followed Milner's untimed calculus. If we are going to produce a
timed calculus, though, we will need some notion of time. In fact, we are never
interested in absolute time (such as '9.26am on 24 January 1990') just relative time
(such as 'five hours from now'). We can assume there is a zero time ('now') and any
two times can be added together ('five hours from now' plus ' three hours from now'
is 'eight hours from now'). So we assume time is a totally ordered monoid.

ASSUMPTION 4. There is a monoid (T , +, O) of times, ranged over by t, u and v,
such that i f t + u = t + v then u = v.

DEFINITION 5. t ~ v i i ~ ' 3 u . t + u = v

434

ASSUMPTION 6. _< is a total order, with bottom O, and every non-empty set T has
a greatest lower bound infT.

For example:

�9 (N, +, 0) gives a discrete timed model of CCS, similar to [HR90].

�9 ([0, oo), + , 0) gives a continuous timed model, similar to [Wan91].

�9 ({0}, +, 0) gives the untimed model of CCS.

The events we can use in our language are labels, r actions or times.

DEFINITION 7. The set ~ of events is s U {T} U {et [t 6 q'}, ranged over by a
and p.

A prefix is an action, or the special time-stop prefix 6. We are using a prefix to
represent time-stop in the same way as ACP [BW90] uses 5 to represent deadlock.

DEFINITION 8. The set Pre of prefixes is Act U {5}, ranged over by # and v.

Finally, for technical reasons, we need an upper bound on the nondeterrnh~ism our
language allows.

ASSUMPTION 9. There is a regular cardinal A > IT[.

3 S y n t a x

Let us consider Linear Timed CCS, based on Wang's Timed CCS, in turn based on
Milner's CCS.

DEFINITION 10. LTCCS is defined by

P ::= I e t :P I 7) I P I P

where P, Q and R range over LTCCS and 7) and Q are subsets of LTCCS strictly
smaller than A.

This is the same as Miiner's CCS, except that:

�9 l:P can only do an l at time 0, otherwise it deadlocks.

�9 r:P will not let time pass, but insists that the r happens immediately. This is
called maxima/progress by Wang.

�9 5:P will not let time pass at all.

�9 et:P delays P by time t.

From these primitives, we can build the operators in Wang's calculus:

DEFINITION 11.

o = 2 C 0
P + q = C{P ,q }

We now give a set of laws for this language, and write f- P - Q if we can prove P
and Q are equal using them. To begin with, we inherit three properties from Wang's
Timed CCS:

LAW 1 (TIME CONTINUITY). ~" gt:gu:P -~ g(t + u):P

435

LAW 2 (TIME DETERMINACY). J- ct: ~ P = y']~{et:P I P e 79}

LAW 3 (ZERO DELAY). ~- r ---- P

and three new properties of &P:

LAW 4 (MAXIMAL PROGRESS).]'- r :P = r :P + (5:Q

LAW 5 (TIME-STOP). I f t ~ 0 then t- &P = 6:P + ct:Q

LAW 6 (TIME-STOP CONTINUITY). I f I # 0 then:

~- E{et i :&Pi t i E I} = e(inf{ti l i E I}):&Q

as well as the standard rules for ~ from CCS:

LAW 7 (SUM UNIT). [- E { P } = P

LAW 8 (SUM HOMOMORPHISM). ~- E{~'-]~ ~Oi [i e I} = ~ ~J{~O i [i e I}

and a continuity condition on summation:

LAW 9 (SUM CONTINUITY). I fVQ E Q. ~- P = P + Q then F P = P + ~ Q.

Finally, we have a variant of the expansion theorem:

LAW 10 (EXPANSION THEOREM). Is

P = E{e t i :# i :P i l i E I }

Q = E{euj:v j :Qj [j E J}

then:

where:

t- P IQ = ~{et i :# i : (Pi lQ, ,) l i ~ I}

+ E{eti:r:(Pi l Qj) l i E I A j E J A ti = uj A ~ = uj}

P~ = E{6u:l~i:Pi] i E I A t + u = tl}

Qt = ~-]~{eu:uj:Qj] j E J A t + u = uj}

This is just a variant on the standard expansion theorem, which says that when P
is placed in parallel with Q, one of three things can happen:

s P delays by ti, performs #i, and becomes P/. In the mean time, Q must move
on to time ti and become Qty.

s Q delays by uj, performs vj, and becomes Qj. In the mean time, P must move
on to time uj and become P,~.

s Both P and Q delay by time ti, then P performs #i, Q performs ~-~, and the
resulting system performs a r action.

It turns out that these laws are the only ones we shall need to prove bisimulation of
any agents.

436

4 S e m a n t i c s

As with Wang's calculus, we shall give our syntax a transition system semantics,
with arrows labeled by E.

�9 p t ~ Q means P performs an I action, and becomes Q. This transition takes
no time.

�9 P *, Q means P performs a silent move, and becomes Q. This transition
takes no time.

�9 p a �9 . ~ Q means that P can idle for time t and become Q.

Furthermore, we can place some restrictions on which transition systems we will
consider, taken from [Wan91].

AXIOM 1 (TIME CONTINUITY). I f P t(l+~) R then 3Q . P a eu ,Q ,R.

AXIOM 2 (MAXIMAL PROGRESS). I f P r Q and P a R then t = 0.

AXIOM 3 (TIME DETERMINACY). I f P a a , Q and P ~ R then Q = R.

Note, however, that we do not have Wang's 'time persistency', because our prefixing
primitive l:P will offer an l at time O, but not at any later time. We are allowing
p t 0 Q as a transition, though, so we need an extra axiom.

AXIOM 4 (ZERo DELAY). P t 0 p

This is a matter of style, and is used because it makes the transition rules simpler.
We can now give the transition rules for each of the operators. These semantics

are the same as Wang's, with the exception of prefixing, and some technicalities to

do with transitions of the form P t0, p .
To begin with, a prefix c~:P can either do a a action immediately, or walt for no

time. Also, the process l:P can wait and become 0. Note that the only transition
& P h a s i s & P t 0 &p.

It # o] a : P a) p # : p to a) # : P l : P , 0

Note that we insist l:P a , 0 rather than Wang's l .P a l.P. It is this crucial
difference that allows us to find a complete axiomatization for our language. The
rules for d~lay are, however, similar to Wang's.

p a p~ , P ~'~ p'

eO:P ~ ' P' r + u):P a , eu:P et:P ~(*+~) P'

As is the rule for summation.

P ' ~ P ' [P E P] p a Q
E p '~, p , Ep__a_.~ E Q

Here P tl, Q VP e P . 3Q e Q. P a a , Q and VQ E Q . 3 P e P . P , Q.

437

The only real problem, as in [Wan91] is how to deal with parallel composition. It
is easy to give the rules for when each side can perform an action, as these are just
Milner's rules from [Mi189].

p ~ p , Q, ~ p , r Q, , Q ~ , p , Q ,

p [Q ~ , p , [Q p [Q ~ , p [Q , p [Q L , p , [Q ,

The problem comes with delay. It is not true that if P a ~ p , and Q a ~ Q~ then
p] Q a p,[Q,. For example, a:Pl-ff:Q can do a r action, so by the assumption
of maximal progress, it cannot do a time transition.

The solution, as in [Wan91] is to look at the initial actions that a process can do
before time t. If no communication is possible, then we can allow a time t transition
to take place.

Define inits P to be the initial actions of P together with the times they axe
available. If (t, c~) E inits P and P can wait for time t then P can do an a at time t .

DEFINITION 12.

inits o~:P = {(0, c~)}

inits6:P = 0

inits et:P = {(t + u, a) [(u, ~) E inits P}

inits ~. 7 9 = U{inits P[P E 79}

inits P I Q = inits P u inits Q u { (t, r)] (t, l) E inits P A (t, i) E inits Q}

Then we can say a process is stable until t if no r action can happen before t.

DEFINITION 13. P ~ t iffVu < t. (u, T) r inits P.
So we can give a side-condition on the rule for parallelism to make sure that we a r e
not breaking maximal progress.

p a p, Q ~.!, Q , [p I Q s t]
PIQ ~" P'IQ'

We have now defined the transition system (LTCCS, ~, ~). All we have to do now
is ensure that it respects our axioms for timed transition systems.

LEMMA 14. The transition system (LTCCS,~, ~) satist~es Axioms 1-4.

PROOF. A variant of [Wan91], except for Axiom 4, which is an induction, ra

5 Bis imulat ion
Following [Mf189] and [Wan91], we can define a strong bisimulation (from now on
just bisimulation), which we shall use as our equivalence on LTCCS.
DEFINITION 15. A relation T~ is a bisimulation iff, for every P 7~ Q:

* i f P r P' , P' then 3Q' . Q a Q, and T~ Q', and
, i f Q ~ Q ' . ~ p, p, Q'. ~ then 3P' P , and Tr

We shall then say P and Q are bisimilar iff there is a bisimulation which identifies
them.

438

DEFINITION 16. P ~ Q iff there is a bisimulation T~ such that P T~ Q.

We then have to show that ~ is a congruence.

LEMMA 17. ~ is a congruence.

PROOF. A variant of the proof in [Wan91]. [2

6 C o n s i s t e n c y

We now have two notions of equivalence on L T C C S - - t h e laws which prove I- P - Q,
and the bisimulation equivalence P .~ Q. We would like to show that these are in
fact the same thing, i.e. that they axe consistent and complete. To begin with, we
can see that our laws axe consistent.

THEOREM 18. If F- P = Q then P .., Q.

PROOF. This is a matter of showing that all of our laws are sound. In each case we
construct a relation T~ containing our law, and show that it must be a bisimulation.
Again, most of our laws are contained in either [Mi189] or [Wan91], bu t we shall
prove some of the more interesting ones here.

For sum continuity, assume that for every Q 6 Q there is a bisimulation T~Q

containing (P, P + Q). Then define PL and Q~ such that P eL, Pt and Q e~ ~ Qt,
and Qz as {Qt [Q 6 Q}. Then define 7~ as:

n = U{n l Q e e } u { (P , P, + E Q,) I t e T}

By a simple case analysis, R is a bisimulation, and so since by zero delay and time
determinacy, P0 - P and Q0 = Q, we have shown sum continuity to be sound.

For the expansion law, assume:

P = E { e t i : # i : P i l i e I }

Q = ~-~.{euj:yj:Qj [j e J}

and define:

P, = E{ u:,i:Pl I i e 1 ^ t + u = ti}

Qt = ~_,{eu:vj:Qj [j e Z A t + u = uj}

R, = E{eu:t~,:(P~ I Q,,) I i E I A t + U = ti}

+ E{r I Q~) I J e J A t + u = ui}

+ ~'~{eu:r:(Pi l Qj) [i e l A j e J A ti = uj A ~ = vj}

It is a straightforward case analysis to show that I U {(P~ I Qt, Rt) [t E T} is a
bisimulation, and therefore Po I Qo "" Ro. However, Po = P , Qo - Q, and Ro is the
rhs of the expansion law. El

? C o m p l e t e n e s s

We can now turn to the meat of this paper - - the proof that Laws 1-10 are complete,
so if P ,., Q then b P = Q. As usual, we shall find a normal form which we can
transform all of our agents into, and then show that any equivalent normal agents
must be identical.

439

DEFINITION 19. P is in summand form f l i t is of the form:

P -- E { e t i : ~ i : P i l i 6 I }

where each of the Pi a r e in summand form.

This is not a normal form, since ~-].{E0:r:P} and Y~'~{e0:T:P, r are bisimilax,
and both axe in summand form. However, it is a step towards a normal form, and
every agent can be transformed to one in summand form.

LEMMA 20. I f P and (2 are in summand form, then there is an R in summand
form such that k P IQ = R.

PrtooF (BY INDUCTION ON P AND Q). Assume:

P =- E{cti:t t i:P,[i 6 I }

Q - E { e u i : u i : Q i l j e J }

and define:

P t -

Qt -

then by the expansion law:

~-~.{eu:#i:Pi [i E I A t + u = ti}

t- P IQ = ~{c t i :m: (P i lO , ,) [i ~ I }

By induction, we can find summand forms for P/ [Q, , , P,j I Qj and/9i [Q j, and so
we are finished. I::1

LEMMA 21. For any P, there is a Q in summand form such that I- P = Q.

PROOF (BY INDUCTION ON P) .

P = #:P' By induction, there is an Q' in summand form such that I-- P ' = Q~. By
sum unit and zero delay, F- P = ~ e0:#:Q', which is in summand form.

P =_ et:P' By induction, we can show I- P ' = ~-'~{6t~:/Ji:P/[i 6 I} and so by time
continuity and time determinacy, t- P = ~ { e (t + ti):l~i:Pi [i E I} .

P - ~-']~{~ [i 6 I} By induction, for every i 6 I we can find a ~ Qi ill sumrnazld
form such that I-" Pi = ~ Q~. Then by sum homomorphism, b P = ~ I.J{ Qi [
i 6 I} which is in summand form.

P = P1 [P2 By induction,/~ and P2 can be transformed into summand form, and
so by Lemma 20, P can be transformed into summand form. D

We can now define the normal form we've been looking for.

DEFINITION 22. P is in normal form ff it is of the form:

P - ~-~{eti:lti:Pi [i e I }

where:

�9 each of the Pi are in normal form,

440

* f f # i = r t h e n 3 j . t i = t j A a j = 5 , and

�9 f f~ i = 6 then Vj . tj < ti and Pi - O.
This is the same as summand form, except we insist on maximal progress, remove
any actions which happen after a tirae-stop, and insist tha t all t ime-stops axe of the
form di:O. For example ~,{cO:T:P} is not in normal form, bu t ~{e0:7":P, e0:6:0} is.
We can now show tha t any agent in summand form can be converted to normal form.
LEMMA 23. I f P is in summand form, then there is a Q in n o r m a / f o r m such that
I - P = Q .

PROOF. Assume:

P =- ~{c t i :# i :Pi l i E I}

then by induction we can find Qi in normal form such that I- Pi = Qi. Define:

I u = { i E I [# i E i }

If I(~,~} is empty, then P = ~{ct i:#i:Qi}, which is in normal form. Otherwise:

t6 = inf{ti l i e I1~,6}}

J = { j e Is I t~ < t ,}
Q - E({st~:t~:q~ I J ~ J} u {ct~:6:o})

Then for any i E I \ J , there axe two possibilities. If ti _< t~, then from the definition
of J this is only possible if t i ~- t 6 and ~i = 6. Then:

~ q = Q + E{6t6:6:o}
= Q + ~(inf{t~}):&qi

= Q + gti:iti:Qi

Otherwise, if t6 < ti, there is some t ~ 0 such that t~ + t = ti. Then:

t- Q = Q + c t 6 : & 0

So:

~ Q

= Q + ct6:(6:0 + ct:#i:Qi)

= Q + ct6:6:0 + et:6et:lti:Qi

= Q + 6t6:6:0 + ~t:ilzi:Qi

= Q + et:i#i:Qi

= Q + E{sti:#i:Qi l i ~ I \ J}
= ~_j{6ti:#i:Qi I i E i r} + ~t6:6:0

= ~ { e t i : # i : P i I i E I} + ct6:6:0

= P + ct6:6:0

= P + e(inf{ti I i E I{~,6}}):6:0

= P + ~-]{cti:6:Pili E I{~,6}}

(sum laws)
(time-stop continuity)

(definition of inf)
(above)

(sum laws)

(time-stop)

(time determinacy)

(time continuity)
(sum laws)

(sum continuity)

(sum laws)

(definition of Qi)

(definition of P)

(definition of t6)

(time-stop continuity)

441

= P q- ~{ct i :6:Pi

= P + ~{et i:6:Pi

= P + ~{e t i : z :Pi

= P + ~{e t i :w:P/

= P

I i e I{6}} + E{eti:6:Pi] i e I{r})
I i e I{~})
l i e I{,}} + E{et i :&Pil i e I{,})
I i e I{,-}}

So I- P = Q, and Q is in normal form.

COROLLARY 24. For any P, there is a Q in normM form such that I- P = Q.

Finally, all we have to do is show tha t our normal form is indeed normalizing.

LEMMA 25. I f P ~,, Q are in normal form, then P = Q.

PROOF (BY INDUCTION ON P AND Q). Assume:

P =_ ~ 7 9

.7 9 = {eti:#i:Pi I i E I }

Q - E Q
Q = {eu~:ui:Q ~ [j E J}

(sum laws)
(definition of I{6})

(definition of I{r})

(maximal progress)

(definition of I{r})

El

[Bw901
[Hoa851
[HR90]

[Jefgl]

[MilS0]
[Mi1891
[MT90]

[NS90]

[Plo811

Sci., 3:142-188, 1991.
J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge University Press, 1990.
C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
M. Hennessy and T. ReRan. A temporal process algebra. Technical Report 2[90, CSAI,
University of Sussex, 1990.

Alan Jeffrey. Observation Spaces and Timed Processes. D.Phil. thesis, Oxford University,
1991.
Robin Milner. A Calculus of Communicating Systems. Springer-Verlag, 1980. LNCS 92.
Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.
F. Moiler and C. "lofts. A temporal calculus of communicating systems. In Proc. Concur 90,
pages 401--415. Springer-Verlag, 1990. LNCS 458.
X. Nicollin and J. Sifakis. The algebra of timed processes ATP: Theory and application.
Technical Report RT-C26, Laboratoire de G6nie Informatique de Grenoble, 1990.
Gordon Plotkin. A structural approach to operational semantics. Technical Report DAIMI-
FN-19, Computer Science Dept., Arhus University, 1981.

I f ~ t : & O E P , t h e n P e~ i f f u < t , s o Q e~ _ , iff u < t, so et:&O E Q. If ~t:r:Pi E 9 ,
then P a r a r ~ , ~ , so Q , , Qj and Pi N Qj, so by i n d u c t i o n ~ = Qj, so

~t:r:PiE Q. I f ~ t : l : P i E 7 9 , t h e n P a t a t , , P/, so Q , , Qj and P / , , , Q j , so by
induct ion Pi =- Qj, so $t:P:i E Q. So 79 c Q, and similarly Q _C 7 ~, so P = Q. Q

This means we can now show the main result of this paper.

THEOREM 26. If P ,,, Q then k- P = Q.

PROOF. By Corollary 24, we can show I- P = P' and I- Q = Q' where P' and Q~
are in normal form. Then by Lemma 25, P ' = Q', so I- P = Q. 0

References
[BB91] J.C.M. Baeten and J. A. Bergstra. Real time process algebra. FormM Aspects Comp.

442

[RR86] G.M. Reed and A. W. Roscoe. A timed model for communicating sequential processes. In
Proc. ICALP 86, pages 314-323. Springer-Verlag, 1986. LNCS 226.

[Wan90] Wang Yi. Real-time behaviour of asynchronous agents. In Proc. Concur 90, pages 502-520.
Springer-Verlag, 1990. LNCS 458.

[Wan91] Wang Yi. CCS + time = an interleaving model for real time systems. In J. Leach Albert,
B. Monien, and M. Rodrlguez, editors, Proc. ICALP 91, pages 217-228. Springer-Verlag,
1991. LNCS 510.

