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ALAN JEFFREY 

ABSTRACT. This paper presents a variant of Milner's Calculus for Communicating Systems enriched 
with a notion of time. Time here is considered to be a totally ordered monoid rather than a particular 
numerical domain. A set of laws for the algebra are presented, as well as a transition system semantics. 
The laws are then shown to be consistent and complete. 

1 Introduction 

Milner's Calculus for Communicating Systems (CCS) [Mil80, Mi189] is a weU devel- 
oped theory of untimed concurrency. This has recently been extended to include a 
notion of time by Wang [Wan90, Wan91], Hennessy and Regan [HR90], and Moiler 
and Tofts [MT90]. In addition, Bergstra and Klop's ACP [BW90] has been given 
timed variants by Baeten and Bergstra [BB91] and Nicollin and Sifakis INS90]; and 
Hoare's CSP [Hoa851 has a timed model given by Reed and Roscoe [RR86]. 

Despite these models being developed independently, they have many features in 
common, one being that they are all real time models- - the  notion of time is assumed 
to be either N or [0, oo). In this paper we develop a generalization of Wang's Timed 
CCS, with three new concepts. 

�9 Time is considered to be an abstract notion. We do not specify what the 
time domain should be, as long as it is a totally ordered monoid, with a few 
extra conditions. This means that  Wang's calculus and Hennessy and Regan's 
calculus can be seen as examples of the model presented here. If we take the 
trivial time domain {0} with only one time, we have a model isomorphic to 
Miiner's untimed CCS. 

�9 We can produce a complete axiomatization. Wang has a complete axiomati- 
zation for regular agents, that is ones built without parallelism, restriction, or 
alphabet transformation. However, due to the lack of an expansion theorem, he 
was unable to provide a complete axiomatization for parallelism. He has sug- 
gested [Wan91] a different prefixing operator a@t.Pt to alleviate this problem. 
Here, we suggest another prefix, c~:P, and show an expansion theorem using it. 

�9 We explicitly allow time-stop processes. In many other calculi, time-stops are 
implicitly allowed through constructs like #x.x. Here, we are allowing them 
because of the interaction of maximal progress and unbounded sum. If we 
assume that  T:P will not allow time to pass, but  insists on performing its v 
action, then the process ~{e t : r :P  [ t ~ 0} will not allow time to pass, bu t  
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cannot perform a v action. Hence it is a time-stop. It might be possible to 
restrict ourselves to a language where such processes were not possible, but  it 
turns out to be algebraically much simpler just  to allow time-stops. We can 
regard these as the 'complex numbers '  of this calculus-- they do not correspond 
to anything we might have a computational intuition for, but  they simplify the 
algebra. 

Unfortunately, this paper is by no means complete. 

* The language considered here only allows finite processes, and has no primitive 
for recursion. This should not be too difficult to rectify, although finding a 
complete set of laws to include recursion might be slightly tricky. 

�9 The calculus includes an uncountable sum operator ~-~. This is the operator  that  
gives our calculus its expressive power, but  with an obvious loss--equivalence is 
no longer decidable. It is an interesting question as to whether we can restrict 
ourselves to some notion of decidable sum. We still want to be able to make 
uncountable summations (such as in the definition of # ~ t . P )  but  we may be 
able to restrict ourselves so as to recover decidability. For example, if our time 
domain has a topological structure, we might be able to restrict ourselves to 
summation over closed sets. 

This model is a transition sys tem model, in the tradition of Milner [Mfl80] and 
Plotkin [Plo81] so there is an implicit assumption that  all history can be made 
linear. This is the reason we are limited to totally ordered time domains. In [Jef91], 
the author showed how timed process algebra could be applied to partially ordered 
time domains. 

2 A s s u m p t i o n s  

We are going to produce a timed variant of Milner's CCS, and so we will need the 
same notion of name. 

ASSUMPTION 1. There is a set ,4 o f  names,  ranged over by a, b and c. 

A label is either a name a or its complement 5. 

DEFINITION 2. The  set f.. o f  labels is ,4 U ,4, where ,4 = {'~ [ a E A } .  f-. is ranged 
over by I. Le t  ~ = a. 

An action is either a label, the special silent action v. 

DEFINITION 3. The  set Ac$ of  actions is s U {T}, ranged over by  a and  ~. 

So far, we have followed Milner's untimed calculus. If we are going to produce a 
timed calculus, though, we will need some notion of time. In fact, we are never 
interested in absolute time (such as '9.26am on 24 January 1990') just  relative time 
(such as 'five hours from now'). We can assume there is a zero time ('now') and any 
two times can be added together ('five hours from now' plus ' three hours from now' 
is 'eight hours from now'). So we assume time is a totally ordered monoid. 

ASSUMPTION 4. There is a monoid  (T ,  +, O) of  times, ranged over by  t, u and  v, 
such that  i f  t + u = t + v then u = v. 

DEFINITION 5. t ~  v i i ~ ' 3 u . t + u = v  
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ASSUMPTION 6. _< is a total order, with bottom O, and every non-empty set T has 
a greatest lower bound infT.  

For example: 

�9 (N, +,  0) gives a discrete timed model of CCS, similar to [HR90]. 

�9 ([0, oo), + ,  0) gives a continuous timed model, similar to [Wan91]. 

�9 ({0}, +,  0) gives the untimed model of CCS. 

The events we can use in our language are labels, r actions or times. 

DEFINITION 7. The set ~ of events is s U {T} U {et [ t 6 q'}, ranged over by a 
and p. 

A prefix is an action, or the special time-stop prefix 6. We are using a prefix to 
represent time-stop in the same way as ACP [BW90] uses 5 to represent deadlock. 

DEFINITION 8. The set Pre of prefixes is Act U {5}, ranged over by # and v. 

Finally, for technical reasons, we need an upper bound on the nondeterrnh~ism our 
language allows. 

ASSUMPTION 9. There is a regular cardinal A > IT[. 

3 S y n t a x  

Let us consider Linear Timed CCS, based on Wang's Timed CCS, in turn  based on 
Milner's CCS. 

DEFINITION 10. LTCCS is defined by 

P ::= I e t :P  I 7) I P I P 

where P, Q and R range over LTCCS and 7 ) and Q are subsets of LTCCS strictly 
smaller than A. 

This is the same as Miiner's CCS, except that:  

�9 l:P can only do an l at time 0, otherwise it deadlocks. 

�9 r:P will not let time pass, but insists that  the r happens immediately. This is 
called maxima/progress by Wang. 

�9 5:P will not let time pass at all. 

�9 et:P delays P by time t. 

From these primitives, we can build the operators in Wang's calculus: 

DEFINITION 11. 

o = 2 C 0  
P + q = C{P ,q }  

We now give a set of laws for this language, and write f- P - Q if we can prove P 
and Q are equal using them. To begin with, we inherit three properties from Wang's 
Timed CCS: 

LAW 1 (TIME CONTINUITY). ~" gt:gu:P -~ g(t + u):P 
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LAW 2 (TIME DETERMINACY). J- ct: ~ P = y']~{et:P I P e 79} 

LAW 3 (ZERO DELAY). ~- r ---- P 

and three new properties of &P: 

LAW 4 (MAXIMAL PROGRESS). ]'- r :P  = r :P  + (5:Q 

LAW 5 (TIME-STOP). I f  t ~ 0 then t- &P = 6:P + ct:Q 

LAW 6 (TIME-STOP CONTINUITY). I f I #  0 then: 

~- E{et i :&Pi t i E I}  = e(inf{ti l i E I}):&Q 

as well as the standard rules for ~ from CCS: 

LAW 7 (SUM UNIT). [- E { P }  = P 

LAW 8 (SUM HOMOMORPHISM). ~- E{~'-]~ ~Oi [i e I} = ~ ~J{~O i [i  e I}  

and a continuity condition on summation: 

LAW 9 (SUM CONTINUITY). I fVQ E Q. ~- P = P + Q then F P = P + ~ Q. 

Finally, we have a variant of the expansion theorem: 

LAW 10 (EXPANSION THEOREM). Is 

P = E{e t i :# i :P i l i  E I }  

Q = E{euj:v j :Qj  [ j  E J}  

then: 

where: 

t- P IQ = ~{et i :# i : (Pi lQ, , )  l i ~ I}  

+ E{eti:r:(Pi  l Qj) l i E I A j E J A ti = uj A ~ =  uj} 

P~ = E{6u:l~i:Pi ] i E I A t + u = tl} 

Qt = ~-]~{eu:uj:Qj ] j E J A t + u = uj} 

This is just a variant on the standard expansion theorem, which says that  when P 
is placed in parallel with Q, one of three things can happen: 

s P delays by ti, performs #i, and becomes P/. In the mean time, Q must move 
on to time ti and become Qty. 

s Q delays by uj, performs vj, and becomes Qj. In the mean time, P must move 
on to time uj and become P,~. 

s Both P and Q delay by time ti, then P performs #i, Q performs ~-~, and the 
resulting system performs a r action. 

It turns out that these laws are the only ones we shall need to prove bisimulation of 
any agents. 
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4 S e m a n t i c s  

As with Wang's calculus, we shall give our syntax a transition system semantics, 
with arrows labeled by E. 

�9 p t ~ Q means P performs an I action, and becomes Q. This transition takes 
no time. 

�9 P *, Q means P performs a silent move, and becomes Q. This transition 
takes no time. 

�9 p a �9 . ~ Q means that  P can idle for time t and become Q. 

Furthermore, we can place some restrictions on which transition systems we will 
consider, taken from [Wan91]. 

AXIOM 1 (TIME CONTINUITY). I f P  t(l+~) R then 3Q . P a eu ,Q ,R. 

AXIOM 2 (MAXIMAL PROGRESS). I f P  r Q and P a R then t = 0. 

AXIOM 3 (TIME DETERMINACY). I f P  a a , Q and P ~ R then Q = R. 

Note, however, that  we do not have Wang's 'time persistency', because our prefixing 
primitive l:P will offer an l at time O, but  not at any later time. We are allowing 
p t 0  Q as a transition, though, so we need an extra axiom. 

AXIOM 4 (ZERo DELAY). P t 0  p 

This is a matter  of style, and is used because it makes the transition rules simpler. 
We can now give the transition rules for each of the operators. These semantics 

are the same as Wang's, with the exception of prefixing, and some technicalities to 

do with transitions of the form P t0, p .  
To begin with, a prefix c~:P can either do a a action immediately, or walt for no 

time. Also, the process l:P can wait and become 0. Note that  the only transition 
& P h a s i s & P  t 0  &p.  

It # o] a : P  a ) p  # : p  to a .... ) # : P  l : P  , 0 

Note that  we insist l:P a , 0 rather than Wang's l .P a l.P. It is this crucial 
difference that  allows us to find a complete axiomatization for our language. The 
rules for d~lay are, however, similar to Wang's. 

p a p~ , P ~'~ p' 

eO:P ~ ' P'  r + u):P a ,  eu:P et:P ~(*+~) P' 

As is the rule for summation. 

P ' ~ P '  [ P E P ]  p a Q 
E p  '~, p ,  Ep__a_.~ E Q 

Here P tl, Q VP e P .  3Q e Q. P a a , Q and VQ E Q . 3 P  e P . P , Q. 
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The only real problem, as in [Wan91] is how to deal with parallel composition. It 
is easy to give the rules for when each side can perform an action, as these are just  
Milner's rules from [Mi189]. 

p ~ p ,  Q, ~ p ,  r Q, , Q ~ ,  p , Q , 

p [ Q  ~ , p , [ Q  p [ Q  ~ , p [ Q ,  p [ Q  L , p , [ Q ,  

The problem comes with delay. It is not true that  if P a ~ p ,  and Q a ~ Q~ then 
p ] Q  a p,[Q,.  For example, a:Pl-ff:Q can do a r action, so by the assumption 
of maximal progress, it cannot do a time transition. 

The solution, as in [Wan91] is to look at the initial actions that  a process can do 
before time t. If no communication is possible, then we can allow a time t transition 
to take place. 

Define inits P to be the initial actions of P together with the times they axe 
available. If (t, c~) E inits P and P can wait for time t then P can do an a at time t .  

DEFINITION 12. 

inits o~:P = {(0, c~)} 

inits6:P = 0 

inits et:P = {(t + u, a) [ (u, ~) E inits P} 

inits ~. 7 9 = U{inits P[ P E 79} 

inits P I Q = inits P u inits Q u { ( t, r) ] (t, l) E inits P A ( t, i) E inits Q} 

Then we can say a process is stable until t if no r action can happen before t. 

DEFINITION 13. P ~ t iffVu < t.  (u, T) r inits P. 
So we can give a side-condition on the rule for parallelism to make sure that  we a r e  
not breaking maximal progress. 

p a p, Q ~.!, Q , [ p I Q  s t] 
PIQ ~" P'IQ' 

We have now defined the transition system (LTCCS, ~, ~). All we have to do now 
is ensure that  it respects our axioms for timed transition systems. 

LEMMA 14. The transition system (LTCCS,~, ~) satist~es Axioms 1-4. 

PROOF. A variant of [Wan91], except for Axiom 4, which is an induction, ra 

5 Bis imulat ion 
Following [Mf189] and [Wan91], we can define a strong bisimulation (from now on 
just  bisimulation), which we shall use as our equivalence on LTCCS. 
DEFINITION 15. A relation T~ is a bisimulation iff, for every P 7~ Q: 

* i f P  r P' , P' then 3Q' . Q a Q, and T~ Q', and 
, i f Q  ~ Q ' . ~ p, p, Q'. ~ then 3P' P , and Tr 

We shall then say P and Q are bisimilar iff there is a bisimulation which identifies 
them. 
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DEFINITION 16. P ~ Q iff there is a bisimulation T~ such that P T~ Q. 

We then have to show that ~ is a congruence. 

LEMMA 17. ~ is a congruence. 

PROOF. A variant of the proof in [Wan91]. [2 

6 C o n s i s t e n c y  

We now have two notions of equivalence on L T C C S - - t h e  laws which prove I- P - Q, 
and the bisimulation equivalence P .~ Q. We would like to show that  these are in 
fact the same thing, i.e. that they axe consistent and complete. To begin with, we 
can see that  our laws axe consistent. 

THEOREM 18. If  F- P = Q then P .., Q. 

PROOF. This is a matter  of showing that all of our laws are sound. In each case we 
construct a relation T~ containing our law, and show that  it must be a bisimulation. 
Again, most of our laws are contained in either [Mi189] or [Wan91], bu t  we shall 
prove some of the more interesting ones here. 

For sum continuity, assume that for every Q 6 Q there is a bisimulation T~Q 

containing (P, P + Q). Then define PL and Q~ such that  P eL, Pt and Q e~ ~ Qt, 
and Qz as {Qt [ Q 6 Q}. Then define 7~ as: 

n = U{n l Q e e }  u { ( P ,  P, + E Q,) I t e T}  

By a simple case analysis, R is a bisimulation, and so since by zero delay and time 
determinacy, P0 - P and Q0 = Q, we have shown sum continuity to be sound. 

For the expansion law, assume: 

P = E { e t i : # i : P i l i  e I }  

Q = ~-~.{euj:yj:Qj [ j  e J}  

and define: 

P,  = E{ u:,i:Pl I i e 1 ^ t + u = ti} 

Qt = ~_,{eu:vj:Qj [ j e Z A t  + u = uj} 

R, = E{eu:t~,:(P~ I Q,,) I i E I A t + U = ti} 

+ E{r I Q~) I J e J A t + u = ui} 

+ ~'~{eu:r:(Pi l Qj) [ i e l A j e J A ti = uj A ~ = vj} 

It is a straightforward case analysis to show that  I U {(P~ I Qt, Rt) [ t E T}  is a 
bisimulation, and therefore Po I Qo "" Ro. However, Po = P ,  Qo - Q, and Ro is the 
rhs of the expansion law. El 

? C o m p l e t e n e s s  

We can now turn to the meat of this paper - - the  proof that  Laws 1-10 are complete, 
so if P ,., Q then b P = Q. As usual, we shall find a normal form which we can 
transform all of our agents into, and then show that any equivalent normal agents 
must be identical. 
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DEFINITION 19. P is in summand form f l i t  is of  the form: 

P -- E { e t i : ~ i : P i l i  6 I }  

where each of the Pi a r e  in summand form. 

This is not a normal form, since ~-].{E0:r:P} and Y~'~{e0:T:P, r are bisimilax, 
and both axe in summand form. However, it is a step towards a normal form, and 
every agent can be transformed to one in summand form. 

LEMMA 20. I f  P and (2 are in summand form, then there is an R in summand 
form such that k P IQ = R. 

PrtooF (BY INDUCTION ON P AND Q). Assume: 

P =- E{cti:t t i:P,[ i 6 I }  

Q - E { e u i : u i : Q i l j  e J }  

and define: 

P t -  

Qt - 

then by the expansion law: 

~-~.{eu:#i:Pi [ i E I A t + u = ti} 

t- P IQ = ~{c t i :m: (P i lO , , )  [ i ~ I }  

By induction, we can find summand forms for P/ [Q, , ,  P,j I Qj and/9i  [Q j, and so 
we are finished. I::1 

LEMMA 21. For any P,  there is a Q in summand form such that I- P = Q. 

PROOF (BY INDUCTION ON P) .  

P = #:P'  By induction, there is an Q' in summand form such that  I-- P '  = Q~. By 
sum unit and zero delay, F- P = ~ e0:#:Q', which is in summand form. 

P =_ et:P' By induction, we can show I- P '  = ~-'~{6t~:/Ji:P/[ i 6 I}  and so by time 
continuity and time determinacy, t- P = ~ { e ( t  + ti):l~i:Pi [ i E I} .  

P - ~-']~{~ [ i 6 I} By induction, for every i 6 I we can find a ~ Qi ill sumrnazld 
form such that  I-" Pi = ~ Q~. Then by sum homomorphism, b P = ~ I.J{ Qi [ 
i 6 I} which is in summand form. 

P = P1 [ P2 By induction,/~ and P2 can be transformed into summand form, and 
so by Lemma 20, P can be transformed into summand form. D 

We can now define the normal form we've been looking for. 

DEFINITION 22. P is in normal form ff it is of the form: 

P - ~-~{eti:lti:Pi [ i e I }  

where: 

�9 each of  the Pi are in normal form, 
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* f f # i = r  t h e n 3 j . t i = t j A a j = 5 ,  and 

�9 f f~ i  = 6 then Vj .  tj < ti and Pi - O. 
This is the same as summand  form, except we insist on maximal progress, remove 
any actions which happen  after a tirae-stop, and insist tha t  all t ime-stops axe of the 
form di:O. For example ~,{cO:T:P} is not in normal form, bu t  ~{e0:7":P, e0:6:0} is. 
We can now show tha t  any agent in summand  form can be converted to normal  form. 
LEMMA 23. I f  P is in summand form, then there is a Q in n o r m a / f o r m  such that 
I - P = Q .  

PROOF. Assume: 

P =- ~{c t i :# i :Pi l  i E I}  

then by induction we can find Qi in normal  form such that  I- Pi = Qi. Define: 

I u  = { i E I [ # i E i }  

If I(~,~} is empty, then  P = ~{ct i:#i:Qi},  which is in normal  form. Otherwise: 

t6 = inf{ti l i e I1~,6}} 

J = { j  e Is I t~ < t ,}  
Q - E({st~:t~:q~ I J ~ J} u {ct~:6:o}) 

Then for any i E I \  J ,  there axe two possibilities. If ti _< t~, then  from the definition 
of J this is only possible if t i ~- t 6 and ~i = 6. Then: 

~ q = Q + E{6t6:6:o} 
= Q + ~(inf{t~}):&qi 

= Q + gti:iti:Qi 

Otherwise, if t6 < ti, there is some t ~ 0 such that  t~ + t = ti. Then: 

t- Q = Q + c t 6 : & 0  

So: 

~ Q  

= Q + ct6:(6:0 + ct:#i:Qi)  

= Q + ct6:6:0 + et:6et:lti:Qi 

= Q + 6t6:6:0 + ~t:ilzi:Qi 

= Q + et:i#i:Qi 

= Q + E{sti:#i:Qi l i ~ I \ J}  
= ~_j{6ti:#i:Qi I i E i r} + ~t6:6:0 

= ~ { e t i : # i : P i  I i E I}  + ct6:6:0 

= P + ct6:6:0 

= P + e(inf{ti I i E I{~,6}}):6:0 

= P +  ~-]{cti:6:Pili E I{~,6}} 

(sum laws) 
(time-stop continuity) 

(definition of inf) 
(above) 

(sum laws) 

(time-stop) 

(time determinacy) 

(time continuity) 
(sum laws) 

(sum continuity) 

(sum laws) 

(definition of Qi) 

(definition of P)  

(definition of t6) 

(time-stop continuity) 
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= P q- ~{ct i :6:Pi  

= P + ~{et i:6:Pi  

= P + ~{e t i : z :Pi  

= P +  ~{e t i :w:P/  

= P 

I i e I{6}} + E{eti:6:Pi ] i e I{r}) 
I i e I{~}) 
l i e I{,}} + E{et i :&Pil i  e I{,}) 
I i e I{,-}} 

So I- P = Q, and  Q is in normal  form. 

COROLLARY 24. For any P,  there is a Q in normM form such that I- P = Q. 

Finally, all we have to do is show tha t  our normal  form is indeed normalizing. 

LEMMA 25. I f  P ~,, Q are in normal form, then P = Q. 

PROOF (BY INDUCTION ON P AND Q). Assume: 

P =_ ~ 7 9  

.7 9 = {eti:#i:Pi I i E I }  

Q - E Q  
Q = {eu~:ui:Q ~ [j E J} 

(sum laws) 
(definition of I{6}) 

(definition of I{r}) 

(maximal  progress) 

(definition of I{r}) 
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