
M e c h a n i c a l l y  C h e c k e d  P r o o f s  o f  
K e r n e l  S p e c i f i c a t i o n s  *$ 

Wil l i am R .  B e v i e r ~  J O r g e n  F .  S o g a a r d - A n d e r s e n  �82 

Abs t r ac t  

This paper describes an experiment in the use of the Boyer-Moore logic to spec- 
ify a non-finite state operating system kernel, and in the use of the Boyer-Moore 
theorem prover to prove the correctness of an implementation. The kernel specifica- 
tion had first been given in terms of a labeled transition system. It was transcribed 
into the Boyer-Moore logic so that an attempt could be made to mechanically check 
correctness proofs. 

Keywords :  Kernel, mechanical proof checking, Boyer-Moore Theorem Prover, stepwise devel- 
opment, labeled transition systems, safety properties. 

1 Introduction 
An approach to specifying a mult iprogramming kernel is given in [8]. It describes several 
levels of abstraction in the specification of a kernel implementing occam2-1ike [4] processes 
on a single machine. It  also explores the question of what it means for one level to be 
a correct implementat ion of another. The underlying semantic model used in [8] is the 
well-known notion of labeled transition systems (see section 2 below). 

This paper  describes an a t tempt  to use the Boyer-Moore logic to state the kernel 
specifications, and use the Boyer-Moore theorem prover to mechanically check proofs of 
correctness of kernel levels. The Boyer-Moore approach was chosen largely because of its 
use in an earlier kernel specification and implementation project described in [1]. 

Section 2 of this paper  briefly describes the notion of labeled transition systems and 
what it means for one transition system to be a safe implementation of another. Section 
3 describes the kernel specification given in [8]. The translation of the specification into 
the Boyer-Moore logic is discussed in Section 4. The correctness theorems are presented 
in Section 5. Section 6 contains some observations on this exercise. 

*This work was supported in part at Computational Logic, Inc., by the Defense Advanced Research 
Projects Agency, ARPA Order 7406. The views and conclusions contained in this document are those of 
the authors and should not be interpreted as representing the official policies, either expressed or implied, 
of Computational Logic, Inc., the Defense Advanced Research Projects Agency or the U.S. Government. 

~This work was also supported in part at the Technical University of Denmark by the C0mmision of 
the European Communities (CEC) under the ESPRIT programme in the field of Basic Research Action 
proj. no. 3104: "ProCoS: Provably Correct Systems" and by The Danish Technical Research Council 
under the "RapiD" programme. 

SComputational Logic Inc., 1717 W. 6th St. Suite 290, Austin, Texas 78703, emaih bevier@cU.com 
1lDepartment of Computer Science, Building 344, Technical University of Denmark, DK-2800 Lyngby, 

Denmark, email: jsa@id.dth.dk 



71 

This paper contains no introduction to the Boyer-Moore logic or its theorem prover. 
See [3] for this information. Anyone familiar with Lisp should have little problem following 
the presentation. We occasionally give what we hope are helpful footnotes. 

2 L a b e l e d  T r a n s i t i o n  S y s t e m s  

In [8] several levels of abstraction in the specification of a multiprogramming kernel are 
given semantics in the style of Plotkin's Structural Operational Semantics, SOS [7]. 

The method uses labeled transition systems (LTS) as the underlying semantic model. 
This is a way of describing the steps of a computer program during its execution and 
captures the intuitive understanding of a program as transitions between states. Formally, 

F ~ an LTS, S ~, where a is the program, is a quadruple ( a, I], ^ ] , -~- , ) ,  where ['~ is the set  

of states, I] is the set of initial states, A] is the set of labels, and s---~* is the transition 

relation (---* C I'] x A] x F]). A transition in S ~ is usually written c~ ~- s x_~ s' w h i c h  
S ~ -- 8 

denotes a transition from the state s to s' in the context of the program code a. A denotes 
the nature of the step. We shall return to this. Below we let a be a given program and 
omit it as index on LTSs and transitions. 

2 . 1  T h e  C o r r e c t n e s s  N o t i o n  

Since each level of abstraction in the kernel specification is described by a LTS, correctness  
of each step of development is expressed as a refinement relation between LTSs. In [8] 
this relation is divided into both a safety and a fairness part.  Here we concentrate on t h e  
safety part  based on simulation between LTSs 1. We say that a step goes from an abstract 
LTS to a concrete LTS (which is then abstract wrt. the next development step). 

Part  of the safety correctness notion deals with showing correspondence between con- 
crete and abstract transitions. Since we are only interested in investigating concre te  
transitions emanating from reachable states, it suffices to show the correspondence for 

transitions emanating from states satisfying an arbitrary concrete invariant 2. To relate 
concrete and abstract states the correctness notion requires the existence of an abstraction 
function, 7Z, mapping states of the concrete LTS to states of the abstract LTS. 

o 

D e f i n i t i o n  1 ( S A F E  i m p l e m e n t a t i o n )  

A concrete LTS C is a safe i m p l e m e n t a t i o n  of an abstract LTS ,4 i f  an abstraction 
function 7"s and a concrete invariant Zc ezist such that the followin# conditions hold: 

(i) (vs e e 

(ii) (Vs,s'e A e 
x s '  (A AA A R(s) ~ R(d)) V (A ~ AjI A 7~,(,) = T~(s'))) ( Ic(s)  A s > ~ �9 
c 

tSince the presentation in [8] includes a step of compilation, the correctness notion given there is more 
general than the one used here. 

lAn invariant is a predicate which is satisfied by all states reachable from an initial state. 



72 

Informally, the definition states that (i) all initial concrete states must have a corre- 
sponding initial abstract state, and (ii) each concrete transition (emanating from a state 
satisfying the invariant) with a label that exists at the abstract level must have an ab- 
stract counterpart, whereas new concrete transitions (indicated by new labels) must not 
change the abstract state. 

Since Definition 1 only requires simulation and not bisimulation [6] between the LTSs, 
an LTS with an empty transition relation is a safe implementation of any LTS. This 
inconvenience can be taken care of by introducing fairness into the correctness notion, as 
it is done in [8]. 

3 A K e r n e l  S p e c i f i c a t i o n  

Several levels of abstraction in the specification of the kernel, implementing multiple 
processes on a single machine, are described in [8]. The diagram below depicts some of 
the levels ranging from the most abstract at the top to the most concrete at the bottom. 

Assembly Language ~ 

Global Machine 

Kernel Level 1 

Kernel Level 2 

The Assembly Language level gives the abstract semantics of an assembly language where 
each process is considered to be running on its own machine. The Global Machine gives 
the semantics of processes running on one machine but without any explicit scheduling. 
The two Kernel Levels introduce kernel aspects like current process, ready queue, etc. 

This section describes parts of the GM and KL1 levels. These are given with a high 
degree of detail in order to show how the subsequent translation into Boyer-Moore logic 
corresponds to the specification given here. 

We first introduce an assembly language for a stack machine. 

3.1 A Sample Assembly Language~ SAL 
i 

Q* 

An assembly language program!s a (nonempty) list of process codes, each of which is a 
list of instructions. The instructions are partitioned into kernel instructions dealing with 
communication, and private instructions like jump etc. The instructions are inspired by 
the Transputer instruction set [5], i.e. we have synchronous communication on channels. 

SAI, = Process + (1) 

Process = Ins* (2) 

Ins = Kernellns l Privatefns (3) 
KerneUns = in( Ch) l ou~( Ch) l a l t (Al t s  ) (4) 

Privatelns = lde(  Const ) l s~ l (  Addr ) l j ~ P (  Labet ) (5) 

a l u  = (Oh1 • Zabet) + (6) 
Ch = N1 (r) 

Chl, Const, Addr, s = No (8) 



73 

We briefly describe a few of the  instruct ions.  The  i n  ins t ruct ion is used to input  a value to 
the  top posit ion of the s tack f rom a channel.  Correspondingly,  ou t  ou tpu t s  (and  pops)  the  
top value of the stack to a channel.  T h e  a l t  (a l ternat ion)  ins t ruct ion takes as p a r a m e t e r  a 
list of pairs.  The  first componen t  of a pair  is a channel number  (if this number  is zero, the 
guard  is considered to be  a SKIP guard) ,  and the  second componen t  is a label  (address)  
where execution should continue if t ha t  a l ternat ive  is chosen. 1de pushes a cons tan t  onto 
the  stack, s t 1  stores the top value of the  stack in workspace,  and jump changes the  flow 
of control within a process. In the remainder  of this paper ,  a is a given S A L  program.  

3.2 T h e  Global Machine, GM 

The  private  s ta te  of each process in GM is given by Pstate. I t  consists of  a workspace,  a 
stack,  an ins t ruct ion pointer ,  and a s ta tus .  

Pstate = Workspace x Stack X Ip  x Status (9) 

Wovkspace, Stack = No* (10) 

Ip = N0 (11) 

Status = ready I error (12) 

A sta te  in the GM LTS is s imply a list 3 of pr ivate  process s tates .  The  length  of the  list 
is the same as the  length of the  list of process codes. A process code is then  connected 
with its s ta te  via the index into the  lists. In an initial s ta te  each process has an e m p t y  
stack and a ready s tatus ,  and its ins t ruct ion pointer  is zero. 

ram = { < s o , . . . , s , > [ n = l e n a - l h s i E e s t a t e }  (13) 

IGM = {<so , . . . ,  s , >  C ram I s-Stack(si) = < >  A s-Ip(si) = 0 A s-Status(si) = ready} (14) 

AGM = {1"(i) ] 0 < i < lenot}  U {ch: v ( i , j )  [ ch E Ch A v E I~Io A 0 < i , j  <: lena} (15) 

The  funct ion s-Stack selects the s tack componen t  f rom a s ta te .  Similarly, s-Ip and 
s_.=Status select the  ins t ruct ion pointer  resp. the s ta tus  field. A label  r ( i )  denotes t ha t  the  
i th  process is executing a pr ivate  ins t ruct ion,  whereas eh : v ( i , j )  denotes  tha t  process i 
sends the value v on channel  ch to process j .  

We describe some of the  t ransi t ion rules which define the  t rans i t ion  relation. Here is 
the  t ransi t ion rule for the  jump instruct ion.  

a[i][s_=Ip(si)] .= jump(lab) (16) 
I 

<so , . . . , s i , . . . , sn>  r(~)~ < s o , ' " , s i , ' " , S n >  GM 
i f  0 < i < n A  

let ( wsi, sti, ipi, stati ) = si ha 
stati = ready A ipi < lena[i] A 
s i (wsi, sti, lab, stati) 

aList notation: A list with elements ao, . . . ,  an is written <no, . . . ,  a ,> .  <> is the empty list. If I is a 
list, then hell, tll, and lenl denote head, tail, and length of I respectively, l[i] accesses the ith element 
of I with l[O] being the head element, l + [i ~-~ v] replaces the ith element of I with v. Concatenation of 
11 and 12 is wri t ten 11^12. 



74 

In order for the transition below the line to be possible, the condition above the line and 
the side condition (after if) must both be satisfied. 

This rule states that  any process whose instruction pointer points to a jump instruction 
and whose status is ready can make a step in which the instruction pointer is changed to 
the label in the instruction. Only the state of the chosen process is changed. 

The following rule defines synchronous communication between two processes. 

a[il[s_.=Ip(si)] = in(ch) a[jl[_s.:Ip(sj)] = ou*,(eh) (17) 
ch:~(j,i~ t t 

< S O ~ ' ' ' ~ S i ' ' ' ' ~ S J ~ ' ' ' ~ S n >  GM < 8 0 ~ ' ' ' ' S i ~ ' ' ' ' S J ~ ' ' ' ~ S n >  

i f  O < i < n A O < j < n ^  
let (wsi, stl, ipl, stati ) = si, ( wsj, stj, ipj, statj ) = sj in  

stati =readv A statj = ready ̂  
ipi < lena[i] ^ ipj < lena[j] ^ 
lenst j  > 0 ^ v = hdst j  A 

s~ = ( wsi, < v >'sti,  ipi + 1, statl ) ^ 
s~ = ( wsj, f lst j ,  ipj + 1, statj ) 

This rule defines transitions from states where two processes are ready to execute an i n  
resp. an out  instruction on the same channel, and the outputting process has a nonempty 
stack. The resulting states are obtained by incrementing the instruction pointers of the 
two processes and moving the value from the top of the stack of the outputt ing process 
to the top of the stack of the inputting process. 

The complete definition of the transition relation at this level consists of nine rules 
including rules dealing with errors, like a process trying to output  with an empty stack. 

3 . 3  T h e  K e r n e l  L e v e l  1 ,  K L 1  

At the KLx level we introduce explicit process scheduling. To do this we add a kernel  
s tate  consisting of a current  process identifier and a #lobal ins t ruc t ion  pointer .  The private 
instruction pointer is then only used to store the global instruction pointer when the 
process is not current. We also introduce an explicit waiting status denoting that a 
process is waiting to communicate. 

Ksta te l  = 

Pstate l  = 

Id = 

S t a t ~ l  = 

ZdxZp 
Workspace x Stack x Zp x Statusl 

No 
Status waitine 

(18) 
(19) 
(20) 
(21) 

A state of 

['KL1 -'= 

IKL 1 : 

AKL l = 

the KLt LTS now includes a kernel state and a list of private process states. 

{(ks ,ps i )  [ks E Ksta te l  A psl E Pstate l  + A l.~.~sl = lena} 

{(( id,  ip) ,psl)  E I'Krx l ia = Oh ip = OA 

(V(ws, s t ,pip,  stat) E psl)(st  = <> ^ p i p  = O A star = ready)} 

{v(i),~(i),~ I 0 < i < lena} U 

{ ch : v( i, j ) l ch E Gh A v E No A O < i, j < l e n a  } 

(22) 
(23) 

(24) 
(25) 



75 

The new label to(i) denotes that  the kernel is performing a step in the i th process. Atr 
label denotes a process switch transition (see below). 

In the complete definition of the KL1 transition relation, 14 transition rules are needed. 
In this section we present only a few. Here is the KL1 jmr~ transition rule. 

a[ i][ ip] = jurav( lab ) (26) 

((i, ip),p.t) -(o ~--T ((i, ip'), pa)  

if let (ws~, s t .  ipi, stati) = psi[i] ha 
stati = ready Aip < lena[i] A 
i f  = lab 

This rule is similar to rule (16) at the GM level. Note, however, that  the jump transit ion 
at this level changes the global instruction pointer. 

At the GM level one transition rule is required to specify the synchronous communica- 
tion transitions. Here, several transition rules are needed. We only show the rules where 
the current process wishes to execute an in  instruction. 

If  the current process wishes to execute an in  instruction and another process is 
already waiting to output  on the same channel, the communication can be performed. 
Part  of the state change is to give the waiting process a ready status. 

a[i][ip] = in(ch) (27) 

((i, ip ), psl)  eht,(j',i)) ( ( i, ip'),  psl ' )  
a l l  

if  l e t  (wsi, sti, ipi, stati ) = psl[ i] ha 
stati = ready A ipi < len.......a[i] ̂  
(30 _< j < !m~st) 

( let  ( wsi, sty, ipj, stati ) = pslLi] ha 
star i = waiting A a[J][iPi] = out(ch) ^ 
v = bs!s t j  ^ j '  = j ^ 

ip' = ip + l A 
ps l '=  ps l+  [ i H ( wsi, < v >'stl ,  ipi, statl ), 

j ~ (~ ,s j , f l s t~ , ip j  + t, ready)]) 

If, on the other hand, another process is not waiting to output  on the same channel, 
the current process is given a waitinz status. Such transitions have no GM counterparts.  

ct[il[ip] = 2n(ch) (28) 
~(i) 

((i, ip),psl) ~ ((i,  ip),psl ')  
KIA 

if  let ( wsi, sti, ipi, stati ) = psl[ i] ha 
stati = ready ^ ip < lena[i] A 
-~(30 <_ j < leaps/) 

( let  ( wsi, sti, ipi , stati ) = psl[j] ha 
stat~ = waiting A 

aL/l[ipi] = ou~(ch)) ^ 
psi' = p s l  + [i ~ (llJsi, sti, ipi,waiting)] 



76 

Since we have introduced the notion of current process at the KL1 level, we need transitions 
to introduce a new current process. The next transition rule defines such process switch 
transitions. The global instruction pointer is stored in the private state of the old current 
process and then restored from the private state of the new current process. 

( ( i, ip ) , psl ) ~ ( (j , ip' ), psl' ) (29) 
KL1 

if 0 < j < lenvsl /x  
i T ~ j A  
s-Stat(psl[j]) = ready A 
ip' = ~-Ip(pst[j]) ^ 
let  ( lOSi, sti, ipi, statl ) in 

ps l '=  ps l+  [ i H ( wsl, stl, ip, stati )] 

4 Translation into the Boyer-Moore  Logic 

In this section we describe the translation into the Boyer-Moore logic of the specification 
for the GM and KLI  levels. We follow an approach to modefing finite state machines 
similar to that described in [2] (even though the specifications described here are non- 
finite state). A state set is defined by a predicate which recognizes elements of the set. An 
LTS transition rule is translated into a predicate which determines if a transition defined 
by the rule is possible in the given state, and a function from the state to a list of labeled 
states, which represents the set of possible resulting states. It is necessary to return a 
list since a transition rule generally defines several transitions emanating from the same 
state. In all the examples shown below the lists are, however, of length one. 

4 .1  T h e  G l o b a l  M a c h i n e ,  G M  

The state of a GM process is defined in the Boyer-Moore logic by two events 4. The add- 
shell event p s t a t e  defines a record structure s. It carries the information contained in 
Equation (9) - -  that the state of a GM process contains a workspace ( , s ) ,  stack (s t ) ,  
instruction pointer (• and a status field ( s t a r ) .  In addition, we have made the process's 
code (pr) a part of its state. 

(add-shell pstate nil pstato-shell 
((ws (none-of) false) 
(st (none-of) false) 
(ip (none-of) false) 
(star (none-of) false) 
(pr (none-of) false))) 

The predicate gm-ps ta tep  imposes type restrictions on the fields of a p s t a t e .  A GM 
process must satisfy the requirements that the workspace and stack are lists of numbers, 

4We use the term event to refer to function definitions, lemmas, etc. which have meaning in the 
Boyer-Moore logic. 

SAn a d d - s h e l l  introduces a new data type. The first argument gives the name of  the constructor 
function for the type. The third argument identifies the recognizer for objects of this type. The fourth 
argument is a list of the fields. Each field is a triple (fieldname recopnizers defaultvalue). The ( n o n e - o f )  
notation used in this example indicates no type restriction. 



77 

the instruction pointer is a number, and the status is one of the literals { r eady ,  error}. 
The function g m - s t a t e p  captures the requirements contained in Equations (10)-(12) of 
Section 3.2. In addition, the program must s~tisfy the predicate processp, processp 
expresses the well-formedness of a process's code as described in Equations (2)-(8).  

(defn gm-pstatep (x) 
(and (pstaCe-shell x) 

(every-numberp (wsx)) 
(every-numberp (st x)) 
(numberp (ip x)) 
(member (star x) '(ready error)) 
(prooessp (pr x)))) 

The GM state space is a list of GM processes. This is recognized by the predicate 
g m - s t a t e p ,  which requires its argument to be a non-empty list of g m - p s t a t e p s .  This 
corresponds to Equation (13). 

(defn gm-statop (gm) 
(and (every-gm-pstatop gm) 

(listp gm))) 

In addition to this a predicate gm-initial-statep must be defined which captures the 
meaning of Equation (14). 

We define transition rules in the logic with two functions as explained above. One is 
a predicate which characterizes the enabling condition of a transition rule. The other is 
a function from a GM state to a list of cons pairs. The c a r  of each pair is a label and 
the cUr is a GM state. 

The  translation of rule (17) is described as follows. The predicate g i n - i n - o u t - e n a b l e d  
recognizes the enabling conditions for a GM in-out transition. The arguments to this 
predicate are a GM state gm and process identifiers i and j .  The predicate requires the 
i t h  process to be in a ready state with its instruction pointer addressing the in  instruction, 
and the j t h  process to be ready to do an output  with a non-empty stack. Furthermore,  
they must be communicating on the same channel, s 

(defn gin-in-out-enabled (gin i j) 
(let ((pi (nth i gm)) 

(pj Cnt~ j gm))) 
(and (lessp i (length gm)) (lessp j (lengeh gm)) 

(equal (star pi) 'ready) (equal (star pj) 'ready) 
(lessp (ip pi) (length (pr pi))) (lessp (ip pj) (length (pr pj))) 
(listp CAt pj)) 
(let (Cinstri (gm-fetch pi)) Cinstrj (gm-fetch pj))) 

(and (equal (opr instri) 'in) (equal (opr instrj) 'out) 
(equal (arg instri) (arg instrj))))))) 

SHere are a few of the primitive functions defined in the Boyer-Mooze logic upon which this specification 
is based. (length 1) returns the number of (top-level) elements in list 1. (nth i 1) fetches the tth 
element (zero based) from 1. (put i v 1) replaces the ith element of 1 with v. 



78 

The communication transitions are now defined by g r a - i n - o u t - t r a n s i t i o n .  As indicated 
by rule (17), it returns a list containing only the pair ( ( t a u  i )  . s ' ) ,  where s '  is the 
state resulting from the transition. The top value is popped from j ' s  stack and pushed 
onto i 's.  The instruction pointer of both processes is advanced by 1. Both processes 
remain ready. 

(defn gm-in-out-transiZion (gm i j) 
(le~ ((pi (nth i gm)) (pj (nth j gm))) 

(let ((instri (gm-fetch pi)) (instrj (gm-fetch pj))) 
(list (cons (list 'comm j i (arg instrj) (car (st pj))) 

(put i 
(pstate (ws pi) 

(cons (nth 0 (st pj)) (st pi)) 
(addl (ip pi)) 
(star pi) 
(pr pi)) 

(put j 
(pstate (ws pj) 

(nthodr 1 (s t  pj))  
(add1 (ip pj)) 
(star pj) 
(pr pj)) 

gm))))))) 

Compare these definitions with rule (17). The predicate g in- in-out -enabled  contains the 
requirement which occurs above the inference line (that i ' s  current instruction is in,  and 
j ' s  current instruction is out),  as weU as requirements described in the side condition. 

The side condition in (17) is used in part to describe the details of the transitions de- 
fined. These aspects of the transition rule occur in the function g i n - i n - o u t - t r a n s i t i o n .  

4 . 2  T h e  K e r n e l  L e v e l  1,  K L 1  

The kernel level KL1 is described in the Boyer-Moore logic in the same style as the GM 
level. The KL1 state space is defined by a shell k l ,  and a predicate k l - s t a t e p  which 
imposes type restrictions on the KL1 fields. Recall that KL1 introduces explicit process 
scheduling by including a current process id kid,  and a global instruction pointer k ip  for 
the current process. The ps l  field is a list of KL1 private process states. A private state 
at this level differs from a GM private state only in that  a new process status wa i t i ng  is 
introduced. 

(add-shell kl nil kl-shellp 
((kid (one-of numberp) zero) 
(kip (one-of numberp) zero) 
(psl (none-of) false))) 

(defn kl-s~atep (x) 
(and (kl-shellp x) 

Ckl-pstate-listp (psl x)) 
(listp (psl x)))) 



79 

Here is the translation of the KL1 transition rule (27). Such a communication transition 
is enabled if the current process is ready to receive on a channel, and some other process 
is waiting to send on the same channel. In place of the existential quantifier, we write a 
recursive function, here called some-process -pow-chmmel ,  which recognizes when some 
process is in the enabling in-out relation with the current process. 

(defn kl-in-out-enabled (s) 
(let ((p (nth (kid s) (psl s)))) 

(and (equal (star p) 'ready) 
(lessp (kip S) (length (pr p) ) )  
(let ((instruction (kl-fetch s))) 

(and (equal (opr instruction) 'in) 
(some-process-pow-channel (psl s) (are instruction))))))) 

k l - i n - o u t - t r a n s i t i o n  describes the transition on the current process and on a process 
j which is sending to the current process. 

(defn kl-in-out-transition (s j) 
(let ((pi (nth (kid s) (psl s))) (instri (kl-fetch s)) (pj (nth j (psl s)))) 

(let ((instrj (nth (ip pj) (pr pj)))) 
(list (cons (list 'comm j (kid s) (arg instrj) (car (st pj))) 

(kl (kid s) 
(addl (kip s)) 
(put (kid s) 

(pstate (ws pi) 
(cons (nth 0 ( s t  p j ) )  ( s t  p i ) )  
(ip pi) 
( s t a r  pi) 
(pr p i ) )  

(put j 
(ps t a t e  (ws pj)  

(nthcdr 1 ( s t  p j ) )  
(add1 ( ip  p j ) )  
'ready 
(pr p j ) )  

(psi s ) ) ) ) ) ) ) ) )  

5 T h e  C o r r e c t n e s s  T h e o r e m s  

A correctness theorem for each KL1 transition rule was derived from Definition 1 in Section 
2.1. A mapping function map defines the abstraction from a KL1 state to a GM state. 
The abstraction changes the status of every waiting process to ready.  The current KL1 
instruction pointer is installed into the state of the current process. The KL1 instruction 
pointer and current process identifier vanish in the mapping. 

(defn map-pstate (p) 
(pst~te (ws p) (st p) (ip p) ( i f  (equal (star p) 'error) 'error 'ready) 

(pr p))) 



80 

(defn map-states (1) 
( i f  ( l i s t p  1) 

(cons (map-pstate (car  1)) (map-pstates (cdr 1) ) )  
nil)) 

(defn map (kl)  
( l e t  ((p (nth (kid kl)  (map-pstates (ps l  k l ) ) ) ) )  

(put (kid kl)  
(ps ta te  (ws p) ( s t  p) (kip kl)  ( s t a r  p) (pr p))  
(map-pstates (psl  k l ) ) ) ) )  

Using this mapping function, we state a palr of correctness theorems for each transition 
rule in KL1. The first theorem requires that a GM transition is enabled if the corre- 
sponding KL1 transition is enabled. Here is an example of this theorem proved for the 
communication transition rules. This theorem says that for a valid KL1 state s (as defined 
by k l - s t a t e p ) ,  a GM communication transition is enabled on the mapping of s if the 
KL1 communication transition is enabled on s. 

(prove-len~a gm-in-out-enabled-map 
(implies (and (kl-statep s) 

( inv-k l  s) 
(k l - in -ou t -enab led  s) 
(chaunel-wo-process (arg ( k l - f e t c h  s))  j (ps l  s ) ) )  

(gm-in-out-enabled (map s) (kid s) j ) ) )  

A second theorem states the correctness of the transition. Let s be a valid KLI state on 
which a communication transition is enabled~ and let s l  be a possible outcome of such a 
transition on s. ( s l  is a ( l a b e l  . s t a t e )  pair.) Then the pair ( l a b e l  . (map s t a t e ) )  
is a possible outcome of the GM communication transition performed on (map s) .  

(prove-len~aa kl-in-out-correctness 
(implies (and (kl-statep s) 

(inv-kl s) 
(kl-in-out-enabled s) 
(member sl (kl-in-out-transition s j)) 
(channel-wo-process (ar E (kl-fetch s)) j (psl s)) 
(numberp j)) 

(member (cons (car  s l )  (map (cdr s l ) ) )  
(Em-in-out-transition (map s) (kid s) j)))) 

i n v - k l  is the invariant on reachable KL1 states which we use throughout the correctness 
proofs. It contains the fact that any process waiting to output  has a non-empty stack, and 
that  the kernel's current process identifier is "valid", i.e. identifies an existing process. 

The KLl l  process switch transition (29) has no corresponding transition at the GM 
level. We prove that this transition is invisible at the GM level. This is contained in the 
theorem k l -  swit  c h - c o r r e c t n e s s .  



81 

(prove-lemma kl-swit oh-correctness 
(implies (and (kl-s~a~ep s) 

(numberp z) 
(inv-kl s) 
(kl-switch-enabled s z) 
(member sl (kl-swi~ch-~ransi~ion s z))) 

(equal (map (cdr sl)) 
(map s)))) 

The correctness theorems above are all derived from (ii) of Definition 1. The theorems 
are stronger than (ii) since, given a GM transition, we only search for a corresponding 
KL1 transition among transitions defined by a certain rule. This is, however, also the way 
a hand proof would be done. 

The correctness theorem for (i) of Definition 1 is simply 

(prove-lemma initial-correctness 
(implies (kl-initial-statep s) (~m-initial-statep (map s)))) 

For each KL1 transition which has a corresponding GM transition, we completed a proof 
of correspondence of the enabling condition and the transition rule. Where a KL, transi- 
tion has no corresponding GM transition we completed a proof that  the transition rule is 
invisible at the GM level. The simple measure of the size of our script, 162 function defini- 
tions and 287 proved lemmas, should be taken as an upper  bound on the size necessary to 
complete the project, since we experimented with a macro language for the Boyer-Moore 
theorem prover. 

6 O b s e r v a t i o n s  

The purpose of this experiment was to discover if the kernel specifications given in [8] 
could be translated in a satisfactory way into the Boyer-Moore logic, and to discover how 
difficult the correctness proofs would be. 7 

We feel that  the translation was a success. There was little problem defining functions 
in the logic which capture the meaning of the specification given in terms of a labeled 
transition system. Also, the correctness theorems as expressed in the logic were clearly 
instances of the correctness notion developed for relating LTSs. 

The correctness theorems were a good candidate for mechanical checking. Their  proofs 
involve many cases, none of which are very difficult. Hand proofs of these theorems are 
mistake-prone. In fact, only a few had been a t t empted  by hand because of the tedium 
involved in writing them down. 

A number of similar mapping proofs have been previously checked with the theo- 
rem prover [2], all involving much more complicated mappings from concrete to abstract  

7We hope that the comments about the prover in this section are intelligible. One point worth noting 
is that one of the central proof strategies used by the theorem prover is term rewriting. The user builds 
up a database of facts by stating lemmas of the form H --* L = R. An instance of I win be rewritten to 
the corresponding instance of R if condition H holds. A user can give the theorem prover hints indicating 
which rewrite rules to apply or which ones to ignore. Alternatively, the user can just let the theorem 
prover try every applicable rule in the current database. 



82 

machines. We expected the KL1 correctness proofs to be straightforward exercises, par- 
ticularly considering that one of the authors is an experienced user of the Boyer-Moore 
prover. This expectation was only partially realized. Some of the proofs, particularly 
those concerning the I/O transition rules, were far more difficult than we expected. This 
is disappointing, since the reasoning steps seem elementary when done by hand. 

The proofs of the private transition rules were simple and followed a pattern familiar to 
users of the Boyer-Moore prover. The first proof took some effort, but proofs of subsequent 
private transition rules were structured in a way similar to the first. These proofs were 
easily accomplished simply by adjusting the set of supporting rewrite lemmas. 

The difficult proofs involved reasoning about specifications where existential quanti- 
tiers over process identifiers occur in the LTS version. The existential quantifiers were 
replaced by recursive functions in the Boyer-Moore translation, thereby introducing an 
additional level of recursion. We made several attempts before we achieved a formulation 
that was clear enough to incorporate into the prover's rewrite algorithm. Our solution also 
involved creation of a more complete set of lemmas for the supporting theories, primarily 
lists, than we had before. 

Is it worthwhile to expend such effort in solving problems of prover control? Our 
experience is that it is. The base theories which are developed and the insight gained into 
the problem domain pay off whenever a related problem is addressed. 

Acknowledgement :  We would like to thank Bill Young of Computational Logic for his 
contributions in formulating the Boyer-Moore version of the kernel specifications. 

R e f e r e n c e s  

[1] William R. Bevier. Kit: A study in operating system verification. IEEE Transactions 
on Software Engineering, 15(11):1368-81, November 1989. 

[2] William R. Bevier, Jr. Warren A. Hunt, J Strother Moore, and William D. Young. 
An approach to systems verification. Journal of Automated Reasoning, 5(4):411-428, 
December 1989. 

[3] R. S. Boyer and J S. Moore. A Computational Logic Handbook. Academic Press, 
Boston, 1988. 

occam2 Reference Manual. Series in Computer Science. Prentice [4] INMOS Limited. 
Hall, 1988. 

[5] INMOS Limited. 
Hall, 1988. 

Transputer Instruction Set: A compiler writer's guide. Prentice 

[6] Robin Milner. Communication and Concurrency. Series in Computer Science. Pren- 
tice Hall, 1089. 

[7] G. D. Plotkin. An operational semantics for CSP. Formal Description of Programming 
Concepts - II, pages 199-225, 1983. 

[8] Camilla q)sterberg Rump and Jergen F. Sr Specification and verifica- 
tion of kernels. Master's thesis, Department of Computer Science, Technical University 
of Denmark, August 1990. 


