
Dynamic Typing*

Fritz Henglein
University of Copenhagen

Universitetsparken 1
2100 Copenhagen 0

Denmark
Internet: henglein@diku.dk

Abs t r ac t

We present an extension of a statically typed language with a special type dyn and
explicit type tagging and checking operations (coercions). Programs in run-time typed
languages are viewed as incomplete programs that are to be completed to well-typed
programs by explicitly inserting coercions into them.

Such completions are generally not unique. If the meaning of an incomplete program
is to be the meaning of any of its completions and if it is too be unambiguous it is nec-
essary that all its completions are coherent (semantically equivalent). We characterize
with an equational theory the properties a semantics must satisfy to be coherent.

Since "naive" coercion evaluation does not satisfy all of the coherence equations we
exclude certain "unsafe" completions from consideration that can cause avoidable type
errors at run-time.

Various classes of completions may be used, parameterized by whether or not coer-
cions may only occur at data creation and data use points in a program and whether
only primitive coercions or also induced coercions. For each of these classes any term
has a minimal completion that is optimal in the sense that it contains no coercions
that could be avoided by a another coercion in the same class. In particular, minimal
completions contain no coercions at all whenever the program is statically typable.

If only primitive type operations are admitted we show that minimal completions can
be computed in aimost-linear time. If induced coercions are also allowed the minimal
completion can be computed in time O(nm) where n is the size of the program and m
is the size of the value flow graph of the program, which may be of size O(n2), but is
typically rather sparse.

Finally, we sketch how this explicit dynamic typing discipline can be extended to
let-polymorphism by parameterization with respect to coercions.

The resulting language framework leads to a seamless integration of statically typed
and dynamically typed languages by relying on type inference for programs that have
no type information and no explicit coercions whatsoever.

*This research has been supported by Esprit BRA 3124, Semantique.

234

1 I n t r o d u c t i o n

We present an extension of the (statically) typed A-calculus with a special type dyn
and explicit coercions representing run-time tagged values and associated tagging
and checking operations as they are found in run-time typed (dynamically typed
with implicit coercions) languages. A program in a run-time typed language can
be embedded into this language without relying on a fixed translation, but instead
permitting all possible completions of the program with inserted explicit coercions
such that the typing rules are satisfied.

Since there are generally many different completions for the same run-time
typed program we characterize coherence of completions by an equational the-
ory that includes the equality c-1; c = t where c is a tagging operation, c -1 its
corresponding checking operation, t denotes the identity ("no-op") coercion, and
";" denotes left-to-right sequential composition. This equality does not hold for
"naive" coercion evaluation as the left-hand side may produce a type error (in
some context) where the right-hand side does not. Thus we define and restrict
ourselves to a class of safe completions, all of which are equivalent under naive
coercion evaluation.

Making coercions explicit makes enables reasoning about them in an imple-
mentation-independent fashion and bringing efficiency concerns to bear. We prove
that certain classes of completions have minimal completions that avoid as many
coercions as possible within the type system. In particular, a minimal comple-
tion of a statically typable program contains guaranteed no coercions, unlike the
canonical completion used by (unoptimized) implementations of run-time typed
languages.

We give efficient algorithms for computing minimal completions. For comple-
tions that use only primitive coercions we present an algorithm that computes a
minimal completion in almost-linear time, O(na(n, n)), where a is an inverse of
Ackermann's function. For completions that may also use induced coercions there
is an algorithm that executes in time O(nm) using the fastest known dynamic
transitive closure algorithm under edge additions. Here n is the size of the input
program and m is the size of its value flow graph; in the worst case the value
flow graph is dense, i.e. m is O(n~), but for well-designed programs it is typically
sparse. 1

Finally, we discuss an extension to a let-polymorphic type discipline, in which
let-bound variables can be parameterized by coercions.

The resulting language framework, which we refer to simply as dynamic typing,
leads to a seamless integration of statically typed and run-time typed languages
by connecting implicitly and explicitly dynamically typed programs by automatic
type inference (completion). Both static and dynamic language programmers
profit from such integration. The static language programmer has a universal
interface type for communicating with the environment and may choose to use op-
erations that require run-time checldng. The dynamic language programmer has a
way of expressing type properties that can be checked statically instead of dynam-
ically; i.e., once instead of repeatedly. More importantly, abstract data types can
be integrated into a dynamically typed language in a modular and representation-

1This algorithm is not presented for space r e a s o n s .

235

independent fashion. In principle they do not even have to be implemented in the
same language. The type system together with the coercions mal~e sure that no
undetected representation-dependent effects slip through.

An immediate application of the minimal completion algorithms is in tag op-
timization of run-time typed languages such as Scheme, Common LISP or SETL.
The completion algorithms extended to let-polymorphism may also be applicable
in ML-like languages for improved type error identification and recovery since they
keep track of the creation and use points of values.

2 D y n a m i c a l l y t y p e d l a m b d a calculus

In this section we introduce the dynamically typed A-calculus (dynamic A-calculus).
It is an extension of the (statically) typed A-calculus with a distinguished type
constant dyn and special embedding and projection functions we call coercions.

We can think of elements of type dyn as "(type) tagged" values; that is, as tag-
value pairs where the tag indicates the type of the value component. Coercions
represent a special class of functions that embed values into the "universal" type
dyn and project them back from dyn. In general, for every type constructor TC of
arity k there is an embedding that maps elements of type TC(dyn, . . . , dyn) to dyn
by pairing them with their type. For example, the coercion func maps a function
f of type dyn --, dyn to dyn. Note that since f is required to have domain and
codomain type dyn it is sufficient to tag f with the type constructor, -% alone as
all the arguments to --, are required to be dyn. This is in contrast to the dynamic
typing disciplines described in [Myc84,ACPPgl,LM91] where values of any. type
may be tagged with their type expression.

For every embedding c for type constructor TC there is a corresponding pro-
jection, denoted by c -1, that maps elements of type dyn to TC(dyn, . . . , dyn): it
checks whether its argument has the tag TC; if so, it strips the tag and returns the
untagged value; if not, it generates a (run-time) type error. It is possible to include
a general typecase form (see [ACPP91]) in the language; this way projections can
be defined instead of added as language primitives; e.g.,

t y p e c a s e e of
(I/uric]f) f
else e dyn_.dy n

end

is the definition of func -I, where e d n-.dyn represents a run-time type error In- y
deed, general type dispatching can be described, which is not "directly" possible
with projections alone; e.g.,

t y p e c a s e e of
([func] f) typecase (f ([boo~ true)) of

([boo,b) b
else e bool

end
([boo, b) b

end.

236

In this paper we are primari ly interested in automat ical ly inferring embeddings
and project ions in programs tha t use t h e m implicitly, as is the case in run- t ime
typed languages where they correspond to tagging and check-and-untag operat ions
(see Section 3). Consequent ly we omit the general typecase form for the present
purposes.

Coercion type signatures are expressions of the form T -,,* T ~, where T, r ~ are
type expressions (see below). Taldng embeddings and project ions and the identi ty
function, ~, as primitive coercions we can build a calculus of coercions as follows:

�9 coercions can be (functionally) composed to form new coercions as long as
their types m a t c h up;

�9 for every type constructor TC of k > 0 a rguments there is a coercion con-
structor tha t tal~es k coercions, one for each a rgument posit ion, as ihputs
and combines t h e m to a new coercion.

For example, if cl : T1 "~ T{, C2 : r2 -,z r~ are coercions then cl --* c2 : (~ --~ T2) -,z
(T1 --* r~) is an induced coercion tha t operates on functions f of type r~ --, 7-2. It
re turns a function of type T1 ~ 7-~, which is the composi t ion of (in diagrammatical
order) coercion cl, function f and finally coercion c2. Using/3- and y-equality it
is possible to define the coercion constructor --* by c --* c' =)~y.)tx.[d](y([c]x)). 2

Coercions defined only from embeddings and the ident i ty (no projections) are
positive coercions; those defined only from project ions and the ident i ty (no embed-
dings) are negative coercions. A language with only positive coercions corresponds
to a "coercion formulat ion" of a subtyping discipline; c.f. [Tha88,BCGS89,CG90].
If negative coercions are added to a subtyping theory wi thout explicit coercions
(e.g.,[FM88]) in a naive fashion this leads to a complete collapse of the type hierar-
chy - - every type is equal to dyn. In this sense the presence of negative coercions
makes dynamic typing fundamenta l ly different from subtyping.

The pure dynamical ly typed A-calculus wi th only the type constructor --, is
operationally uninterest ing since no type errors can occur. In this case the coer-
cions have no operat ional significance and may be ignored dur ing execution. For
this purpose we use as a vehicle for our investigations the dynamical ly typed ,~-
calculus with an addit ional pr imit ive type, the Booleans. T h e type expressions in
this language are generated by the product ion

7- : : = o4booll7-' ~ 7-"ldyn

The typing rules for the dynamic)~-calcuhis with Booleans are given in Figure 1
in na tura l deduct ion style. Throughou t this paper we use the following notat ional
conventions: e, e', . . . denote (dynamically typed or untyped) A-terms; c, c', d, d ' , . . .
denote coercions; T, 7-', . . . denote type expressions; and c~, ~ , . . . are type variables.
In t roduct ion of a typing assumpt ion for a variable x hides all other assumptions
for x unti l it is discharged. If e : 7- is derivable from a set of typing assumptions
A we write A t- e : 7-. We say e is a dynamically typed X-term if A ~- e : 7- for some
typing assumpt ions A and type expression r .

The rule (COERCE) is the only rule with which addi t ional typings beyond
those of the simply typed A-calculus can be inferred. Note tha t on the one hand

~We t rea t e --~ c' separately since we do not rely on 1~- and /o r eta-equality. See Section 4.

237

(ABSTR)

(APPL)

X : T t]

e : T

Ax.e : r"---* r

e : T~ ...-~ T

e ~ : T I

e e ' : 1"

(CONST)

(IF)

true, false : bool

e : bool
eI . T

e ~

i f e t h e n e' e l s e e" : 7"

(~-EMBED)

(--~-PROJ)

(~-CONSTR)

func-l : d~n.,~ (dy,~--* dy,~)

e l : TI "X~ T~

C2 : T 2 " ~ T~

(BOOL-EMBED) bool : bool ,~ dyn

(BOOL-PROJ) bool "q : dyn,,.~ bool

(NOP)

(COMP) C1 : T ,x~ T I

C2 : T I ' x ~ 7 -o

C l ; C 2 : T ' x ~ T tl

(COERCE) e : I"
C : T ,'~. T !

[qe : r '

Figure 1: Typing rules for the dynamically typed A-calculus with Booleans

238

coercions cannot directly be passed as arguments to or returned from. functions.
On the other hand, every coercion c : r -.~ T I Can be represented by the function
and "first-class" value Ax.[c]x : r ---* r'. Since not all (A-definable) functions are
coercions, however, we keep coercions strictly separately from arbitrary functions.

Induced coercions give us the effect of tagging with full type expressions since
for every type T there is a coercion c : r ".., dyn; e.g., [boot-" -.o bool;.func](Ax :
bool.if x t h e n falseelse true has type dyn. Yet a general typecase form with match-
ing on full type expressions is counter to our desire to treat this dynamically typed
A-term as equivalent to [func](Ax : dyn.if [bool-1]x t h e n [boo,false else [boo, true
(see [Tha90] and Section 4 of this paper).

We shall not give a semantics of the dynamically typed A-calculus, but leave
this question deliberately open at this point. In Section 3 we will treat an untyped
A-term as an incomplete program into which explicit coercions must be inserted
to form a dynamically typed A-term. In Section 4 (resp. 5) we characterize the
semantic properties that a semantics of the dynamically typed A-calculus must
satisfy if all possible (resp. safe) completions of an untyped A-term axe to be
coherent, i.e., denote the same value.

3 Completions

In the implementation of programming languages with implicit dynamic type
checldng, type handling operations are in effect "inserted" into the source code
in a canonical fashion: Every variable is assigned type dyn; at every program
point where a value is created (e.g., by a constant or a A-abstraction) the corre-
sponding tagging operation (embedding) is inserted; and at every program point
where a value is used (e.g., by the test in a conditional or by a function applica-
tion), the appropriate check-and-untag operation (projection) is inserted. In this
fashion the resulting "completed" program satisfies the typing rules of Section 2.

The main disadvantage of this scheme is that dynamic type operations are al-
ways used, even in cases where they could be orqJtted; in particular, statically
well-typed programs are also annotated with type operations, which typically re-
sults in slower execution compared to execution without any type operations. 3

We view a program with implicit run-time checldng as an incompletely typed
program; that is, a program from which coercions (and type declarations of vari-
able.s) have been omitted. It is the task of the type inferencer to complete this
program by inserting explicit coercions such that the typing rules are satisfied.
This extends the role of conventional type inferencers in that not only type in-
formation but also identity and placement of coercions in the source program are
inferred.

Formally, the untyped A-terms (with Booleans) are generated by the production

e ::= xlAx.e'le'e"ltruelfalse[ife' t h e n e" else e ' .

The erasure of a dynamically typed A-term e is the untyped A-term that arises
from "erasing" all coercions from e (including the square brackets, of course).

aWe use as a fundamental assumption that operations on untagged data are generally more efficient than the
corresponding operations on tagged data, which also have to perform tagging and checking.

239

Conversely, a completion of an untyped A-term e is a dynamical ly typed A-term
whose erasure is e. Since there is generally more than one completion for the same
incomplete program we treat the resulting ambiguity as a problem of coherence
[BCGS89,CG90] (see Section 4) or safety (c.f. [Tha90]; see Section 5) of the
semantics of the completions.

A completion models the process of making coercions explicit tha t are implicit,
but nonetheless present, in run-t ime typed languages. The process of malting them
explicit opens the opportuni ty for source-level compile-time optimization.

Note that the "local" translation of untyped A-terms to dynamical ly typed
A-terms described at the beginning of this section is a completion in this sense;
we shall call it the canonical completion of an untyped A-term. Intuitively, it
maximizes the use of embeddings and projections.

We illustrate this translation for the familiar fixpoint combinator Y of Church.
The Y-combinator is defined by

r = A f . (Ax . f (xx)) (Ay . f (yy)) .

Its canonical translation into the dynamically typed A-calculus is

Irene]A/: dyn.
:

[fune] (Ay: dyn. [y ,nc-

The canonical translation generates a dynamically typed A-term for every untyped
A-term. Thus we have the following proposition.

P r o p o s i t i o n 1 Every untyped A-term has at least one completion.

Another possible completion for the Y-combinator tha t actually minimizes the
use of coercions is

Ym = A f : dyn---* dyn.
(Ax: dyn ~ dyn.f(x~func]x))

which is of type (dyn --* dyn) ~ dyn. Ym looks, in an intuitive sense, more
"efficient" than Y~ because fewer type operations have to be executed during its
evaluation.

4 C o h e r e n c e

Completions induce a congruence relation on dynamical ly typed A-terms and co-
ercions: e ~ ~ e" if A F- e ~ : r and A t- e" : r for some set of typing assumptions A
and type expression r , and e ~, e ~ have the same erasure; c I ~ c u if x : r ~ [cl]x : r I
and x : v ~" [c"]x : r r for some r, T'. If any two such congruent A-terms, respectively
coercions, are semantically equivalent, we can define the meaning of an untyped
A-term as the meaning of any arbitrary one of its completions. This opens the

240

(e; r r = c; (ca; r (1)
c;~ = c (2)
~;c = c (3)

c ; c -1 = ~ (4)

~ - ~ = ~ (5)

(c -o ca);(d --~ d ~) = (d;c) --~ (ca;d ~) (6)

[,1~ = ~ (7)

[c'][c]~ = [c;c']e (8)
[c - , dlAx.~ = Ax.[d](~{x H [c]~}) (9)
([c--* d]e)e' = [d](e([c]e')) (10)

[c] i f e t h e n e' e l se e" = i f e t h e n [c]e' e lse [c]e" (11)

Figure 2: Conversions for dynamical ly typed A-terms with Boolean t ru th values

door to intensional considerations: finding operat ionally efficient completions by
ta ldng the global program st ructure into account. This is addressed in Section 6.
In this section we characterize the propert ies a semantics of the dynamical ly typed
A-calculus mus t satisfy to be coherent (yield the same meaning) for all completions
of any un typed A-term.

Consider the equat ional theory given in Figure 2 over dynamical ly typed A-
te rms and (well-formed) coercions.

T h e o r e m 1 (Coherence of completions)
The equational axioms and rules of Figure 2 together with the addit ional rule

c-I; c = ~ (for every embedding c) is an axiomatization of completion congruence;
that is, for all dynamically typed A-terms d, e" we have e ~ ~- e ~ if and only if d = e ~
is derivable with the standard equational axioms and inference rules (reflexivity,
symmetry, transitivity, congruence under arbitrary contexts). Furthermore, the
axiom system is irredundant; i.e., no rule or axiom can be derived from the others.

We need a l emma for the proof tha t guarantees t ha t coercions are congruent
exactly when they have the same type signature. The coercion equalities are
the axioms and rules in Figure 2 in which no A-terms occur, together wi th the
addit ional equat ion c-1; c.

L e m m a 2 (Equality of coercions)
Let c : r ,,~ a, d : r ~ "~ a' be arbitrary coercions. Then c = d is derivable from

the coercion equalities if and only if 7" = T ~ and a = a ~.

It is easy to see tha t for every coercion c : r ",~ r ~, pr imit ive or induced, there
is an "inverse" coercion c a : T ~ -~ r such tha t c; d = ~ and ca; c = L. We reserve the

241

nota t ion c - I for project ions corresponding to (primitive) embeddings , however, as
we have no need for a general inverse operat ion on coercions.
P r o o f : (Proof of theorem) Let e' = e" be derivable. By inspect ion of the axioms
and rules it can be verified tha t d and e" have the same erasure. Similarly it can
be checked tha t A t- e' : T if and only if A l- e" : r . It follows t ha t they are
congruent completions; i.e., e ~ ~ e".

For the converse, we call a dynamical ly typed A-term head coercion free (c.f.
[CG90]) if it is not of the form [c]e'. W.l.o.g. we may assume tha t coercions are
only applied to head coercion free A-terms and every head coercion free sub te rm
has exactly one coercion applied to it. This follows from [ck].. . [cz]e = [cz;. . . ; ck]e
for k _> 2 and e = [~]e. We prove d = e" =~ d = e" by induct ion on the erasure e
of e ~ and e".

(Basis, I) If e = x then e ' = [d] x , e " = [c"]x. This implies c,c~: A (x) ' ~ 7" and
thus c = d by Lemma 2.

(Basis, II) If e = true or e = false then similar as above.
(Induct ive step, I) If e = A x . f then e' = [c~]Ax : 7"'.f' and e" = [c'~]Ax : 7"".f".

Since there is a coercion from any type to any other type there are coercions
d : 7"" < 7"',d ~ : v' < v" such tha t [d --, d']Ax : 7"'.f' = Ax : 7".[d']f '{x ~-~ [d]x}.
Tha t is, we have for A { x : 7""} the completions [d']f '{x H [d]x} and f " of type
v", and by induct ive hypothesis , [d']f '{x ~ [d]x} = f" . Consequent ly we have
[d'][d ~ d']Ax : T ' . f ' = [d']Ax : r" . f " . Since (d ~ d ' ; d ') , d : 7-' < 7"" we know
(d ~ d~; d') = d and the result follows.

(Induct ive step, II) If e = f g , then e' = [e](f 'a ') and e" = [e '] (f "o") where
f ' : a' ---, v t, f " : a" ~ v". There are coercions d : 'a" --* a ' , d - 1 : Or t < 6r tt, d t : ~3 t
V" We have d ~ d ~ �9 [] f = f " and [d-Zig ' = g" by induct ion hypothesis , and thus
[d']([d --, d']f'[d-Z]g ') = [d'](f"g"). We get [d'][d'](f'g') = [cr Because of
umqueness of coercions it follows tha t (d~; d ~) = d and the result follows.

It is easy to construct for every axiom and rule a pair of congruent complet ions
such tha t they cannot be proved congruent wi thout it. (End of proof) �9

This shows that , independent of t3 - and y-equality, all congruent complet ions
of an un typed A-term have the same behavior if and only if their meanings satisfy
the equations in Figure 2.

5 Safety

In the characterizat ion of coherence of completions (Theorem 1) we have used the
equality c-Z; c = ~. Accordingly, we have the equality [bool; func-1; fune; boo1-1] true =
true since bool; func-1; func; boo1-1 = bool; t; boo1-1 = bool; boo1-1 = t and [t]true =
true. With naive evaluation of coercions, however, this equali ty does not hold:
[bool; func- i ; func; bool-1]true is evaluated by first applying the tagging operat ion
bool to true, then the check-and-untag operat ion func -1 and finally func and boo1-1.
Since the tag of the value after applying bool is "boot', however, the second opera-
tion, func -1 generates a type error�9 In contrast , evaluat ing trout by itself yields no
type error. So c -1; c = ~ does not hold with naive evaluation of coercions.

In view of Theorem 1 we have three possibilities to address this problem:

242

1. Allow arbitrary completions, retain naive evaluation of coercions, but give
up on coherence of completions.

2. Allow arbitrary completions and devise a different evaluation strategy for
coercions to retain coherence.

3. Retain naive evaluation of coercions, but restrict the class of admissible com-
pletions to retain cohercnce.

Since we envisage the process of completing an untyped program to be auto-
matic, Option 1 is least attractive since it puts the task of deciding the meaning
of a program into the hands of the completion process, over which a programmer
has no control. 4

We can accomplish Option 2 if coercions are not evaluated until a value is
used (as a function in an application or in the test of a conditional). In this way
every type operation just adds itself as a tag (even check-and-untag operations!)
to a value and at the point of use the resulting sequence of tags is simplified by
rewriting until an untagged value of the correct type is reached or a type error is
generated (see [Thag0]). This form of "simplificational" coercion evaluation has
two disadvantages: it is inefficient since it requires complex, long-living tagging
and symbolic rewriting, and it gives delayed error messages.

Since naive coercion evaluation is more conventional, generally more efficient,
and reports type errors earlier we adopt Option 3. Notice that with naive coercion
evaluation C[c-1;c] generates a type error or yields the same value as C[e] for
any context C; never a differer~t (proper) value. We replace the equalities of the
form c-l; c --- ~ by inequalities ~ E c-i; c for all embeddings c and extend them
to other coercions, d E_ d', and dynamically typed A-terms, e ~ _ e", by combining
them with the equalities of Figure 2 and closing them under reflexivity, transitivity
and arbitrary context. Here an equality d = e" is interpreted as the inequalities
d E_ e" and e" E d. An inequality d E_ e" expresses that, in any context, if d
generates a type error then so does e" in the same context. These inequalities
are a syntactic analogue to That te ' s semantic "wrongness" relation in a fixed
denotational interpretation [Tha90].

We say that a completion d of e is safe if for every congruent completion e" we
have d E e". Intuitively, this guarantees that d generates as few type errors as
possible at run-time; i.e., it does not generate avoidable type errors. More impor-
tantly, it can be shown that for safe completions naive and simplificational coercion
evaluation behave equivalently. So by restricting ourselves to safe completions we
can reap the benefits of combining the efficiency and simplicity of naive coercion
evaluation with unambiguous semantics and still retain a great degree of freedom
of choosing amongst different safe completions.

Analogous to the proof of Theorem 1 we can show that every untyped A-term
has a safe completion. In fact, the canonical completion is safe.

P r o p o s i t i o n 3 (Safety of canonical completions)
Every untyped A-term has at least one safe completion.

4This is a fundamental difference from the dynamic typing disciplines of [ACPP89] and [LM91] since in those type
systems the programmer is expected to control coercions completely.

243

Note that for two congruent safe completions d, e" of an untyped A-term e we
can derive e ~ = e" from the equational axiom system in Figure 2 alone, without
the equation c-1; c = e.

6 Minimal completions

As we have seen, the canonical completion of an untyped A-term is safe. But it is
also inefficient. In this section we define a general syntactic criterion for discussing
which completion is operationally "better" than another. This criterion is robust
in the sense that no particular concrete operational semantics, implementation
technology, etc., is assumed, but only that execution of a tagging operation (em-
bedding) and then its corresponding check-and-untag operation (projection) is less
efficient than executing nothing at all. For various classes of safe completions we
report efficient algorithms for computing minimal (optimal) completions w.r.t, to
that syntactic criterion. In particular, we describe a theoretically and practically
very efficient algorithm for a class of completions that has possible applications
in the optimization of run-time typed languages such as Scheme, Common LISP,
SETL and others.

Consider the coercion equality (c; c -1) -- L (Figure 2). With naive coercion eval-
uation the left-hand side and the right-hand side are equivalent since first tagging
a value and then untagging it again has the same effect as doing nothing at all to
the value. Clearly, however, literally executing the left-hand side is wasteful and
unnecessary. Based on this observation we define a preorder on safe completions
by replacing the equality c; c -1 = e with the inequality

<_ c; c -1.

We extend < to arbitrary coercions and dynamically typed A-terms by adding the
remaining equalities of Figure 2 (without the equality (c; c -1) -- e, of course) and
closing it under reflexivity, transitivity and arbitrary contexts (e = e ~ is interpreted
as e _< e' and e' _< e).

Intuitively, if we have e _< e ~ then e and e ~ are observably equivalent (i.e., e = d
can be proved from the equational theory of Figure 2), but e has no more coercions
than d. This expresses itself by e ~ having syntactically fewer coercions than e, but it
also executes fewer coercions at run-time for any reasonable operational semantics.

A completion d is minimal in a class of safe congruent completions C if it is
in C and for every e ~ in C we have e ~ < e". In this sense a minimal comple-
tion is an operationally optimal completion in a class w.r.t, to ordering <. Note,
however, that minimal completions need not be unique as there may be distinct
safe congruent completions d, e" such that both d < e" and e" < d . For any
untyped A-term e, type assumptions A and type expression T we d-efine four dif-
ferent classes of safe completions d of e such that A ~- d : T: completions that
use only primitive coercions (embeddings and projections) and place them at data
creation and data use points only; completions that use only primitive coercions
(and place them anywhere); completions that use arbitrary coercions, but place
them at data creation and data use points only; and arbitrary completions (using

244

arbitrary coercions placed anywhere). We denote these four completion classes by
C A'~ (e), CAj~(e), car, CAj~(e), respectively

PJ. J �9

Hence~rth let A, e, r be fixed, but arbitrary. We shall simply write Cpl , Cp,,
C , / a n d C**, respectively, for the four classes above. Let C be any one of these.

T h e o r e m 2 C has a minimal completion.

Let e be of size n. We denote by m the size of the value flow graph of e.
This is essentially the higher-order extension of the call graph of a program; its
construction is also called closure analysis [Ses89]. In the worst case m is O(n2), but
for well-designed programs the value flow graph is typically sparse, i.e., m = O(n).

T h e o r e m 3 A minimal completion of C can be computed in the complexity given
in the following chart. 5

completions
only at fixed places
at arbitrary places

only primitive coercions
O(nc~(n,n))

l arbitrary coercions
O(nm)
O(nm)

These results follow from the constraint system characterization and normal-
ization that is the heart of our (minimal) completion algorithms. The algorithms
are variants on two basic algorithms, one for completions with only primitive co-
ercions, the other for completions with arbitrary coercions. The first of these
two can be viewed as an instrumented unification closure algorithm with some
additional postprocessing and has been used for efficient binding-time analysis
[Hen91]. At the core of the second algorithm is an efficient dynamic transitive
closure algorithm (e.g., La Poutr@ and van Leeuwen [LPvL87] and YeUin [YelS8])
for computing value flow graphs (closure analysis); it has been used for the effi-
cient solution of a specialized semi-unification problem [Hen90]. We only describe
the minimal completion algorithm for Cp/; that is, for completions that use only
primitive coercions, which are placed at creation and use points only. We restrict
ourselves to closed A-terms. We shall not present algorithms or proofs for the
other cases as this would substantially lengthen this paper.

Our type inference algorithm for Cp/consists of the following steps

1. For given A-term e construct a type constraint system C;

2. normalize C to C ~ with respect to a set of constraint transformation rules;

3. construct a "minimal" solution from C~;

4. translate the minimal solution into a (minimal) completion of e.

The advantage of "distilling" the essence of type inference into constraint systems
is that it frees the type inference problem from the syntactic structure of programs
and permits solution strategies that are not strictly syntax-directed.

6a is an inverse of Ackermann's function, which may be considered a small constant for all practical purposes
[T~r83].

245

For a A-term e associate a type variable ~z with every A-bound and free variable
x (w.l.o.g. we assume they are distinct) and with every sub te rm occurrence e' of

e associate a type variable c~e, with d. Define C(e) as follows.

?

1. If e = Ax.e' then C(e) = {~= --* ~ , 4: ~ } U C(e');

?

2. i f e = e'@e" then C (e) = {c~e,, -~ ee 4: ee'} U C(e ') U C(e") ;

.
?

if e = i f e ' t h e n e" e lse e " then C(e) - {bool < ae,,ae,, "- ae,, ,ae -- a~} U
C(e')UC(e")UC(e');

?

4. if e = c then C(e) = {bool 4: C~e} where c = true or c = false;

5. if e = x (x variable) then C(e) = { ~ .~ o~=}.

Figure 3: Extract ing typing constraints

6.1 B a s i c cons tra in t s y s t e m e x t r a c t i o n

A type constraint system is a multiset of constraints of the following forms.

?

?

boot 4:
? O/

where c% c/,/~ denote type variables or the type constant dyn. A solution of a
constraint system C is a subst i tut ion S of type expressions for type variables such
that

?
�9 for o~ --, a / _</~ in C there exists a primitive coercion 6 c such tha t c : S(c~) --,

S(o/) _< S(fl);
?

4:/3 in C there exists a primitive coercion c such that c : bool < S(~); s for bool

s for &

�9

c~' we have S(c~) = S(a/); and

for all ~ not occurring in C.

Note that in general we can develop our t rea tment of constraints over an ar-
bi t rary te rm algebra representing type expressions. This is useful in a realistic
setting where we have a mult i tude of predefmed basic types and type constructors
(and possibly also user-defined types and type constructors).

SRecail that L is a primitive coercion.

246

First we define the constraint "extraction" function C. It is given in Figure
3. The solutions of C(e) and the completions of e are in a very close relation, as
expressed in the following theorem.

T h e o r e m 4 (Soundness and completeness of constraint characterization)
The completions of e and the solutions of C(e) are in a one-to-one correspon-

dence.

P r o o f : Analogous to Theorem 1 in [Hen91]. (End of proof) �9
Let us write el = Ax.f(xx) and e2 = Ay.f(yy). Church's fixed point combinator

is Y = Af.ele2. Then the constraints C(Y) for Y are:

~x ~ ~xx

C~ x ~ O:f(xx)

OLy ~ Ogyy

% y --4 ~/(yy)

% ~ a/(yy)

O/e2 ----4, O/ele2

?
<
?
<
?

<_
?

<_

<
?

<__

<

O~f ~ O/.ele2

Ol x

~ e l

~y

~e2

O/e 1

~ y .

6 . 2 C o n s t r a i n t s y s t e m n o r m a l i z a t i o n

Constraint system normalization transforms C(e) into an equivalent constraint
system Ct(e) over the same class of constraints. It preserves the set of solutions,
but it generates normal forms tha t make it easy to construct concrete solutions
since it eliminates all constraints that cannot be solved equationally.

Let G(C) be the graph defined on type variables occurring in C such that
?

there is a directed edge from c~ to /3 whenever there is a constraint c~ --, a ' < fl
?

or a ' -~ ~ <_ ~ in C. We say C is cyclic if G(C) is; and acyclic otherwise. The
transformation rules for normalizing C(e) are given in Figure 4.

The normalization of C(e) results in a substitution S and a normal form con-
straint system C'(e) with the following properties:

?
1. For all inequality constraints . . . _< a in C'(e) the r ight-hand side, a , is a

(type) variable.

?
2. There is at most one constraint of the form . . . _< ~ in C'(e) for every c~.

3. C is acyclic.

4. No constraints of the form ~ ~ a ' are in C'(e).

247

Let C be a constraint system with constraints of the form

?

?
�9 booI < o~, a~d

? OZl

o/' {dyn}. The transformation rules are: where c~, ~', E V U

1. (inequality constraint rules)

? ?

? Z' ~: ~,} =~ c u {,:,--, o/~: ~,, o ~ ~ , d - , 6 ' } ; (a) c u {o~ ~ o / 9 . ~ , , ~ - - , _ _ =
? ? ? ? ?

(b) C u { . --, . ' < 7, bool < 7 } =~ C u {o, ---, o/ < 7, bool < 7 , 7 - dyn};
Y ? ?

(c) C U {a' --~ cd ~ dyn} =t, C U {o: - dyn, o / - dyn};
?

(d) C U { bool <_ dyn} =~ C;

2. (equational constraint rules)

(a) C U {dyn ? o~} ~ C U {o~ ~ dyn} if c~ is a type variable;

(b) CU { d y n ~ dyn} =~ C;

(c) C U {c~ ? ~'} =~ S(C) if ~ is a type variable and S = {~ ~-* c~'};

3. (occurs check rule)

(a) C =~ C U {o~ s dyn} if C is cyclic and ~ is on a cycle in G(C).

Figure 4: Normalizing constraints

248

T h e o r e m 5 (Correctness of constraint normalization)
I] C ~ C' and l.l is the set of solutions of C ~ then {U o S]U E L/} is the set of

solutions of C.

Normalization of C(Y) results in the substitution

S y = {Olz, Olzz, Olf(zz), Oly, Olyy, Olf(yy), OLe2 , C~ele2 ~ dyn}

and the normalized constraint system C (Y) containing

?
dyn--~ dyn <_ (~I

?
dyn-* dyn <_ ole~

?
~l- '*dyn <_ O~y

6 . 3 S o l u t i o n c o n s t r u c t i o n

We can construct a "canonical" solution from normal form constraint system C~(e)
by simply unifying all inequalities. The properties of a normal form constraint
system guarantee that all the constraints in C'(e) can be satisfied equationaUy.
We shah call this solution the minimal solution of C~(e) and, by extension, of
C(e). Because of Theorem 4 this solution corresponds to a unique completion e ~
of e tha t has some type r . It can be shown by induction on e that for any other
completion e" in Cpl of type T there exists a coercion e : 7 ~,~ 7 such tha t e" = [c]d
is derivable in the equational system of Figure 2 without using equality c; c -1 = L.
Since ~ _< c this implies e ~ _< e", which shows that e ~ is minimal in Cpl.

T h e o r e m 6 (Complexity of computing minimal completions)
The minimal completion of an untyped)~-term of size n can be computed in

time O(na(n,n)) and space O(n) where ~ is an inverse of Ackermann's function
[Tar831.
P r o o f : (Sketch) It is easily seen that constraint extraction and minimal solu-
tion construction construction can be implemented in linear time. 7 In /Hen91]
an amortization argument is given that shows that constraint normalization is
implementable in t ime O(no~(n,n)) (and space O(n)) using the union/f ind da ta
s t ructure with ranked union and path compression [GI91]. (End of proof) �9

The minimal solution of C~(Y) is the substi tution

Uy = {o~f, we, H dyn --4 dyn, o~y ~ (dyn ---* dyn) ~ dyn}

The resulting minimal completion in CpI(Y) is

Yml = A f : dyn.-~ dyn.
dyn.y([func-1]x))

L unc](y : dyn.y([yunc-1]yU)).
?We assume type expressions may be represented with sharing to avoid the well-known exponential blow-up of

string representations of the solutions of unification problems.

249

Comparing it to the completion Ym in Section 3 note that Ym < Yml; i.e., Ym <_ Y, nl,
but not Yml <- Ym. So Ym is "better" than Yml, but Ym is not in CpI(Y) , but Ym
is the minimal completion in Cp,(Y).

7 P o l y m o r p h i s m

In this section we sketch an extension of dynamic typing to a type discipline with
let-polymorphism [Mi178]. A thorough and satisfactory treatment of polymorphic
dynamic typing will have to be deferred to future work.

A minimal completion of e for one context C cannot generally be extended to a
safe completion for C~[e] where C' is another context for e. Consider the following
example from [Thag0], in which we assume we have also lists and integers in
our language: e = Ax.cons 1 x. Its minimal completion in the context C~ =
car([](cons 1 niO) + 1 is Ax.cons 1 x : list(integer) ---, list(integer). However, in the
context C'~ = ~(cons truenil) its minimal completion is Ax.cons ([intege~l)x :
list (dyn) --, list (dyn). Note that the first completion of e in the context C cannot
be extended to a safe completion for C'[e] s, and that there is no completion of
e with the apparent polymorphic generalization Vo~.list (~) --* list (o 0 of these
two completions. This has the implication, as observed by Thatte [Tha88], that
instantiating an "unknown" coercion in a completion of e must be delayed and
insta.ntiated separately in every context in which e is used. In a polymorphic
type discipline this necessitates that the language provide for passing coercions as
arguments to let-bound variables. Through such formal coercion parameters the
different contexts of the applied occurrences of a let-bound variable x can pass the
concrete coercions to x that are necessary to safely evaluate the body bound to x.

These considerations motivate an extension of the dynamically typed A-calculus
to let-polymorphic programs where let-bindings may be parameterized by formal
coercion parameters. In this way we can give a completion of Ax. cons 1 x that fits
both contexts C H and C~H above:

let f[c] = Ax.cons ([c]1)x in
car((f[])(co.s 1 -iO) + 1

i:fii teger])(co, true, iO
Unfortunately formal coercion parameters are easily used where they are not

even necessary. Consider for example let f = Ay.y in f true. One completion of
type bool is let f[c] = [c]Ay.y in (f[e])true. Clearly an operationally preferable
completion is simply let f = Ay.y in f true, also of type bool.

It remains to extend the notions of minimality to dynamically typed A-terms
with let-expressions in such a fashion that minimal principal completions coincide
with static principal typings for statically polymorphically typable A-terms.

We do not anticipate any problems with integrating other language features
into dyn~.mic typing with polymorphism such as exceptions, side-effects, continua-

sI f simpliflcational coercion evaluation is used then (c - l ; c = L is valid and minimal completions may be used as
principal completions.

250

tions and pointers beyond those already observed for statically typed polymorphic
languages.

8 R e l a t e d w o r k

Dynamic typing in a static language can be found in several programming lan-
guages. For a survey and historical perspective we refer the reader to [ACPP91].

The main motivation behind the work of Abadi, Cardelli, Pierce and Plotldn
[ACPP89,ACPP91] and Leroy and Mauny [LM91] is in using type Dynamic as a
universal interface to a changing environment that may contain persistent objects,
concurrently executing programs or generally elements not under complete control
of a single program. As a consequence these languages have very powerful explicit
constructs for tagging and checking values that are both conceptually complex and
expensive to implement. This is not an attractive model in a language in which
tagging and checldng values may be inferred since different completions may have
very different and unexpected behavior (c.f. remarlcs by Thatte [Tha90]). By
relying on a fixed number of tags - - one for each type constructor - - dynamic
typing is conceptually easier and less expressive than full type tagging; the cor-
responding typecaze form needs to match only type constructors, not complete
type expressions and can thus be implemented efficiently using switches (indirect
jumps).

In the absence of negative coercions dynamic typing turns into a subtyping
discipline with dyn functioning as the "top" type. Thatte [Tha88] has investigated
such a language with induced coercions where coercions are inserted at fixed places
(function applications). He characterized the typability problem as a problem of
solving subtyping constraints, but left its decidability open. 9 This problem has
recently been shown to be decidable by O'Keefe and Wand [OW91]. The notion of
coherence arises in coercion interpretations of subtyping. Breazu-Tannen, Cardelli,
Coquand, Gunter and Scedrov [BCGS91] use coherent translations from a language
with subtyping into one without, to provide models for a language integrating
subtyping (inheritance), parametric polymorphism and recursive types. Similarly,
Curien and Ghelli [CG90] give an axiomatization of coherence in F< using explicit
coercions and use it to show typable F< programs have minimal-types. 1~ Our
equational characterization of coherence extends the first-order subset of F< with
negative coercions and a rule relating ,k-terms to each other that have different
types bound to the same variable.

Thatte introduced negative coercions in [Tha90]. In his type system the distinc-
tion between positive and negative coercions is carried over to induced coercions.
Positive coercions may be placed anywhere, but negative coercions can only be
placed at use points. Programs are required to have explicit type declarations for
every variable; they are completed with explicit coercions such that the resulting
program is a convergent completion with explicit coercions. (Thatte's semanti-
cally defined notion of convergence has motivated the syntactic notion of safety

9Note that A-bound variables have no type declarations in this type inference problem, which sets it apart from
the (easier) type checking problem for the first-order fragment of F_<.

1~ error was later discovered in their proof of decidability of typability in F<; recently Pierce [Pie91] has announced
that type checking F< is undecidable.

251

in this paper.) The denotational semantics is similar to Abadi et al.'s [ACPP91],
and the operational semantics uses a form of simplificational evaluation of coer-
cions in which values are tagged with sequences of full type expressions. Note
that our completion problem is more general in that programs do not require type
declarations for variables and that may insert arbitrary coercions any place.

Gomard [Gom90] inspired our approach to dynamic typing by type inference.
He describes type inference for implicitly typed programs with no required type
information at all. In dynamic typing terms his algorithm produces a completion
with primitive coercions in which positive coercions may only occur et creation
points (A-abstractions, constants). Negative coercions for checking functions may
occur at application points, but no negative coercions for base types are permitted;
instead tagged versions of base operations are used. As a consequence tagging
may "spread" to every point reachable from a single tagging operation. His type
inference algorithm is a backtracking adaptation of Algorithm W [Mi178] that
executes e (n 2) calls to a unification procedure and thus runs in time O(n 3) with
an optimal unification algorithm. Our completion algorithm improves this bound
to almost-linear time and "isolates" tagging operations better.

Cartwright and Fagan [CF91] present a very ambitious extension of ML's type
inference system with regular recursive types, union types and implicit subtyping
based on extension of unions. Dynamic type checking operations are not included
in the type system, but they are added during type inference as a consequence of
unification failure. All (non-type-variable) types axe represented as union types,
which are encoded using a type representation scheme pioneered by Remy [Rem89]
for record-based inheritance. There are several problems, however, both wi th
the type system and with the "Remy encoding", n A typing rule for induced
containments of union types is missing (e.g., Tl _C 7"3, T2 (~ 7"4 ~- TI ~- 7"2 C 7"3 "~ T4)
and the subtyping rule for recursive types in the stated form t C u =~ T C U b
pt .T C #u.U is unsound. The Remy encoding results in restricting subtyping steps
to language primitives; yet, on the other hand, it permits encoding of polymorphic
types that are not expressible in the original type system. As a consequence the
encoding has typing power incomparable to the original type system. For example,
for primitive types bool, integer and f0 : (bool+ integer) ---, bool the expression

let twice = A f .Ax . f (f x) in
let f l = twicefO in
if (f l (i f f a l s e t h e n true else 6)) t h e n 0 else 1

is typable in the original type system without negative coercions, but not in the
Remy encoded system. On the other hand,

let cons1 = Ax.cons 1 x in
c (con l(con I niO) + 1
. . ,

consl(cons true ni 0

(adapted from [Tha~8]) is not typable in the original type system, but it is in
the Remy encoded system. Furthermore, counter to a claim in their paper cur-

nA revision of this paper, in which these problems are addressed and rectified, is currently underway.

252

rently there appears to be no known linear-time Mgorithm for circular unification
(unification closure) [KR90].

9 C o n c l u s i o n

Dynamic typing promises to integrate the advantages of compile-time and run-
time type checked programming languages without inheriting their disadvantages.
In particular, inferring minimal completions of implicitly dynamically typed pro-
grams makes it possible to "only pay for the amount of dynamic typing that is
unavoidable" in the underlying static type system.

To estimate the practicality of the minimal completion algorithms we have pre-
sented we plan on implementing them for Scheme. Since we do not believe that
completions with induced coercions lead to better results in most cases than with
only primitive coercions we expect the almost-linear time minimal completion algo-
ri thms to be of particular practical value, both to programmers and to optimizers.
For a practical adaptation of dynamic typing to a polymorphic type discipline the
problem of minimizing the number of coercion parameters to let-bound variables
needs to be addressed. It is an intriguing prospect that a polymorphic minimal
completion algorithm may lead to novel implementation techniques and optimiza-
tions for conventional run-time typed languages.

A c k n o w l e d g e m e n t s

This paper would not have reached the form it has without Satish That te ' s
insights, comments and corrections. I am especially greatful for his inquisitive
questions that led to the definition of safety. I am also grateful for helpful discus-
sions with members of the TOPPS group at DIKU. Finally, I would like to thank
one anonymous referee for some corrections and helpful suggestions for improved

�9 exposition. Needless to say, any remaining mistalces and expository deficiencies
are entirely my own fault.

R e f e r e n c e s
[ACPP891

[ACPP91]

[BCGS89]

[BCGS91]

[CF91]

M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a statically-typed
language. In Proc. 16th Annual ACM Syrup. on Principles of Programming Languages,
pages 213-227, ACM, Jan. 1989.
M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a statically
typed language. A CM Transactions on Programming Languages and Systems (TOPLAS),
13(2):237-268, April 1991. Presented at POPL '89.

V. Breazu-Tannen, T. Coquand, C. Gunter, and A. Scedrov. Inheritance and explicit
eoerdon. In Proc. Logic in Computer Science (LICS), pages 112-129, 1989.

V. Breazu-Tannen, T. Coquand, C. Gunter, and A. Scedrov. Inheritance as implicit
coercion. Information and Computation, 93(1):172-221, July 1991. Presented at LICS
'89.

R. Cartwright and M. Fagan. Soft typing. In Proc. ACM SIGPLAN '91 Conf. on Pro-
grammin 9 Language Design aud Implementation, Toronto, Ontario, pages 278-292, ACM,
ACM Press, June 1991.

253

[co9o]

[FM88]

[GI91]

/

"[Gom90]

[Hen90]

[Hen91]

[KR90]

[LM91]

[LPvL87]

[Mil78]

[Myc84]

[OWgl]

[Pie91]

[Rem89]

[ses89]

[Tar83]

[ThaS8]

[Tha90]

[Ye188]

P. Curien and G. Ghelli. Coherence of subsumption. In A. Arnold, editor, Proc. 15th Coll.
on Trees in Algebra and Programming, Copenhagen, Denmark, pages 132-146, Springer,
May 1990.
Y. Fuh and P. Mishra. Type inference with subtypes. In Proc. 2nd European Syrup. on
Programming, pages 94-114, Springer-Verlag, 1988. Lecture Notes in Computer Science
300.
Z. Galil and G. Italiano. Data structures and algorithms for disjoint set union problems.
A CM Computing Surveys, 23(3):319-344, Sept. 1991.
C. Gomard. Partial type inference for untyped functional programs (extended abstract).
In Proc. LISP and Functional Programming (LFP), Nice, France, July 1990.
F. Henglein. Fast left-linear semi-unification. In Proc. lnt'l. Conf. on Computing and
Information, Springer, May 1990. Lecture Notes of Computer Science, Vol. 468.
F. Henglein. Efficient type inference for higher-order binding-time analysis. In Proc. Conf.
on Functional Programming Languages and Computer Architecture (FPCA), Cambridge,.
Massachusetts, pages 448-472, Springer, Aug. 1991. Lecture Notes in Computer Science,
Vol. 523.
P. Kanellakis and P. Revesz. On the Relationship of Congruence Closure and Unification,
chapter 2, pages 23-41. Frontier Series, Addison-Wesley, ACM Press, 1990.
X. Leroy and M. Mauny. Dynamics in ML. In Proc. Conf. on Functional Programming
Languages and Computer Architecture (FPCA), Cambridge, Massachusetts, pages 406-
426, Springer, Aug. 1991. Lecture Notes in Computer Science, Vol. 523.
J. La Poutr6 and J. van Leeuwen. Maintenance of transitive closures and transitive
reductions of graphs. In Proc. Int 'l Workshop on Graph-Theoretic Concepts in Computer
Science, pages 106-120, Springer-Verlag, June 1987. Lecture Notes in Computer Science,
Vol. 314.
R. Milner. A theory of type polymorphism in programming. J. Computer and System
Sciences, 17:348-375, 1978.

A. Mycroft. Dynamic types in statically typed languages. Aug. 1984. Unpublished
manuscript, 2nd draft version.

P. O'Keefe and M. Wand. Type inference for partial types is decidable. Sept. 1991.
Submitted to ESOP '92.

B. Pierce. Bounded Quantification is Undecidable. Technical Report CMU-CS-91-161,
Carnegie Mellon University, July 1991. To be presented at POPL '92.
D. Remy. Typechecking records and variants in a natural extension of ML. In Proc. 16th
Annual A CM Syrup. on Principles of Programming Languages, pages 77-88, ACM, Jan.
1989.
P. Sestoft. Replacing function parameters by global variables. In Proc. Functional Pro-
gramming Languages and Computer Architecture (FPCA), London, England, pages 39-53,
ACM Press, Sept. 1989.

R. Tarjan. Data Structures and Network Flow Algorithms. Volume CMBS 44 of Regional
Conference Series in Applied Mathematics, SIAM, 1983.

S. Thatte. Type inference with paxtial types. In Proc. lnt'l Coll. on Automata, Languages
and Programming (ICALP), pages 615-629, 1988.

S. Thatte. Quasi-static typing. In Proc. ACM Syrup. on Principles of Programming
Languages, pages 367-381, ACM, Jan. 1990.
D. Yellin. A Dynamic Transitive Closure Algorithm. Technical Report RC 13535, IBM
T.J..Watson Research Ctr., June 1988.

