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Abs t r ac t  

We present an extension of a statically typed language with a special type dyn and 
explicit type tagging and checking operations (coercions). Programs in run-time typed 
languages are viewed as incomplete programs that are to be completed to well-typed 
programs by explicitly inserting coercions into them. 

Such completions are generally not unique. If the meaning of an incomplete program 
is to be the meaning of any of its completions and if it is too be unambiguous it is nec- 
essary that all its completions are coherent (semantically equivalent). We characterize 
with an equational theory the properties a semantics must satisfy to be coherent. 

Since "naive" coercion evaluation does not satisfy all of the coherence equations we 
exclude certain "unsafe" completions from consideration that can cause avoidable type 
errors at run-time. 

Various classes of completions may be used, parameterized by whether or not coer- 
cions may only occur at data creation and data use points in a program and whether 
only primitive coercions or also induced coercions. For each of these classes any term 
has a minimal completion that is optimal in the sense that it contains no coercions 
that could be avoided by a another coercion in the same class. In particular, minimal 
completions contain no coercions at all whenever the program is statically typable. 

If only primitive type operations are admitted we show that minimal completions can 
be computed in aimost-linear time. If induced coercions are also allowed the minimal 
completion can be computed in time O(nm) where n is the size of the program and m 
is the size of the value flow graph of the program, which may be of size O(n2), but is 
typically rather sparse. 

Finally, we sketch how this explicit dynamic typing discipline can be extended to 
let-polymorphism by parameterization with respect to coercions. 

The resulting language framework leads to a seamless integration of statically typed 
and dynamically typed languages by relying on type inference for programs that have 
no type information and no explicit coercions whatsoever. 

*This research has been supported by Esprit BRA 3124, Semantique. 
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1 I n t r o d u c t i o n  

We present an extension of the (statically) typed A-calculus with a special type dyn 
and explicit coercions representing run-time tagged values and associated tagging 
and checking operations as they are found in run-time typed (dynamically typed 
with implicit coercions) languages. A program in a run-time typed language can 
be embedded into this language without relying on a fixed translation, but instead 
permitting all possible completions of the program with inserted explicit coercions 
such that the typing rules are satisfied. 

Since there are generally many different completions for the same run-time 
typed program we characterize coherence of completions by an equational the- 
ory that includes the equality c-1; c = t where c is a tagging operation, c -1 its 
corresponding checking operation, t denotes the identity ("no-op") coercion, and 
";" denotes left-to-right sequential composition. This equality does not hold for 
"naive" coercion evaluation as the left-hand side may produce a type error (in 
some context) where the right-hand side does not. Thus we define and restrict 
ourselves to a class of safe completions, all of which are equivalent under naive 
coercion evaluation. 

Making coercions explicit makes enables reasoning about them in an imple- 
mentation-independent fashion and bringing efficiency concerns to bear. We prove 
that certain classes of completions have minimal completions that avoid as many 
coercions as possible within the type system. In particular, a minimal comple- 
tion of a statically typable program contains guaranteed no coercions, unlike the 
canonical completion used by (unoptimized) implementations of run-time typed 
languages. 

We give efficient algorithms for computing minimal completions. For comple- 
tions that use only primitive coercions we present an algorithm that computes a 
minimal completion in almost-linear time, O(na(n, n)), where a is an inverse of 
Ackermann's function. For completions that may also use induced coercions there 
is an algorithm that executes in time O(nm) using the fastest known dynamic 
transitive closure algorithm under edge additions. Here n is the size of the input 
program and m is the size of its value flow graph; in the worst case the value 
flow graph is dense, i.e. m is O(n~), but for well-designed programs it is typically 
sparse. 1 

Finally, we discuss an extension to a let-polymorphic type discipline, in which 
let-bound variables can be parameterized by coercions. 

The resulting language framework, which we refer to simply as dynamic typing, 
leads to a seamless integration of statically typed and run-time typed languages 
by connecting implicitly and explicitly dynamically typed programs by automatic 
type inference (completion). Both static and dynamic language programmers 
profit from such integration. The static language programmer has a universal 
interface type for communicating with the environment and may choose to use op- 
erations that require run-time checldng. The dynamic language programmer has a 
way of expressing type properties that can be checked statically instead of dynam- 
ically; i.e., once instead of repeatedly. More importantly, abstract data types can 
be integrated into a dynamically typed language in a modular and representation- 

1This algorithm is not presented for space r e a s o n s .  



235 

independent fashion. In principle they do not even have to be implemented in the 
same language. The type system together with the coercions mal~e sure that no 
undetected representation-dependent effects slip through. 

An immediate application of the minimal completion algorithms is in tag op- 
timization of run-time typed languages such as Scheme, Common LISP or SETL. 
The completion algorithms extended to let-polymorphism may also be applicable 
in ML-like languages for improved type error identification and recovery since they 
keep track of the creation and use points of values. 

2 D y n a m i c a l l y  t y p e d  l a m b d a  calculus  

In this section we introduce the dynamically typed A-calculus (dynamic A-calculus). 
It is an extension of the (statically) typed A-calculus with a distinguished type 
constant dyn and special embedding and projection functions we call coercions. 

We can think of elements of type dyn as "(type) tagged" values; that is, as tag- 
value pairs where the tag indicates the type of the value component. Coercions 
represent a special class of functions that embed values into the "universal" type 
dyn and project them back from dyn. In general, for every type constructor TC of 
arity k there is an embedding that maps elements of type TC(dyn, . . . ,  dyn) to dyn 
by pairing them with their type. For example, the coercion func maps a function 
f of type dyn --, dyn to dyn. Note that since f is required to have domain and 
codomain type dyn it is sufficient to tag f with the type constructor, -% alone as 
all the arguments to --, are required to be dyn. This is in contrast to the dynamic 
typing disciplines described in [Myc84,ACPPgl,LM91] where values of any. type 
may be tagged with their type expression. 

For every embedding c for type constructor TC there is a corresponding pro- 
jection, denoted by c -1, that maps elements of type dyn to TC(dyn, . . . ,  dyn): it 
checks whether its argument has the tag TC; if so, it strips the tag and returns the 
untagged value; if not, it generates a (run-time) type error. It is possible to include 
a general typecase form (see [ACPP91]) in the language; this way projections can 
be defined instead of added as language primitives; e.g., 

t y p e c a s e  e of 
(I/uric]f) f 
else e dyn_.dy n 

end  

is the definition of func -I, where e d n-.dyn represents a run-time type error In- y 
deed, general type dispatching can be described, which is not "directly" possible 
with projections alone; e.g., 

t y p e c a s e  e of  
( [func] f ) typecase ( f ( [ boo~ true) ) of 

([boo,b) b 
else e bool 

end  
([boo, b) b 

end.  



236 

In this paper  we are primari ly interested in automat ical ly  inferring embeddings 
and project ions in programs tha t  use t h e m  implicitly, as is the  case in run- t ime 
typed  languages where they correspond to tagging and check-and-untag operat ions 
(see Section 3). Consequent ly  we omit  the general typecase form for the  present 
purposes.  

Coercion type  signatures are expressions of the form T -,,* T ~, where T, r ~ are 
type expressions (see below). Taldng embeddings and project ions and  the identi ty 
function, ~, as primitive coercions we can build a calculus of coercions as follows: 

�9 coercions can be (functionally) composed to form new coercions as long as 
their types m a t c h  up; 

�9 for every type constructor  TC of k > 0 a rguments  there  is a coercion con- 
structor tha t  tal~es k coercions, one for each a rgument  posit ion, as ihputs  
and combines t h e m  to a new coercion. 

For example,  if cl : T1 "~ T{, C2 : r2 -,z r~ are coercions then  cl --* c2 : (~  --~ T2) -,z 
(T1 --* r~) is an induced coercion tha t  operates on functions f of type r~ --, 7-2. It 
re turns  a function of type T1 ~ 7-~, which is the composi t ion of (in diagrammatical  
order) coercion cl, function f and finally coercion c2. Using/3-  and  y-equality it 
is possible to define the coercion constructor  --* by c --* c' = )~y.)tx.[d](y([c]x)). 2 

Coercions defined only from embeddings  and the ident i ty  (no projections) are 
positive coercions; those defined only from project ions and the  ident i ty  (no embed- 
dings) are negative coercions. A language with only positive coercions corresponds 
to a "coercion formulat ion" of a subtyping discipline; c.f. [Tha88,BCGS89,CG90]. 
If negative coercions are added to a subtyping theory wi thout  explicit coercions 
(e.g.,[FM88]) in a naive fashion this leads to a complete  collapse of the type hierar- 
chy - -  every type is equal to dyn. In this sense the presence of negative coercions 
makes dynamic  typing fundamenta l ly  different from subtyping.  

The  pure dynamical ly typed A-calculus wi th  only the  type  constructor  --, is 
operationally uninterest ing since no type errors can occur. In  this case the coer- 
cions have no operat ional  significance and may  be ignored dur ing execution. For 
this purpose we use as a vehicle for our investigations the dynamical ly  typed ,~- 
calculus with an addit ional  pr imit ive type,  the Booleans. T h e  type expressions in 
this language are generated by the product ion  

7- : : =  o4booll7-' ~ 7-"ldyn 

The  typing rules for the dynamic  )~-calcuhis with  Booleans are given in Figure 1 
in na tura l  deduct ion style. Throughou t  this paper  we use the  following notat ional  
conventions: e, e', . . .  denote  (dynamically typed  or untyped)  A-terms; c, c', d, d ' , . . .  
denote coercions; T, 7-', . . .  denote  type expressions; and c~, ~ , . . .  are type  variables. 
In t roduct ion  of a typing assumpt ion  for a variable x hides all other  assumptions  
for x unti l  it is discharged. If e : 7- is derivable from a set of typing assumptions 
A we write A t- e : 7-. We say e is a dynamically typed X-term if A ~- e : 7- for some 
typing assumpt ions  A and type expression r .  

The  rule (COERCE)  is the only rule with which addi t ional  typings beyond 
those of the simply typed  A-calculus can be inferred. Note tha t  on the  one hand  

~We t rea t  e --~ c' separately since we do not  rely on 1~- and /o r  eta-equality. See Section 4. 
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(ABSTR) 

(APPL) 

X : T t] 

e : T  

Ax.e : r"---* r 

e : T~ ...-~ T 

e ~ : T I 

e e '  : 1" 

(CONST) 

(IF) 

true, false : bool 

e : bool 
eI . T 

e ~  

i f  e t h e n  e'  e l s e  e" : 7" 

(~-EMBED) 

(--~-PROJ) 

(~-CONSTR) 

func-l : d~n.,~ ( dy,~--* dy,~) 

e l  : TI "X~ T~ 

C2 : T 2 " ~  T~ 

(BOOL-EMBED) bool : bool ,~  dyn 

(BOOL-PROJ) bool "q : dyn,,.~ bool 

(NOP) 

(COMP) C1 : T ,x~ T I 

C2 : T I ' x ~  7 -o 

C l ; C 2  : T ' x ~  T tl 

(COERCE) e : I" 
C : T ,'~. T ! 

[qe  : r '  

Figure 1: Typing rules for the dynamically typed A-calculus with Booleans 
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coercions cannot directly be passed as arguments to or returned from. functions. 
On the other hand, every coercion c : r -.~ T I Can be represented by the function 
and "first-class" value Ax.[c]x : r ---* r'. Since not all (A-definable) functions are 
coercions, however, we keep coercions strictly separately from arbitrary functions. 

Induced coercions give us the effect of tagging with full type expressions since 
for every type T there is a coercion c : r ".., dyn; e.g., [boot-" -.o bool;.func](Ax : 
bool.if x t h e n  falseelse true has type dyn. Yet a general typecase form with match- 
ing on full type expressions is counter to our desire to treat this dynamically typed 
A-term as equivalent to [func](Ax : dyn.if [bool-1]x t h e n  [boo,false else [boo, true 
(see [Tha90] and Section 4 of this paper). 

We shall not give a semantics of the dynamically typed A-calculus, but leave 
this question deliberately open at this point. In Section 3 we will treat an untyped 
A-term as an incomplete program into which explicit coercions must be inserted 
to form a dynamically typed A-term. In Section 4 (resp. 5) we characterize the 
semantic properties that a semantics of the dynamically typed A-calculus must 
satisfy if all possible (resp. safe) completions of an untyped A-term axe to be 
coherent, i.e., denote the same value. 

3 Completions 

In the implementation of programming languages with implicit dynamic type 
checldng, type handling operations are in effect "inserted" into the source code 
in a canonical fashion: Every variable is assigned type dyn; at every program 
point where a value is created (e.g., by a constant or a A-abstraction) the corre- 
sponding tagging operation (embedding) is inserted; and at every program point 
where a value is used (e.g., by the test in a conditional or by a function applica- 
tion), the appropriate check-and-untag operation (projection) is inserted. In this 
fashion the resulting "completed" program satisfies the typing rules of Section 2. 

The main disadvantage of this scheme is that dynamic type operations are al- 
ways used, even in cases where they could be orqJtted; in particular, statically 
well-typed programs are also annotated with type operations, which typically re- 
sults in slower execution compared to execution without any type operations. 3 

We view a program with implicit run-time checldng as an incompletely typed 
program; that is, a program from which coercions (and type declarations of vari- 
able.s) have been omitted. It is the task of the type inferencer to complete this 
program by inserting explicit coercions such that the typing rules are satisfied. 
This extends the role of conventional type inferencers in that not only type in- 
formation but also identity and placement of coercions in the source program are 
inferred. 

Formally, the untyped A-terms (with Booleans) are generated by the production 

e ::= xlAx.e'le'e"ltruelfalse[ife' t h e n  e" else e ' .  

The erasure of a dynamically typed A-term e is the untyped A-term that arises 
from "erasing" all coercions from e (including the square brackets, of course). 

aWe use as a fundamental assumption that operations on untagged data are generally more efficient than the 
corresponding operations on tagged data, which also have to perform tagging and checking. 
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Conversely, a completion of an untyped A-term e is a dynamical ly  typed A-term 
whose erasure is e. Since there is generally more than one completion for the same 
incomplete program we treat  the resulting ambiguity as a problem of coherence 
[BCGS89,CG90] (see Section 4) or safety (c.f. [Tha90]; see Section 5) of the 
semantics of the completions. 

A completion models the process of making coercions explicit tha t  are implicit, 
but  nonetheless present, in run-t ime typed languages. The  process of malting them 
explicit opens the opportuni ty  for source-level compile-time optimization. 

Note that  the "local" translation of untyped A-terms to dynamical ly  typed 
A-terms described at the beginning of this section is a completion in this sense; 
we shall call it the canonical completion of an untyped A-term. Intuitively, it 
maximizes the use of embeddings and projections. 

We illustrate this translation for the familiar fixpoint combinator  Y of Church. 
The Y-combinator  is defined by 

r = A f . (Ax . f ( xx ) ) (Ay . f ( yy ) ) .  

Its canonical translation into the dynamically typed A-calculus is 

Irene]A/: dyn. 
: 

[fune] (Ay: dyn. [y ,nc- 

The canonical translation generates a dynamically typed A-term for every untyped  
A-term. Thus we have the following proposition. 

P r o p o s i t i o n  1 Every untyped A-term has at least one completion. 

Another  possible completion for the Y-combinator tha t  actually minimizes the 
use of coercions is 

Ym = A f : dyn---* dyn. 
(Ax: dyn ~ dyn.f(x~func]x)) 

which is of type (dyn --* dyn) ~ dyn. Ym looks, in an intuitive sense, more 
"efficient" than Y~ because fewer type operations have to be executed during its 
evaluation. 

4 C o h e r e n c e  

Completions induce a congruence relation on dynamical ly typed A-terms and co- 
ercions: e ~ ~ e" if A F- e ~ : r and A t- e" : r for some set of typing assumptions A 
and type expression r ,  and e ~, e ~ have the same erasure; c I ~ c u if x : r ~ [cl]x : r I 
and x : v ~" [c"]x : r r for some r,  T'. If any two such congruent A-terms, respectively 
coercions, are semantically equivalent, we can define the meaning of an untyped  
A-term as the meaning of any arbitrary one of its completions. This opens the 
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(e; r  r  = c; (ca; r  (1) 
c;~ = c (2) 
~;c = c (3) 

c ; c  -1 = ~ (4) 

~ - ~  = ~ ( 5 )  

(c -o ca);(d --~ d ~) = (d;c) --~ (ca;d ~) (6) 

[,1~ = ~ ( 7 )  

[c'][c]~ = [c;c']e (8) 
[ c - ,  dlAx.~ = Ax.[d](~{x H [c]~}) (9) 
([c--* d]e)e' = [d](e([c]e')) (10) 

[ c ] i f e t h e n  e' e l se  e" = i f e t h e n  [c]e' e lse  [c]e" (11) 

Figure 2: Conversions for dynamical ly typed A-terms with Boolean t ru th  values 

door to intensional considerations: finding operat ionally efficient completions by 
ta ldng the global program st ructure  into account.  This  is addressed in Section 6. 
In this section we characterize the propert ies a semantics of the  dynamical ly  typed 
A-calculus mus t  satisfy to be coherent  (yield the same meaning)  for all completions 
of any un typed  A-term. 

Consider the equat ional  theory given in Figure 2 over dynamical ly  typed  A- 
te rms  and (well-formed) coercions. 

T h e o r e m  1 (Coherence of completions) 
The equational axioms and rules of Figure 2 together with the addit ional  rule 

c-I; c = ~ (for every embedding c) is an axiomatization of completion congruence; 
that is, for all dynamically typed A-terms d,  e" we have e ~ ~- e ~ if  and only if  d = e ~ 
is derivable with the standard equational axioms and inference rules (reflexivity, 
symmetry, transitivity, congruence under arbitrary contexts). Furthermore, the 
axiom system is irredundant; i.e., no rule or axiom can be derived from the others. 

We need a l emma for the proof  tha t  guarantees t ha t  coercions are congruent  
exactly when they  have the same type signature. The  coercion equalities are 
the axioms and rules in Figure 2 in which no A-terms occur, together  wi th  the 
addit ional  equat ion c-1; c. 

L e m m a  2 (Equality of coercions) 
Let c : r ,,~ a, d : r ~ "~ a' be arbitrary coercions. Then c = d is derivable from 

the coercion equalities if and only if 7" = T ~ and a = a ~. 

It  is easy to see tha t  for every coercion c : r ",~ r ~, pr imit ive or induced, there 
is an "inverse" coercion c a : T ~ -~ r such tha t  c; d = ~ and ca; c = L. We reserve the 
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nota t ion  c - I  for project ions corresponding to (primitive) embeddings ,  however, as 
we have no need for a general inverse operat ion on coercions. 
P r o o f :  (Proof  of theorem) Let e' = e" be derivable. By inspect ion of the axioms 
and rules it can be verified tha t  d and e" have the  same erasure. Similarly it can 
be checked tha t  A t- e' : T if and only if A l- e" : r .  It  follows t ha t  they  are 
congruent  completions;  i.e., e ~ ~ e". 

For the converse, we call a dynamical ly typed  A-term head coercion free (c.f. 
[CG90]) if it is not of the form [c]e'. W.l.o.g. we may  assume tha t  coercions are 
only applied to head coercion free A-terms and every head coercion free sub te rm 
has exactly one coercion applied to it. This  follows from [ck].. .  [cz]e = [cz;. . .  ; ck]e 
for k _> 2 and e = [~]e. We prove d = e" =~ d = e" by induct ion  on the erasure e 
of e ~ and e". 

(Basis, I) If e = x then  e ' =  [ d ] x , e " =  [c"]x. This  implies c,c~: A ( x ) ' ~  7" and 
thus  c = d by Lemma  2. 

(Basis, II) If e = true or e = false then  similar as above. 
(Induct ive step, I) If e = A x . f  then e' = [c~]Ax : 7"'.f' and e" = [c'~]Ax : 7"".f". 

Since there is a coercion from any type to any other  type  there  are coercions 
d :  7"" < 7"',d ~ : v' < v" such tha t  [d --, d']Ax : 7"'.f' = Ax : 7".[d']f '{x ~-~ [d]x}. 
Tha t  is, we have for A { x :  7""} the completions [d']f '{x H [d]x} and f "  of type  
v", and by induct ive hypothesis ,  [d']f '{x ~ [d]x} = f" .  Consequent ly  we have 
[d'][d ~ d']Ax : T ' . f '  = [d']Ax : r" . f " .  Since (d ~ d ' ; d ' ) , d  : 7-' < 7"" we know 
(d ~ d~; d') = d and the result  follows. 

(Induct ive step, II) If e = f g ,  then  e' = [e](f 'a ' )  and  e" = [e ' ] ( f "o")  where  
f '  : a' ---, v t, f "  : a" ~ v". There are coercions d : 'a" --* a ' ,  d - 1  : Or t < 6r tt, d t : ~3 t 
V" We have d ~ d  ~ �9 [ ] f  = f "  and [d-Zig ' = g" by induct ion hypothesis ,  and thus  
[d']([d --, d']f'[d-Z]g ') = [d'](f"g"). We get [d'][d'](f'g') = [cr Because of 
umqueness  of coercions it follows tha t  (d~; d ~) = d and the  result  follows. 

It is easy to construct  for every axiom and rule a pair of congruent  complet ions 
such tha t  they cannot  be proved congruent  wi thout  it. (End of proof)  �9 

This  shows that ,  independent  of  t3 -  and y-equality, all congruent  complet ions 
of an un typed  A-term have the same behavior  if and  only if their  meanings  satisfy 
the equations in Figure 2. 

5 Safety 

In the characterizat ion of coherence of completions (Theorem 1) we have used the  
equality c-Z; c = ~. Accordingly, we have the equality [bool; func-1; fune; boo1-1] true = 
true since bool; func-1; func; boo1-1 = bool; t; boo1-1 = bool; boo1-1 = t and [t]true = 
true. With  naive evaluation of coercions, however, this equali ty does not hold: 
[bool; func- i ;  func; bool-1]true is evaluated by first applying the  tagging operat ion 
bool to true, then  the check-and-untag operat ion func  -1 and finally func  and boo1-1. 
Since the  tag of the value after applying bool is "boot', however, the  second opera- 
tion, func  -1 generates a type error�9 In contrast ,  evaluat ing trout by itself yields no 
type error. So c -1; c = ~ does not hold with naive evaluation of coercions. 

In view of Theorem 1 we have three possibilities to address this problem: 
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1. Allow arbitrary completions, retain naive evaluation of coercions, but  give 
up on coherence of completions. 

2. Allow arbitrary completions and devise a different evaluation strategy for 
coercions to retain coherence. 

3. Retain naive evaluation of coercions, but  restrict the class of admissible com- 
pletions to retain cohercnce. 

Since we envisage the process of completing an untyped program to be auto- 
matic, Option 1 is least attractive since it puts the task of deciding the meaning 
of a program into the hands of the completion process, over which a programmer 
has no control. 4 

We can accomplish Option 2 if coercions are not evaluated until a value is 
used (as a function in an application or in the test of a conditional). In this way 
every type operation just adds itself as a tag (even check-and-untag operations!) 
to a value and at the point of use the resulting sequence of tags is simplified by 
rewriting until an untagged value of the correct type is reached or a type error is 
generated (see [Thag0]). This form of "simplificational" coercion evaluation has 
two disadvantages: it is inefficient since it requires complex, long-living tagging 
and symbolic rewriting, and it gives delayed error messages. 

Since naive coercion evaluation is more conventional, generally more efficient, 
and reports type errors earlier we adopt Option 3. Notice that  with naive coercion 
evaluation C[c-1;c] generates a type error or yields the same value as C[e] for 
any context C; never a differer~t (proper) value. We replace the equalities of the 
form c-l;  c --- ~ by inequalities ~ E c-i; c for all embeddings c and extend them 
to other coercions, d E_ d', and dynamically typed A-terms, e ~ _ e", by combining 
them with the equalities of Figure 2 and closing them under reflexivity, transitivity 
and arbitrary context. Here an equality d = e" is interpreted as the inequalities 
d E_ e" and e" E d.  An inequality d E_ e" expresses that,  in any context, if d 
generates a type error then so does e" in the same context. These inequalities 
are a syntactic analogue to That te ' s  semantic "wrongness" relation in a fixed 
denotational interpretation [Tha90]. 

We say that  a completion d of e is safe if for every congruent completion e" we 
have d E e". Intuitively, this guarantees that  d generates as few type errors as 
possible at run-time; i.e., it does not generate avoidable type errors. More impor- 
tantly, it can be shown that  for safe completions naive and simplificational coercion 
evaluation behave equivalently. So by restricting ourselves to safe completions we 
can reap the benefits of combining the efficiency and simplicity of naive coercion 
evaluation with unambiguous semantics and still retain a great degree of freedom 
of choosing amongst different safe completions. 

Analogous to the proof of Theorem 1 we can show that  every untyped A-term 
has a safe completion. In fact, the canonical completion is safe. 

P r o p o s i t i o n  3 (Safety of canonical completions) 
Every untyped A-term has at least one safe completion. 

4This is a fundamental difference from the dynamic typing disciplines of [ACPP89] and [LM91] since in those type 
systems the programmer is expected to control coercions completely. 
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Note that  for two congruent safe completions d,  e" of an untyped A-term e we 
can derive e ~ = e" from the equational axiom system in Figure 2 alone, without 
the equation c-1; c = e. 

6 Minimal completions 

As we have seen, the canonical completion of an untyped A-term is safe. But  it is 
also inefficient. In this section we define a general syntactic criterion for discussing 
which completion is operationally "better" than another. This criterion is robust 
in the sense that  no particular concrete operational semantics, implementation 
technology, etc., is assumed, but only that  execution of a tagging operation (em- 
bedding) and then its corresponding check-and-untag operation (projection) is less 
efficient than executing nothing at all. For various classes of safe completions we 
report efficient algorithms for computing minimal (optimal) completions w.r.t, to 
that  syntactic criterion. In particular, we describe a theoretically and practically 
very efficient algorithm for a class of completions that  has possible applications 
in the optimization of run-time typed languages such as Scheme, Common LISP, 
SETL and others. 

Consider the coercion equality (c; c -1) -- L (Figure 2). With naive coercion eval- 
uation the left-hand side and the right-hand side are equivalent since first tagging 
a value and then untagging it again has the same effect as doing nothing at all to 
the value. Clearly, however, literally executing the left-hand side is wasteful and 
unnecessary. Based on this observation we define a preorder on safe completions 
by replacing the equality c; c -1 = e with the inequality 

<_ c; c -1. 

We extend < to arbitrary coercions and dynamically typed A-terms by adding the 
remaining equalities of Figure 2 (without the equality (c; c -1) -- e, of course) and 
closing it under reflexivity, transitivity and arbitrary contexts (e = e ~ is interpreted 
as e _< e' and e' _< e). 

Intuitively, if we have e _< e ~ then e and e ~ are observably equivalent (i.e., e = d 
can be proved from the equational theory of Figure 2), but e has no more coercions 
than d. This expresses itself by e ~ having syntactically fewer coercions than  e, but  it 
also executes fewer coercions at run-time for any reasonable operational semantics. 

A completion d is minimal in a class of safe congruent completions C if it is 
in C and for every e ~ in C we have e ~ < e". In this sense a minimal comple- 
tion is an operationally optimal completion in a class w.r.t, to ordering <. Note, 
however, that  minimal completions need not be unique as there may be distinct 
safe congruent completions d,  e" such that  both d < e" and e" < d .  For any 
untyped A-term e, type assumptions A and type expression T we d-efine four dif- 
ferent classes of safe completions d of e such that  A ~- d : T: completions that  
use only primitive coercions (embeddings and projections) and place them at data  
creation and data use points only; completions that  use only primitive coercions 
(and place them anywhere); completions that  use arbitrary coercions, but  place 
them at data  creation and data use points only; and arbitrary completions (using 
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arbitrary coercions placed anywhere). We denote these four completion classes by 
C A'~ (e), CAj~(e), car,  CAj~(e), respectively 

PJ. J �9 

Hence~rth let A, e, r be fixed, but arbitrary. We shall simply write Cpl , Cp,, 
C , / a n d  C**, respectively, for the four classes above. Let C be any one of these. 

T h e o r e m  2 C has a minimal completion. 

Let e be of size n. We denote by m the size of the value flow graph of e. 
This is essentially the higher-order extension of the call graph of a program; its 
construction is also called closure analysis [Ses89]. In the worst case m is O(n2), but 
for well-designed programs the value flow graph is typically sparse, i.e., m = O(n). 

T h e o r e m  3 A minimal completion of C can be computed in the complexity given 
in the following chart. 5 

completions 
only at fixed places 
at arbitrary places 

only primitive coercions 
O(nc~(n,n)) 

l arbitrary coercions 
O(nm) 
O(nm) 

These results follow from the constraint system characterization and normal- 
ization that is the heart of our (minimal) completion algorithms. The algorithms 
are variants on two basic algorithms, one for completions with only primitive co- 
ercions, the other for completions with arbitrary coercions. The first of these 
two can be viewed as an instrumented unification closure algorithm with some 
additional postprocessing and has been used for efficient binding-time analysis 
[Hen91]. At the core of the second algorithm is an efficient dynamic transitive 
closure algorithm (e.g., La Poutr@ and van Leeuwen [LPvL87] and YeUin [YelS8]) 
for computing value flow graphs (closure analysis); it has been used for the effi- 
cient solution of a specialized semi-unification problem [Hen90]. We only describe 
the minimal completion algorithm for Cp/; that is, for completions that use only 
primitive coercions, which are placed at creation and use points only. We restrict 
ourselves to closed A-terms. We shall not present algorithms or proofs for the 
other cases as this would substantially lengthen this paper. 

Our type inference algorithm for Cp/consists of the following steps 

1. For given A-term e construct a type constraint system C; 

2. normalize C to C ~ with respect to a set of constraint transformation rules; 

3. construct a "minimal" solution from C~; 

4. translate the minimal solution into a (minimal) completion of e. 

The advantage of "distilling" the essence of type inference into constraint systems 
is that  it frees the type inference problem from the syntactic structure of programs 
and permits solution strategies that are not strictly syntax-directed. 

6a is an inverse of Ackermann's function, which may be considered a small constant for all practical purposes 
[T~r83]. 
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For a A-term e associate a type  variable ~z with every A-bound and free variable 
x (w.l.o.g. we assume they are distinct) and with every sub te rm occurrence e' of 

e associate a type variable c~e, with d.  Define C(e) as follows. 

? 

1. If e = Ax.e' then C(e) = {~= --* ~ ,  4: ~ }  U C(e'); 

? 

2. i f  e = e'@e" then C ( e )  = {c~e,, -~ ee 4: ee'}  U C(e ' )  U C(e" ) ;  

. 
? 

if e = i f e '  t h e n  e" e lse  e "  then C(e) - {bool < ae,,ae,, "- ae,, ,ae -- a~} U 
C(e')UC(e")UC(e'); 

? 

4. if e = c then C(e) = {bool 4: C~e} where c =  true or c =  false; 

5. if e = x (x variable) then C(e) = { ~  .~ o~=}. 

Figure 3: Extract ing typing constraints  

6.1 B a s i c  cons tra in t  s y s t e m  e x t r a c t i o n  

A type constraint system is a multiset  of constraints of the following forms. 

? 

? 

boot 4: 
? O/ 

where c% c/,/~ denote type variables or the type  constant  dyn. A solution of a 
constraint system C is a subst i tut ion S of type  expressions for type  variables such 
that  

? 
�9 for  o~ --, a / _</~ in C there exists a primitive coercion 6 c such tha t  c : S(c~) --, 

S(o/) _< S(fl); 
? 

4:/3 in C there exists a primitive coercion c such that c : bool < S(~); s for bool 

s for & 

�9 

c~' we have S(c~) = S(a/);  and 

for all ~ not occurring in C. 

Note that  in general we can develop our t rea tment  of constraints  over an ar- 
bi t rary te rm algebra representing type  expressions. This is useful in a realistic 
setting where we have a mult i tude of predefmed basic types and type  constructors  
(and possibly also user-defined types and type  constructors).  

SRecail that L is a primitive coercion. 
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First we define the constraint "extraction" function C. It is given in Figure 
3. The  solutions of C(e) and the completions of e are in a very close relation, as 
expressed in the following theorem. 

T h e o r e m  4 (Soundness and completeness of constraint characterization) 
The completions of e and the solutions of C(e) are in a one-to-one correspon- 

dence. 

P r o o f :  Analogous to Theorem 1 in [Hen91]. (End of proof) �9 
Let us write el = Ax.f(xx) and e2 = Ay.f(yy). Church's fixed point combinator 

is Y = Af.ele2. Then  the constraints C(Y) for Y are: 

~x ~ ~xx 

C~ x ~ O:f(xx ) 

OLy ~ Ogyy 

% y  --4 ~/(yy) 

% ~ a/(yy) 

O/e2 ----4, O/ele2 

? 
< 
? 
< 
? 

<_ 
? 

<_ 

< 
? 

<__ 

< 

O~f ~ O/.ele2 

Ol x 

~ e l  

~y 

~e2 

O/e 1 

~ y .  

6 . 2  C o n s t r a i n t  s y s t e m  n o r m a l i z a t i o n  

Constraint  system normalization transforms C(e) into an equivalent constraint 
system Ct(e) over the same class of constraints. It preserves the  set of solutions, 
but  it generates normal forms tha t  make it easy to construct  concrete solutions 
since it eliminates all constraints that  cannot be solved equationally. 

Let G(C) be the graph defined on type variables occurring in C such that  
? 

there is a directed edge from c~ to /3  whenever there is a constraint  c~ --, a '  < fl 
? 

or a '  -~ ~ <_ ~ in C. We say C is cyclic if G(C) is; and acyclic otherwise. The 
transformation rules for normalizing C(e) are given in Figure 4. 

The normalization of C(e) results in a substitution S and a normal form con- 
straint  system C'(e) with the following properties: 

? 
1. For all inequality constraints . . .  _< a in C'(e) the r ight-hand side, a ,  is a 

(type) variable. 

? 
2. There  is at most one constraint of the form . . .  _< ~ in C'(e) for every c~. 

3. C is acyclic. 

4. No constraints of the form ~ ~ a '  are in C'(e). 
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Let C be a constraint system with constraints of the form 

? 

? 
�9 booI < o~, a~d 

? OZl 

o/' {dyn}. The transformation rules are: where c~, ~', E V U 

1. (inequality constraint rules) 

? ? 

? Z' ~: ~,} =~ c u {,:,--, o/~: ~,, o ~  ~ , d - , 6 ' } ;  ( a )  c u {o~ ~ o / 9 .  ~ , , ~  - - ,  _ _ = 
? ? ? ? ? 

(b) C u { .  --, . '  < 7, bool < 7 }  =~ C u {o, ---, o/ < 7,  bool < 7 ,  7 - dyn}; 
Y ? ? 

(c) C U {a' --~ cd ~ dyn} =t, C U {o: - dyn, o / -  dyn}; 
? 

(d) C U { bool <_ dyn} =~ C; 

2. (equational constraint rules) 

(a) C U {dyn ? o~} ~ C U {o~ ~ dyn} if c~ is a type variable; 

(b) CU { d y n ~  dyn} =~ C; 

(c) C U  {c~ ? ~'} =~ S(C) if ~ is a type variable and S = {~ ~-* c~'}; 

3. (occurs check rule) 

(a) C =~ C U {o~ s dyn} if C is cyclic and ~ is on a cycle in G(C). 

Figure 4: Normalizing constraints 
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T h e o r e m  5 (Correctness of constraint normalization) 
I] C ~ C' and l.l is the set of solutions of C ~ then {U o S]U E L/} is the set of 

solutions of C. 

Normalization of C(Y) results in the substitution 

S y  = {Olz, Olzz, Olf(zz), Oly, Olyy, Olf(yy), OLe2 , C~ele2 ~ dyn} 

and the normalized constraint system C ( Y )  containing 

? 
dyn--~ dyn <_ (~I 

? 
dyn-* dyn <_ ole~ 

? 
~l- '*dyn <_ O~y 

6 . 3  S o l u t i o n  c o n s t r u c t i o n  

We can construct  a "canonical" solution from normal form constraint  system C~(e) 
by simply unifying all inequalities. The properties of a normal form constraint 
system guarantee that  all the constraints in C'(e) can be satisfied equationaUy. 
We shah call this solution the minimal solution of C~(e) and, by extension, of 
C(e). Because of Theorem 4 this solution corresponds to a unique completion e ~ 
of e tha t  has some type r .  It can be shown by induction on e that  for any other 
completion e" in Cpl of type T there exists a coercion e : 7 ~,~ 7 such tha t  e" = [c]d 
is derivable in the equational system of Figure 2 without using equality c; c -1 = L. 
Since ~ _< c this implies e ~ _< e", which shows that  e ~ is minimal in Cpl. 

T h e o r e m  6 (Complexity of computing minimal completions) 
The minimal completion of an untyped )~-term of size n can be computed in 

time O(na(n,n)) and space O(n) where ~ is an inverse of Ackermann's function 
[Tar831. 
P r o o f :  (Sketch) It is easily seen that  constraint extraction and minimal solu- 
tion construction construction can be implemented in linear time. 7 In /Hen91] 
an amortization argument  is given that  shows that  constraint  normalization is 
implementable in t ime O(no~(n,n)) (and space O(n)) using the union/f ind da ta  
s t ructure  with ranked union and path  compression [GI91]. (End of proof) �9 

The minimal solution of C~(Y) is the substi tution 

Uy = {o~f, we, H dyn --4 dyn, o~y ~ (dyn ---* dyn) ~ dyn} 

The resulting minimal completion in CpI(Y ) is 

Yml = A f : dyn.-~ dyn. 
dyn.y([func-1]x )) 

L unc]( y : dyn.y([yunc-1]yU)). 
?We assume type expressions may be represented with sharing to avoid the well-known exponential blow-up of 

string representations of the solutions of unification problems. 
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Comparing it to the completion Ym in Section 3 note that Ym < Yml; i.e., Ym <_ Y, nl, 
but not Yml <- Ym. So Ym is "better" than Yml, but Ym is not in CpI(Y) ,  but Ym 
is the minimal completion in Cp,(Y).  

7 P o l y m o r p h i s m  

In this section we sketch an extension of dynamic typing to a type discipline with 
let-polymorphism [Mi178]. A thorough and satisfactory treatment of polymorphic 
dynamic typing will have to be deferred to future work. 

A minimal completion of e for one context C cannot generally be extended to a 
safe completion for C~[e] where C' is another context for e. Consider the following 
example from [Thag0], in which we assume we have also lists and integers in 
our language: e = Ax.cons 1 x. Its minimal completion in the context C~ = 
car([](cons 1 niO ) + 1 is Ax.cons 1 x :  list(integer) ---, list(integer). However, in the 
context C'~ = ~(cons truenil) its minimal completion is Ax.cons ([ intege~l)x  : 
list (dyn) --, list (dyn). Note that the first completion of e in the context C cannot 
be extended to a safe completion for C'[e] s, and that there is no completion of 
e with the apparent polymorphic generalization Vo~.list (~) --* list (o 0 of these 
two completions. This has the implication, as observed by Thatte  [Tha88], that 
instantiating an "unknown" coercion in a completion of e must be delayed and 
insta.ntiated separately in every context in which e is used. In a polymorphic 
type discipline this necessitates that the language provide for passing coercions as 
arguments to let-bound variables. Through such formal coercion parameters the 
different contexts of the applied occurrences of a let-bound variable x can pass the 
concrete coercions to x that are necessary to safely evaluate the body bound to x. 

These considerations motivate an extension of the dynamically typed A-calculus 
to let-polymorphic programs where let-bindings may be parameterized by formal 
coercion parameters. In this way we can give a completion of Ax. cons 1 x that  fits 
both contexts C H and C~H above: 

let  f[c] = Ax.cons ([c]1)x in 
car((f[ ])(co.s 1 -iO) + 1 

i:fii teger])(co,  true, iO 
Unfortunately formal coercion parameters are easily used where they are not 

even necessary. Consider for example let f = Ay.y in f true. One completion of 
type bool is let f[c] = [c]Ay.y in (f[e])true. Clearly an operationally preferable 
completion is simply let  f = Ay.y in f true, also of type bool. 

It remains to extend the notions of minimality to dynamically typed A-terms 
with let-expressions in such a fashion that minimal principal completions coincide 
with static principal typings for statically polymorphically typable A-terms. 

We do not anticipate any problems with integrating other language features 
into dyn~.mic typing with polymorphism such as exceptions, side-effects, continua- 

sI f  simpliflcational coercion evaluation is used then ( c - l ; c  = L is valid and minimal completions may be used as 
principal completions. 
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tions and pointers beyond those already observed for statically typed polymorphic 
languages. 

8 R e l a t e d  w o r k  

Dynamic typing in a static language can be found in several programming lan- 
guages. For a survey and historical perspective we refer the reader to [ACPP91]. 

The main motivation behind the work of Abadi, Cardelli, Pierce and Plotldn 
[ACPP89,ACPP91] and Leroy and Mauny [LM91] is in using type Dynamic as a 
universal interface to a changing environment that may contain persistent objects, 
concurrently executing programs or generally elements not under complete control 
of a single program. As a consequence these languages have very powerful explicit 
constructs for tagging and checking values that are both conceptually complex and 
expensive to implement. This is not an attractive model in a language in which 
tagging and checldng values may be inferred since different completions may have 
very different and unexpected behavior (c.f. remarlcs by Thatte [Tha90]). By 
relying on a fixed number of tags - -  one for each type constructor - -  dynamic 
typing is conceptually easier and less expressive than full type tagging; the cor- 
responding typecaze form needs to match only type constructors, not complete 
type expressions and can thus be implemented efficiently using switches (indirect 
jumps). 

In the absence of negative coercions dynamic typing turns into a subtyping 
discipline with dyn functioning as the "top" type. Thatte [Tha88] has investigated 
such a language with induced coercions where coercions are inserted at fixed places 
(function applications). He characterized the typability problem as a problem of 
solving subtyping constraints, but left its decidability open. 9 This problem has 
recently been shown to be decidable by O'Keefe and Wand [OW91]. The notion of 
coherence arises in coercion interpretations of subtyping. Breazu-Tannen, Cardelli, 
Coquand, Gunter and Scedrov [BCGS91] use coherent translations from a language 
with subtyping into one without, to provide models for a language integrating 
subtyping (inheritance), parametric polymorphism and recursive types. Similarly, 
Curien and Ghelli [CG90] give an axiomatization of coherence in F< using explicit 
coercions and use it to show typable F< programs have minimal-types. 1~ Our 
equational characterization of coherence extends the first-order subset of F< with 
negative coercions and a rule relating ,k-terms to each other that have different 
types bound to the same variable. 

Thatte introduced negative coercions in [Tha90]. In his type system the distinc- 
tion between positive and negative coercions is carried over to induced coercions. 
Positive coercions may be placed anywhere, but negative coercions can only be 
placed at use points. Programs are required to have explicit type declarations for 
every variable; they are completed with explicit coercions such that the resulting 
program is a convergent completion with explicit coercions. (Thatte's semanti- 
cally defined notion of convergence has motivated the syntactic notion of safety 

9Note that A-bound variables have no type declarations in this type inference problem, which sets it apart from 
the (easier) type checking problem for the first-order fragment of F_<. 

1~ error was later discovered in their proof of decidability of typability in F<; recently Pierce [Pie91] has announced 
that type checking F< is undecidable. 
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in this paper.) The denotational semantics is similar to Abadi et al.'s [ACPP91], 
and the operational semantics uses a form of simplificational evaluation of coer- 
cions in which values are tagged with sequences of full type expressions. Note 
that our completion problem is more general in that programs do not require type 
declarations for variables and that may insert arbitrary coercions any place. 

Gomard [Gom90] inspired our approach to dynamic typing by type inference. 
He describes type inference for implicitly typed programs with no required type 
information at all. In dynamic typing terms his algorithm produces a completion 
with primitive coercions in which positive coercions may only occur et creation 
points (A-abstractions, constants). Negative coercions for checking functions may 
occur at application points, but no negative coercions for base types are permitted; 
instead tagged versions of base operations are used. As a consequence tagging 
may "spread" to every point reachable from a single tagging operation. His type 
inference algorithm is a backtracking adaptation of Algorithm W [Mi178] that 
executes e ( n  2) calls to a unification procedure and thus runs in time O(n 3) with 
an optimal unification algorithm. Our completion algorithm improves this bound 
to almost-linear time and "isolates" tagging operations better. 

Cartwright and Fagan [CF91] present a very ambitious extension of ML's type 
inference system with regular recursive types, union types and implicit subtyping 
based on extension of unions. Dynamic type checking operations are not included 
in the type system, but they are added during type inference as a consequence of 
unification failure. All (non-type-variable) types axe represented as union types, 
which are encoded using a type representation scheme pioneered by Remy [Rem89] 
for record-based inheritance. There are several problems, however, both wi th  
the type system and with the "Remy encoding", n A typing rule for induced 
containments of union types is missing (e.g., Tl _C 7"3, T2 (~ 7"4 ~- TI ~- 7"2 C 7"3 "~ T4) 
and the subtyping rule for recursive types in the stated form t C u =~ T C U b 
pt .T  C #u.U is unsound. The Remy encoding results in restricting subtyping steps 
to language primitives; yet, on the other hand, it permits encoding of polymorphic 
types that are not expressible in the original type system. As a consequence the 
encoding has typing power incomparable to the original type system. For example, 
for primitive types bool, integer and f0 : (bool+ integer) ---, bool the expression 

let twice = A f .Ax . f ( f x )  in 
let f l  = twicefO in 
if ( f l ( i f f a l s e  t h e n  true else 6)) t h e n  0 else 1 

is typable in the original type system without negative coercions, but not in the 
Remy encoded system. On the other hand, 

let cons1 = Ax.cons 1 x in 
c  (con l(con  I niO) + 1 
. . ,  

consl( cons true ni 0 

(adapted from [Tha~8]) is not typable in the original type system, but it is in 
the Remy encoded system. Furthermore, counter to a claim in their paper cur- 

nA revision of this paper, in which these problems are addressed and rectified, is currently underway. 
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rently there appears to be no known linear-time Mgorithm for circular unification 
(unification closure) [KR90]. 

9 C o n c l u s i o n  

Dynamic typing promises to integrate the advantages of compile-time and run- 
time type checked programming languages without inheriting their disadvantages. 
In particular, inferring minimal completions of implicitly dynamically typed pro- 
grams makes it possible to "only pay for the amount  of dynamic typing that  is 
unavoidable" in the underlying static type system. 

To estimate the practicality of the minimal completion algorithms we have pre- 
sented we plan on implementing them for Scheme. Since we do not believe that  
completions with induced coercions lead to better results in most cases than with 
only primitive coercions we expect the almost-linear time minimal completion algo- 
ri thms to be of particular practical value, both to programmers and to optimizers. 
For a practical adaptation of dynamic typing to a polymorphic type discipline the 
problem of minimizing the number of coercion parameters to let-bound variables 
needs to be addressed. It is an intriguing prospect that  a polymorphic minimal 
completion algorithm may lead to novel implementation techniques and optimiza- 
tions for conventional run-time typed languages. 
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