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Abstrac t  

This paper presents a flow-sensitive interprocedural method for type propagat|on 
in an object-oriented language. The primary goal of this method is to obtain a 
precise call graph in the presence of late binding for function names. Thus, it can 
be viewed as a preliminary step for interprocedural constant propagation and/or 
procedure integration in an object-oriented language. It uses a new efficient form 
of symbolic interpretation in order to limit the amount of intraprocedural analysis 
required to a single pre-pass over each function. The cost of both this pre-pass and 
the in~erprocedural propagation itself is linear in the program size. Furthermore, the 
output of symbolic interpretation lends itself to efficient incremental computation 
and can be reused for other tasks, such as constant propagation or code motion. 

1 I n t r o d u c t i o n  

1.1 Motivation 

Late binding of function names is a crucial feature of object-oriented languages. It consists 
in binding a function name to an implementation at call t ime based on the type of a 
distinguished argument called the receiver. The set of functions whose name is thus 
overloaded is called a method. An ordering over types is specified by the programmer,  and 
the type specified for a variable in the program text (its static type) is an upper bound on 
its actual (or dynamic) type. When only the static type t of the receiver is known at a call 
site for a method m, any implementation of ra attached to t or one of its subtypes must be 
considered callable. Therefore, unless dynamic types are somehow inferred before building 
the call graph of a program, late binding will induce imprecision in interprocedural analysis 
and unduly inhibit procedure integration (i.e. in-lining). Furthermore, when the dynamic 
type of a receiver can be determined statically, a m e t h o d  call can be replaced by an 
ordinary function call, which can be considerably more efficient. 

*Part of the research presented here was carried out in the Altair consortium. A preliminary version 
appeared as Altair report 64-90-V1 [Lar91]. 
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This paper proposes an efficient method for interprocedural object-oriented type propa- 
gation which supports recursion, side-effects and aliasing. It is based on the solution of 
standard bit-vector data flow problems and a novel form of symbolic interpretation. 

While this method was designed with optimization in mind, it can be used, with a minor 
variation (Section 6.2.1), for type-checking a language with optional variable declarations. 

The class of languages amenable to the method described is fairly large. However, it is 
important to note that it requires the types of method implementations to be declared. 
Consequently, languages with no mandatory declarations at all, like standard Smalltalk, 
cannot easily be handled by our algorithm. Thus, mandatory function declarations appear 
as the price to pay for efficient type inference. Note that, wi'thout such declarations, 
object-oriented type-checking in the presence of recursion is an undecidable problem, as 
shown in [AKW90]. 

1.2 Example 

To illustrate motivations and desirable characteristics for object-oriented type propaga- 
tion, consider the fragment of a type hierarchy and the two functions in C-like code in 
Figure 1.1. 

f l :TI"> T 1 
f2 :TI"> T2 
f3 :TI"> T 1 

f2 :T2">T 3 I 
f3 : T2"> T2 

I f3 :T3">T3 I 

b o d y  f~[T~](r): T~ --* T~ { 

: /* code leaving r untouched */ 
r e tu rn  f2(r) ; 

} 

b o d y  f3[T1](r): T1 ~ T1 { 
x, y : T1; 

x ~ new(T2,. . .)  ; 

y A(A(x) )  ; 

Figure 1.1 Example type hierarchy and function bodies. 

The diagram in Figure 1.1 represents for each type the functions attached to it and their 
declared types. For example, there is a method named f3 which has 3 implementations, 
attached respectively to T1, T2 and T3. This means that when the single argument passed 
in a call to f3 --which is the receiver-- has dynamic type T2 for example, then the 
implementation attached to T2 will be executed. We will note f iT]  the implementation 
of method f attached to type T. Method fl, on the contrary, has one implementation, 
which is inherited by T2 and :/13, meaning that fl[T1] is called when the receiver is of type 
T2 or T31. 

Z An equivalent way of putting it is to say that/'z IT1] = fl [T2] = fl IT3] 
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Now consider in Figure 1.1 the implementation of fz that is attached to Ta, i.e. the 
function f3[Ta], and suppose we want to determine possible dynamic types for y. The 
primitive new creates and initializes an object of the type passed as its first argument. 
So, after the assignment to z, the dynamic type of x can be inferred to be T2, from which 
it follows (somewhat trivially) that the implementation of f~ called at the next instruction 
is f~[T~] (through inheritance). Then, considering the type declared for f~[T1], namely 
TI --* T1, we can infer that an upper bound on the set of possible types for f3(f~(z)), and 
therefore for y after the assignment, is Ta, because the type of fs[Tx] is Tx --* T1. However, 
this could be improved upon if, while analyzing f3[T1], we could use information on the 
bodies of the functions that are called, and in particular on the body of fl[T1]. Thus, 
integration (in-lining) of f~[Ta] would reveal that an upper bound for the type of fa(z) 
is T3 rather than T1. Indeed, after in-lining the body of fl[Tx], the expression fs(f~(z)) 
becomes fs(f2(z)), with f~[T2] of type T2 --* T3 and fz[T3] of type T3 --* Ts. 
In fact, the method proposed in this paper does not rely on procedure integration, but on a 
form of symbolic analysis that provides more precise information on the effects of method 
calls while keeping the analysis of individual functions mostly separate and avoiding any 
commitment to particular program transformations during the analysis phase. In this 
particular case, our method will discover that the type of y is 7"3, but it is also capable of 
synthesizing information about several possible calls at sites where procedure integration 
is not possible. 

The example just given illustrates typical opportunities for gaining precision over user- 
�9 �9 

declared types through type propagation. On the one hand, the declaration of fliT1] 
announces an upper bound of Ta on the return type, although the actual bound is 712. 
Such discrepancies do make sense in so far as declared types are self-documentary features 
which reflect intended, but not necessary minimal, bounds. On the other hand, there is no 
specific declaration for flits],  whose implementation and type declaration are inherited 
from T1; thus, only type propagation can determine that passing a receiver of type T2 to 
fl will produce a result of type 713. 

1.3 Algorithm outline 

The algorithm to be described involves propagating upper bounds to the dynamic types 
of variables 2. This algorithm consists of the following stepsS: 

S tep  1 Build for each function an expression for the value returned in terms of argu- 
ment values and constant values irrespective of the execution path taken inside the 
function (i.e. compute a symbolic ezpression). 
For example, the symbolic expression for the value returned by fl[Ta] (Figure 1.1), 
noted jkl[T1](a), where a is the receiver's v.alue, equals jk2(a). The notation f refers 
to the mapping over symbolic values associated with a function f .  In the context 
of type propagation, the symbolic values we are interested in are types. Thus, 
j~I[T1] = A a.f2(a), which we will call a type function, maps an input type to the 
result type of fl [ TI ]. 

2As explained in Section 5, this need not involve any significant precision loss compared with the 
propagation of type sets. 

3For an explanation of data flow analysis concepts, refer to the Appendix. 
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Step 

Step 

Note that ]2 is the symbolic mapping associated with method f2 rather than any 
particular implementation of it. This means that the graph of ]2 (i.e. the set 
of pairs (argument, result) for ]2) is a disj.oint union of function graphs, namely 
graph(f2[Tl]) U graph(f2[T2]). We will call f2 a type method, so as to distinguish it 
from its constituent type functions ]2[Ta] and ]2[T2]. 

2 Compute the graph of each type method by solving fixecl-point equations. 

In the example given, the type function ]1[T1] can be defined as $ a.]2(a), i.e. in 
terms of a type method, which itself is necessarily defined in terms of type functions 
(its graph being a union of type function graphs). Because of this circular depen- 
dency, it is desirable to build for a type function a representation which does not 
involve type methods. Now, the graph of a type function is such a representation 
and, since an object-oriented program will involve a finite, and comparatively smgll, 
set of types, such graphs can be computed at reasonable space and time cost. 

Graphs for type methods are initialized using function declarations, and iteratively 
refined using a worklist algorithm (Section 4). The point of using fixed point itera- 
tion is its capacity to handle recursion. 

3 Compute symbolic expressions for receivers at call sites and use the function 
graphs built in step 2 to evaluate these expressions. Then infer sets of possible 
function calls so as to obtain a precise call graph. 

Part of the output of step 1 can be used to b~ld the symbolic expressions needed. 
These expressions are used in lieu of more conventional intraprocedural propagation 
techniques. 

The next section defines a property of instances of the intraprocedural type-propagation 
framework which we call cyclic k-boundedness. This property is necessary for the analysis 
of the interprocedural propagation algorithm, which is carried out respectively in Sec- 
tion 3, on symbolic interpretation, Section 4, on fixed-point computation of graphs for 
symbolic functions, and Section 5, on the computation of receiver types at call sites. The 
last two sections give concluding remarks and compare the results with related works. 

2 Data  flow framework for type propagation 

This section defines type propagation as a strictly intraprocedural problem, in which 
all that is known about called functions is their declared types. It is shown that the 
framework for solving this problem has a property which we call cyclic k-boundedness and 
that this property is preserved after step 2 of the algorithm has replaced declared function 
types by inferred types. 

This section describes a standard form of intraprocedural type propagation. The algo- 
rithm which was outlined in the previous section dispenses with this exhaustive propaga- 
tion and uses instead a form of symbolic interpretation. However, the symbolic interpre- 
tation proposed (Section 3) is tailored to the cyclic bound of a particular problem, hence 
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the necessity of considering the problem in its standard form in order to determine this 
cyclic bound 4. 

2 .1  G e n e r a l  d e s c r i p t i o n  of  the intraprocedural f r a m e w o r k  

The framework for intraprocedural type determination is a tuple /L,  ~', v/,  where L is a 
join semilattice with ordering _< such that T < T' if and only if T is a subtype of T', 
V is the lattice join, which maps two elements of L to their closest common supertype, 
and Jr is a set of monotone transfer functions. Note that, under the subtype ordering, 
smaller means more informative, which is why we use a join semilattice, contrary to the 
convention prevailing in data flow analysis. 

Considering that data flow analysis is carried out on intermediate language statements, 
what follows is valid for most object-oriented languages. Relevant events are assignments ~. 
Expressions are built using variables, constants, object creations and method calls. Ini- 
tially, declared variables are assigned their declaration types and undeclared variables 
the type Object (the lattice T). At each assignment, the type of the right-hand side is 
computed using function declarations and current type assignments, and assigned to the 
left-hand side, much as was done in Section 1.2. 
It can be shown that the transfer functions thus defined are monotone. Informally, this is 
due to the fact that the return type and the receiver's type are covariant in the declarations 
of function types. In other words, if T2 < T1 and the return type declared for f[T1] is Ti, 
then the return type declared for f[T2] is necessarily less or equal to T~. Therefore, the 
transfer function for an assignment of the form z ~ E(y, z) (where E(y, z) is an arbitrary 
expression with input variables y and z) assigns a new type to z monotonically in terms 
of the types of y and z. 

2.2 Boundedness  of  the function space 

2.2.1 k -boundedness  

The concept of k-boundedness was introduced in [Tar81] to express a bound on the length 
of useful execution paths in the presence of loops. 

Let F be a monotone function in a join semilattice s and F['] be defined as follows: 
i 

F[~] = V F j  
j=.O 

Intuitively, if transfer functions are associated not only with edges, but also with paths, 
o o  

and the ascending chain {F[']} has an upper bound F* = V FJ, this upper bound is 
j=0 

4The framework-dependent character of the symbolic expressions found by our method sets it off from 
previous approaches and allows to replace problems which - - in  their full generality-- are undecidable by 
restricted problems solvable in linear time (Section 7). 

5Where necessary, dummy assignments can be introduced, for example after branching tests or before 
method calls (see Section 6.2.1). 

6The original definition supposed a meet semilattice; but switching between the two perspectives might 
be confusing. 
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the optimal transfer function for a loop whose body has transfer function F. This is the 
motivation for the concept of k-boundedness, which can be defined as follows: 

Definition 2.1 A function space jr is k-bounded if and only if, for any F in jr, the 
ascending chain {F[']} admits an upper bound F [k-ll. 

It can be proved [MarS9] that, F being monotone, F [k-xl is an upper bound on {F Ill} if 
an only if 

F ~ <_ F [k-ll (2.1) 

Equation (2.1) is actually the definition given by Tarjan for k-boundedness [Tar81]. 

2.2.2 Cyclic k -boundedness  

For the purpose of building symbolic expressions tailored to the properties of the type- 
propagation framework, we are interested in a weaker property, which we will call cyclic 
k-boundedness. This concept does not apply to functions in general, but specifically to 
the transfer functions of data flow frameworks. 

We define an instance of a framework (L, Jr, V) as a tuple (LG, Jra, V) in which the semi- 
lattice La and the function space Jra are contained respectively in L and .%- and include 
only the elements necessary to analyze the control flow graph G ~. 

In order to define cyclic k-boundedness for a framework instance, we consider statements 
of the form x ~-- E(x), in which E(x) is an expression involving arbitrary functions and 
operators occurring in the flow graph to analyze. Let Ca be the set of such assignments 
for a flow graph G; let JrcG be the set of transfer functions for single-statement blocks 
containing such assignments; cyclic k-boundedness can be defined as follows: 

Defini t ion 2.2 A framework instance for flow graph G is cyclically k-bounded if and only 
if, for any transfer function Fc in JrcG, Fc k <- Fc [k-x] �9 

Note that the height of the lattice in a framework instance is always a cyclic bound on 
the function space (owing to monotonicity), but it is not necessarily a standard bound. 
For example, constant propagation is 2 x IV I + 1-bounded, where IV[ is the number of 
variables in the program to analyze, but cyclically 3-bounded. Indeed, each variable can 
change its value twice in the constant-propagation lattice; and, as each function in JrCG 
involves a single variable, JrCa is 3-bounded, i.e. 2 x IVI + 1-bounded with IVI = 1. 

2.2.3 Cyclic bound of the type propagation framework 

Definition 2.2 indicates that, in order to find a cyclic bound for a framework instance, 
it is enough to find the maximal number of useful iterations for propagating information 
through a loop of the form 

while cond do 
x ~ E ( x )  ; 

od ; 

7Precise rules for building the lattice and function space of a framework instance can be found for 
example in [GW76]. 
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Let E be the type mapping associated with E in E(x). We note that possible subexpres- 
sions of E(x) are pre-loop values, constants, object creations, method calls, and x itself. 
Only information contributed by the last two items, viz. method calls and x, are sensitive 
to input information and so can possibly require more than one application of/~ in order 
to reach a fixed point solution. Therefore, we can restrict our attention to expressions 
E(x) involving "interesting method calls", i.e. method calls whose receiver is either x or 
the result of an interesting method call. 

We can further restrict the class of expressions to consider if we are content to prove a 
sufficient condition for cyclic k-boundedness, which can be expressed as 

VFc E ~'ca : Fc ~ <- Fc k-1 (2.2) 

One can observe that any bound found using (2.2) for a single method is also valid for a 
composition of methods, for monotonicity implies the following: 

Vf, g : fk < fk-1 and gk <_ gk-1 =r ( f  o g)k <_ ( f  o g)k-1 

Therefore, equation (2.2) translates into the following theorem: 

T h e o r e m  2.1 If  for any method f occurring in a flow graph G, ]k < ]k-l ,  then the 
instance (La, ~G, V) of the type propagation framework is cyclically k-bounded. 
In the intraprocedural problem being considered, ] is directly derived from the type 
declarations for f .  Therefore, if in a framework instance all declared function types ti --* tj 
are such that tj < ti, all type methods ] are descending, meaning that the framework 
instance is cyclically 1-bounded ( ]  < ~). If some function declarations are not descending, 
then the framework instance is cyclically k+l-bounded, where k is the maximal length of 
a chain of non-descending function types ((T~ ~ T2), (7"2 -+ Ta),:.. ,  (Tk-a ~ Tk)). For 
example, with the type declarations represented in Figure 2.2, f2 = ]a, which implies 

  I + T I  

J,:-,-,+., 
Figure 2.2 

that the framework instance is 3-bounded. And indeed, the length of the chain of non- 
descending function declarat ions  (f[T2] : -+ r3,  f[T31 : --, equals  2. This gives 
rise to the following theorem: 

T h e o r e m  2.2 If the chains of non-descending function declarations associated with a flow 
graph G have mazimal length k - 1, then the instance (LG, ~'a, V) of the type propagation 
framework is cyclically k-bounded. 

In fact, since nontrivial chains of non-descending function declarations are likely to be 
extremely rare in practice, most instances of the type-propagation framework will be cycli- 
cally bounded to 2. 
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Now, to show that cyclic k-boundedness is preserved when fixed-point graphs of symbolic 
functions are used instead of function declarations, consider that the fixed-point algorithm 
described in Section 4 finds return types less or equal to the return types declared. There- 
fore, all descending functions will remain so and the actual cyclic bound is necessarily less 
or equal to the cyclic bound inferred from function declarations. 

3 Symbolic interpretation 

3.1 General  principle 

The general idea consists in (i) building a set of use-definition edges (or ud-edges for short) 
for each function, (ii) considering each ud-edge as a reduction rule that replaces a variable 
occurrence by the join of its reaching definitions, and (iii) transforming ("normalizing") 
the resulting reduction system using cyclic k-boundedness in order to give it the property 
of termination, so that a symbolic expression for any variable occurrence can be obtained 
by deriving a normal form in a finite number of steps. 

Many advantages accrue from this approach 

1. Other problems, like constant propagation, can reuse ud-edges [Ken81]. In addi- 
tion, for the purposes of our algorithm, ud-edges can indifferently be replaced by 
SSA edges, which are necessary for propagating constants efficiently and accurately 
[WZ91]. Furthermore, some steps involved in the process of putting a program 
into SSA form can be reused by our algorithm for normalizing reduction systems 
(footnote to page 10). 

2. Use-definition edges can be built by solving the Reaching Definition problem which, 
being partitionable, is amenable to a form of incremental analysis particularly well 
suited to the requirements of a Language-Based Editor [Zad84]. 

3. No exhaustive intraprocedural type analysis is needed at all, for reduction systems 
enable one to solve the intraprocedural problem for selected statements. So in- 
traprocedural analysis and flow-sensitive interprocedural analysis can be combined 
without any redundant computations. 

Note that special measures must be taken in order to accommodate side-effects and alias- 
ing (Section 3.5). 

3.2 Represent ing u d - e d g e s  a s  r e d u c t i o n  r u l e s  

To illustrate the process, we will consider the control flow graph in Figure 3.3. 

We construct a set of rules in which x, represents the symbolic value assigned to the use 
of x at site s. When several definitions reach a given use, as at site s in the example, the 
representation merges the corresponding expressions through the confluence operator (V 
in our framework) 8. So, the ud-edges for the example will be represented as: 

8If SSA edges are used, then explicit conditions rather than joins can be used in reductions. 
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I i: x ~ y; I 

s: x r f (x) ;  

t: x ~ g ( x ) ;  

11 
I r: return x; I 

Figure 3.3 Cyclical use-definition dependences 

xr --* ~(xt) (3.3) 

xt --* /(xo) (3.4) 

z,  --+ ~(x,) Vyi (3.5) 

3 . 3  I d e n t i f y i n g  s e l f - e m b e d d i n g  o c c u r r e n c e s  

The system is self-embedding, meaning that it produces derivations like xt =~ f(~(xt)Vyi)  
or z ,  =~ g ( / ( z , ) )  V yi. It is important to note that such circularity is necessarily due to 
the presence of a loop in the Control Flow Graph. Supposing the framework instance to 
be cyclically k-bounded, we can handle it easily if the flow graph is reducible 9. 

To this end, we draw up the Inverse Dependency Graph of the reduction system, defined 
as IN, E / where N is the set of variable occurrences appearing in the reduction system 
and E the set of all pairs (al, bj/ such that there is a rule defining bj in terms of an 
expression involving ai. In the example, the IDG is 

9Intraproeedural flow graphs (as opposed to call graphs) for structured languages are almost invariably 
reducible. 
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[ y, ] 

I x. I 

11 

Intuitively, an arrow in the diagram can be read as "defines". It  can be shown that  the IDG 
can be derived from the flow graph by reducibility-preserving transformations; therefore 
it is possible to assume the IDG reducible whenever the flow graph is. Consequently, 
cycles in the IDG are regions. The header of a strongly connected region will be termed 
a self-embedding occurrence. In our example,  x, can be seen to be a self-embedding 
occurrence. 

3.4 El iminat ing self -embedding occurrences 

A self-embedding occurrence is a variable occurrence whose defining rule in the reduction 
system contains loop-induced definitions and definitions occurring prior to the loop. In 
the example,  the rule x,  --* ~(x,) V yl assigns to the self-embedding occurrence x8 the 
loop-induced definition ~(xt) and the pre-loop definition y l0. 

Therefore, cyclic k-boundedness can be used as follows: A k-bounded normal f o rm  for x, 
is computed by deriving x, exhaustively using the original rule for x,  only k - 1 times and 
thereafter  replacing it by a rule incorporating only pre-loop definitions, namely x, --* y~. 

Supposing the example to be a cyclically 2-bounded problem, this method yields the 2- 
bounded normal form ~(](y , ) )  V y~ for xs. Then, the rule for xs can be modified using 
this form, which yields the following 2-bounded reduction system. 

(r) 

1~ no pre-loop definition appears, a used-before-defined error can be diagnosed and a fake assignment 
of a typed error value inserted in a preheader to the function. Here, if x had not been assigned any value 
prior to the loop, a fake assignment would have been added at the beginning of the function, conferring 
to x its declaration type and the value error. 

Also note that the algorithm described in [RWZ88] for computing SSA forms involves identifying pre- 
loop values ("landing-pad definitions") in a reducible graph, which offers opportunities for reuse if our 
algorithm is made to work with SSA edges. 
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Note that self-embedded occurrences must be processed in reverse order of nesting level 
in the IDG. This ensures that, whenever a self-embedded occurrence is processed, it is 
the header of an inner loop of the IDG associated with the current reduction system. 

3.5 D e a l i n g  w i t h  s i d e - e f f e c t s  a n d  a l i a s i n g  

A strong point of the algorithm presented here is that the only intraprocedural problem 
that has to be solved is a bit-vector problem (typically Reaching Definitions), in order 
to build ud-edges. If some form of flow-sensitive alias analysis was factored into the 
construction of ud-edges, this feature would be lost, and the interprocedural problem 
might become intractable [Mye81]. 

On the other hand, there exist a number of algorithms for collecting the side-effects 
of procedures in a flow-insensitive way (for example [CK89]). Therefore, a simple idea 
consists in using the MOD information obtained through such an algorithm to determine 
if reduction rules for a variable v occurring in a function f are to be built using ud-edges or 
a pessimistic estimate, namely the declared type. More precisely, given MOD information 
for each function, i.e. a set MOD(f) of global variables and reference parameters which 
may be modified, by a function f ,  we compute in a flow-insensitive way for each function 
f the set SMOD(f) of all variables - -both local and global-- which may be modified by 
side-effect at call sites in f .  Then, a reduction rule of the form 

z, --+ E 

will take the form z, --+ if z E SMOD then decl(z) else E, where decl(z) is the type 
declared for z and SMOD is the SMOD information for the function being analyzed. 

This means that a normal form will contain conditionals, and so does not need to be up- 
dated when the SMOD information changes. A similar solution is described in [CCKT86] 
for a representation of "jump functions" supporting incremental changes (see Section 7). 

The form of aliasing taken into account by algorithms computing MOD information for 
procedures is alia.sing through reference parameters. Another form of aliasing is aliasing 
through pointers. An elegant treatment of their incidence on interprocedural analysis can 
be found in [Wei80]. It is based on closures, inversions, and compositions of copy and 
alias relations throughout a program. Applied to the problem at hand, it could be used 
to compute a set ALIAS of aliasing relations induced by pointers (and taking reference 
passing into account). Such a set being computed for the whole program rather than 
a particular function, its use will lead to more pessimistic assumptions than the use of 
MOD information. Improvements are certainly possible but lie outside the scope of this 
paper 11. A simple, but pessimistic, approach consists in assigning its declaration type to 
any variable participating in the ALIAS relation using the same mechanism as for the 
SMOD sets. 

Solutions yielding more accurate (partly flow-sensitive) analysis of side-effects and aliasing 
are considered in Sections 6.3 and 6.4. These solutions involve the whole interprocedural 
algorithm rather than just symbolic interpretation. 

11Possible improvements to Weihl's approach in the context of an object-oriented language are described 
in [Lar92, Sec. 9.2.6] 
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4 Fixed-point graphs for symbolic methods 

Once a reduction system has been built for each function, chaotic fixed point iteration 
can be used to compute graphs of type methods as shown in Algorithm 4.1. 

initialize the graphs of symbolic functions and methods 
to the types declared; 

place all symbolic functions in the work list ; 
until  the work list is empty do 

remove an arbitrary symbolic function ][T] from the work list ; 
compute graph(][ T]) using the symbolic expression 

for ][T] and the types found so far ; 
if this value has changed t h e n  

update the corresponding method graph graph(]) ; 
insert all symbolic functions 

whose definition involves ] into the work list ; 
f i ;  

od ; 

Algorithm 4.1 Fixed-point iteration for graphs of type methods 

The step summed up as "update the corresponding method graph graph(])" involves 
ensuring that 2 conditions are met by constituent function graphs graph(fiT]): (i) the 
result type for ][T] is the join of the result types of all lIT'I, T' < T, and (ii) the graph 
for lIT] is extended to types inheriting an implementation of f from T. 

Dependence relations between symbolic functions are determined using a "raw" call graph, 
in which all possible calls implied by declared types are considered. 

Chaotic (i.e. worklist-based) iteration is preferable to regular iteration because the visit 
order is given straightforwardly by the call graph, whereas regular iteration would ad- 
ditionally require finding a topological order of the call graph so as to keep down the 
number of iterations [ASU86, HU73]. Section 6.1 shows that the time bound for this step 
is on the average proportional to the number of functions in a program. 

5 Computing receiver types 

Once a reduction system has been obtained for each function and the graphs of type 
methods are available, computing the type of the receiver at a call site is immediate. A 
symbolic expression is derived from the reduction system, and the effect of method calls in 
this expression is interpreted using the type method graphs 12. For example, if we consider 
the statement y ~ fzlfl(z)) in function f3[T1] (Figure 1.1), the symbolic expression for 
the receiver of f3 is fl(T2), which --using the graph of symbolic method f l - -  will be 
found to equal Tz, which shows f3[T3] to be the only implementation of f3 that can be 
called at this site. 

12The solutions thus found are acceptable in the sense of [GW76], as proved in [Lar92, Sec. 8.3.5]. 
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In [Lar92, Sec. 8.5], we show that added precision can be obtained by introducing one- 
element type sets to represent (i) the type of an object-creation expression and (ii) the 
initial type of the first formal parameter (receiver) of a function. This does not change 
the construction and use of reduction systems in any essential way and can be made 
transparent to the interprocedural step. In addition, the resulting precision is practically 
comparable to the precision obtained by propagating type sets throughout. 

6 Concluding remarks 

6 .1  C o s t  

6.1.1 Fixed-point  computat ion of  graphs for symbol ic  methods  

In the iterative determination of type method graphs, the number of visits for a given type 
function is 1 plus the number of times a predecessor in the call graph changes. Therefore, 
if F is the dependence factor, i.e. the average number of predecessors in the dependence 
graph for each type function, and H is the height of the subtype semilattice, the cost is 
O(F x N x (H - 1)). If we assume that F in practice does not depend on the size of a 
program, we can write this cost O(N x (H - 1 )). If on the other hand, H can be expected 
to grow very slowly with the size of a program and be asymptotically constant, we find a 
cost essentially proportional to the number of functions, which in turn can be estimated 
proportional to the size of a program for a given language. 

6.1.2 Symbol ic  interpretation 

If we assume the derivation of a normal form is cheap and performed in constant time on 
the average, the significant part in the cost of symbolic interpretation is attributable to 
the construction of a k-bounded reduction system. 

This cost breaks down into the following items: 

. 

. 

. 

. 

Computation of ud-edges or SSA edges: Almost linear algorithms exist for both. In 
addition, the output of this computation is eminently reusable. 

Determination of a cyclic bound k: This requires exploring sequentially each func- 
tion declaration in subtype order, and can be performed in time linear in the number 
of functions. 

Detection of self-embedding occurrences, sorted by order of nesting level in the 
Inverse Dependency Graph: most of this operation consists in building a spanning 
tree for the IDG, which can be achieved in time linearly related to the number of 
nodes, i.e. of variable occurrences. 

Derivation of a k-bounded form for each self-embedding occurrence, in reverse order 
of nesting level. The cost of this operation is absorbed in the cost of detecting 
self-embedding occurrences. 
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If the average number of variable occurrences in a function and the number of functions 
are considered proportional to program size, then the cost of symbolic interpretation, like 
that of interprocedural propagation, turns out to be linearly related to program size. 

6.2 Other applications 

6.2.1 Type-checking 

If the algorithm just described was used for type-checking a language with no variable 
declarations, then --in order to obtain enough precision-- it would be necessary to insert 
after each method call a statement whose effect is to assign to the receiver the closest 
common subtype between its current type assignment and the maximal type for a receiver 
of the given method. It does not seem that this would affect the essential properties of 
the type propagation framework, apart from the fact that we would need to introduce a 
lattice .k, so that a closest common subtype can always be computed. 

6.2.2 Cons tan t  propagation 

In order to compute autonomous representations of symbolic functions, we use method 
graphs, exploiting the finiteness of the type propagation semilattice. In the constant prop- 
agation framework, this solution is obviously not available. One way in which symbolic 
functions could be used, however, is by performing ~-reductions, i.e. expanding calls to 
symbolic methods for those parts of the call graph which are not recursive. Note that the 
expansion of a method may be the join of several expressions. The symbolic representa- 
tions obtained after the expansion process can be used to determine if the value returned 
by a function being passed constant parameters is constant. Wegman and Zadeck [WZ91] 
note that the passing of constant parameters occurs very frequently, so the profitability 
of such an approach could be fairly high. 

6.3 Accurate side-effect analysis 

If a function returns values not only through its result, but also through side-effects 
to global variables and value-return parameters, this is readily amenable to the kind of 
symbolic analysis performed for function results, provided there is no aliasing. Note by 
the way that value-return as well as reference passing do not fare well with object-oriented 
languages, as these can only be performed in a semantically safe way if the static types 
of actual and formal parameters match exactly, which runs counter to the philosophy of 
subtype polymorphism. This is one of the reasons why we will consider here only global 
variables, the other reason being that they illustrate all the problems which may arise in 
dealing with alias-free side-effects. 

The idea consists in replacing a method call x ~ f ( . . . )  by a series of assignments of the 
form 
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vl f v l ( . . - )  ; 
v2 '--  f . 2 ( . . . )  ; 

vn ~ fv.( . . . )  ; 
x <--- f , ( . . . ) ;  

The vi's denote the variables global to the program portion under analysis. Note that 
the assignment to x must come last, because x might be a global variable. The function 
noted fv~ is a function which makes no side-effect (a "pure" function) and returns the 
value of vi as updated by f .  The function fp is a pure version of the original function. Of 
course, these functions do not have to be built, and the substitution is performed only for 
the sake of symbolic interpretation. The symbolic function associated with each of the 
functions f~ is derived by adding a dummy use of vi to the exit block of f before ud-edges 
are built, and then computing a normal form for this occurrence. 

Note that by adding one assignment per global variable vl and equating if needed f.~ to 
the identity function, we avoid having to modify all call sites when a variable becomes 
affected or unaffected by a given function. 

6 . 4  F e e d b a c k  p o s s i b i l i t i e s  

The algorithm described in this paper could fit into a scheme like the following: 

. 

2. 

3. 

. 

. 

. 

Carry out flow-insensitive alias and side-effect analysis. 

Put the program into SSA form and build SSA edges. 

Build k-bounded reduction systems for functions, where k is the cyclic bound for 
the type propagation problem at hand. Reduction rules should contain conditionals 
rather than join operations (footnote to page 8). 

Build graphs for type methods and compute receiver types so as to improve the call 
graph. 

Perform conditional constant propagation, as in [WZ91]. Improve the call graph as 
dead code is eliminated. 

Use constant propagation interprocedurally, as described in [WZ91], to provide flow- 
sensitive feed-back to alias analysis. 

7. If the call graph has been improved, iterate, skipping redundant computations. 

Considerable precision could be derived from such a scheme, but opportunities for incre- 
mental processing are diminished if feed-back is used between the different steps. Note 
that the bound on the maximum number of iterations can be made arbitrarily constant 
and all the operations involved can be performed in almost linear time, so that this scheme 
is practicall3~ linear in the program size. 
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7 Compar i son  with related w o r k s  

Interprocedural type propagation is performed in the Self optimizer [CU90], where type 
analysis relies on procedure integration and code duplication. The method described 
here, on the contrary, allows to keep the analysis phase separate from the transformation 
phase, which results in more flexibility, more modularity, mad therefore more potential for 
incrementality. 

Suzuki [Suz81] describes a very powerful method for interprocedural type propagation 
which combines intraprocedural data flow analysis and inequality propagation through 
transitive closure and unification. The emphasis of this approach is on type-checking, so 
the scheme described is not intended to fit in the global context of an optimizer. A main 
drawback of the algorithm described is that intraprocedural analysis has to be carried out 
exhaustively each time a function is visited during interprocedural propagation. 

Borning and Ingalls [BI82] describe a very practical scheme for flow-insensitive type de- 
termination inside a procedure for a version of Smalltalk with function declarations and 
optional variable declarations. It does not include any interprocedural type propagation. 

[CCKT86] contains the description of a scheme for interprocedural constant propagation. 
It involves symbolic interpretation to compute "jump functions" (symbolic expressions 
for actual parameters) and "return jump functions" ("symbolic functions" in our termi- 
nology). Most of the paper, however, is devoted to the use of jump functions, and the 
properties of return jump functions --which seem much more interesting-- are only given 
cursory, if insightful, consideration. 

Wegman and Zadeck [WZ91] describe an algorithm for constant propagation which shares 
many objectives with the present paper: this algorithm propagates constants to branching 
conditionals, so as to eliminate superfluous flow graph edges, just as the present scheme 
propagates types to eliminate superfluous call graph edges; it uses sparse representations 
(SSA edges) for the sake of efficiency (which is an improvement over [Weg75]), just as we 
use such representations to avoid redundant computations (which is an improvement over 
[SuzSl]). 

Reif and Lewis [RL86] describe a linear-time algorithm for symbolic interpretation. It 
is not equivalent in effect to the method used here, however. The symbolic value of an 
expression is expressed in terms of functions and particular variable occurrences. A set of 
symbolic values for all variable occurrences is called a c o v e r  of the program. A m i n i m a l  

c o v e r  relates the value of each occurrence to its earliest definition points in the program. 
Reif and Lewis show that finding a minimal cover is generally undecidable, and accordingly 
propose an algorithm to find the best possible cover in linear time. However, expressing, 
as we do, the type of a returned expression in terms of values on entry to the function 
involves computing a m i n i m a l  cover  for the function. Thus, at the cost of restricting 
the validity of the cover found to cyclically k-bounded problems, our approach makes it 
possible to compute a minimal cover in linear time. In other words, the originality of the 
approach presented in this paper consists in trading off generality for expressive power. 



337 

Acknowledgements  

I wish to thank all the people who helped me with their suggestions and encouragements 
while I worked on this paper. In particular, I owe special thanks to Thomas Marlowe 
for his detailed review of an earlier version of the paper, and to Martin Jourdan and 
Bernard Long for their advice and moral support. I am also indebted for insightful and 
stimulating remarks to Ken Zadeck, Franc#is Rouaix, Franc#is Thomasset, V6ronique 
Benzaken, Franc#ise Gire and Claude Delobel. 

References 

[AKW90] S. Abiteboul, P. Kanellakis, and E. Waller. Method schemas. In Proceedings 
of the Ninth ACM Symposium on Principles of Database Systems (Nashville, 
TN), pages 16-27, April 1990. 

[ASU86] A. Aho, R. Sethi, and J. Ullman. Compilers : principles, techniques and tools. 
Addison-Wesley, 1986. 

[BI82] Alan H. Borning and Daniel H. H. Ingalls. A type declaration and inference 
system for Smalltalk. In Conference record of the Ninth Annual ACM Sympo- 
sium on the Principles of Programming Languages, Albuquerque (NM), pages 
133-141, January 1982. 

[Ca188] David Callahan. The program summary graph and flow-sensitive interproce- 
dural data flow analysis. In Proceedings of the SIGPLAN '88 Conference on 
Programming Language Design and Implementation, Atlanta, Georgia, pages 
47-56. ACM, June 1988. 

[CCKT86] David Callahan, Keith D. Cooper, Ken Kennedy, and Linda Torczon. Inter- 
procedural constant propagation. In Proceedings of the SIGPLAN '86 Sym- 
posium on Compiler Construction, June 86, pages 152-161, June 1986. 

[CK89] Keith D. Cooper and Ken Kennedy. Fast interprocedural alias analysis. In 
Conference Record of the Annual ACM Symposium on Principles of Program- 
ming Languages, Austin (TX), pages 49-59, January 1989. 

[cug0] C. Chambers and D. Ungar. Iterative type analysis and extended message 
splitting. In Proceedings of the ACM SIGPLAN '90 Conf. on Programming 
Language Design and Implementation, White Plains, NY, pages 150-164, June 
1990. published as SIGPLAN Notices, Vol. 25, Num. 6. 

[GW76] Susan L. Graham and Mark Wegman. A fast and usually linear algorithm for 
global flow analysis. Journal of the ACM, 23(1):172-202, January 1976. 

[HU73] Matthew S. Hecht and Jeffrey D. Ullman. Analysis of a simple algorithm for 
global data flow problems. In Conference Record of the ACM Symposium on 
the Principles of Programming Languages, pages 207-217, September 1973. 



338 

[Ken81] 

[Klo871 

[KU771 

[Lar91] 

[Lar92] 

[Mar89] 

[Mye81] 

[RL771 

[RL861 

[Rou90] 

[RWZ88] 

[Suz81] 

[TarS11 

Ken Kennedy. A survey of data flow analysis techniques. In S. Muchnick and 
N. Jones, editors, Program Flow Analysis, Theory and Applications, chapter 1, 
pages 5-54. Prentice-Hall, 1981. 

Jan Willem Klop. Term rewriting systems: a tutorial. Bulletin of the EATCS, 
32:143-182, 1987. 

J.B. Kam and J.D. Ullman. Monotone data flow analysis frameworks. Acta 
Informatica, 7(3):305-318, 1977. Originally published as Research Report TR- 
169, Computer Sciences Laboratory, Princeton University. 

J.-M. LarchevSque. Interprocedural type propagation for object-oriented lan- 
guages. Rapport Technique 64-90-V1, GIP Altair, Rocquencourt, France, 
September 1991. 

J.-M. LarchevSque. Compilation techniques for incremental development in a 
persistent object-oriented environment. PhD thesis, LRI, Universit6 de Paris- 
Sud, January 1992. 

T.J. Marlowe. Data Flow Analysis and Incremental Iteration. PhD thesis, 
Rutgers University, New Brunswick, New Jersey 08903, October 1989. Report 
DCS-TR-25. 

Eugene W. Myers. A precise inter-procedural data flow algorithm. In Con- 
ference record of the Eighth Annual ACM Symposium on the Principles of 
Programming Languages, pages 219-230, January 1981. 

John H. Reif and Harry R. Lewis. Symbolic evaluation and the global value 
graph. In Conference record of the Fourth Annual ACM Symposium on the 
Principles of Programming Languages, Los Angeles (CA), pages 104-118, Jan- 
uary 1977. 

John H. Reif and Harry R. Lewis. Efficient symbolic analysis of programs. 
Journal of Computer and System Sciences, 32:280-314, June 1986. 

Francois Rouaix. Safe run-time overloading. In Conference Record of the An- 
nual ACM Symposium on Principles of Programming Languages, San Fran- 
cisco (CA), pages 355-366, January 1990. 

Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. Global value 
numbers and redundant computations. In Proceedings of the Fifteenth Annual 
ACM SIGACT-SIGPLAN Symposium on Prineiple~ of Programming Lan- 
guages, San Diego (CA), pages 12-27, January 1988. 

Norihisa Suzuki. Inferring types in Smalltalk. In Conference record of the 
Eighth Annual A CM Symposium on the Principles of Programming Languages, 
pages 187-198, January 1981. 

R. Endre Tarjan. A unified approach to path problems. Journal of the ACM, 
28(3):576-593, 1981. 



339 

[Weg75] 

[Wei80] 

[wz91] 

[Zad84] 

Ben Wegbreit. Property extraction in well-founded property sets. IEEE 
Trans. Software Eng., SE-1(3):270-285, September 1975. 

William E. Weihl. Interprocedural data flow analysis in the presence of point- 
ers, procedure variables, and label variables. In Conference record of the Sev- 
enth Annual ACM Symposium on the Principles of Programming Languages, 
pages 83-94, June 1980. 

Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with condi- 
tional branches. A CM Transactions on Programming Languages and Systems, 
13(2):181-210, April 1991. 

F. K. Zadeck. Incremental data flow analysis in a structured program editor. 
SIGPLAN Notices, 19(6):132-143, June 1984. Proceedings of the SIGPLAN 
Symposium on Compiler Construction (Montreal, Canada). 

Appendix 

Data-f low theoret ica l  def init ions 

I F r a m e w o r k  

Solving a global (or intraprocedural) data flow analysis problem consists in decorating 
nodes of a control flow graph, which is essentially a flow chart, with information on a 
program's behavior. Nodes in the flow graph are basic blocks, i.e. single-entry single- 
exit sequences of statements. The information associated with a basic block represents 
assertions which hold on entry to the block. This information is modeled as a semilattice, 
usually a meet semilattice, but this paper uses a join semilattice for conformity with 
the subtype ordering. If a join semilattice is used, information on entry to a block B 
located at the confluence of several paths is the result of applying the join operator V 
among information items coming from each path. Information on entry to a block B is 
mapped to information on entry to each successor S of B by a transfer function, which 
can be associated either with block B or with each edge (B, S). A monotone framework 
(L, V, ~') is made up of a join semilattice L with join operator V, and a set ~" of monotone 
transfer functions. Monotonicity is important to prove the termination of most data flow 
analysis algorithms. Beside monotonicity, a useful property of ~- is closure under join and 
composition, which makes it possible to extend the definition of transfer functions from 
edges to paths in the natural way. 

I I  U s e - d e f i n i t i o n  e d g e s ,  S S A  e d g e s  

A use-definition edge, or ud-edge for short, for variable occurrence x, is a pair (x,, t), 
where t is a possible definition site for x,. 
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SSA edges are essentially information edges (use-definition or definition-use edges) for a 
program in SSA form. A program is in SSA form if variables are renamed so that there 
is only one assignment to each variable in the program text. At a join point, a statement 
of the form v~ *-- r Vk) is inserted for each variable v with different renamings in the 
branches that axe joined. The r function returns the value of vj or Vk according as control 
comes from the branch where vj or vk is defined. One advantage of using SSA edges is 
that the effect of two confluent SSA edges like (v~, vj) and (v~, Vk) can be predicated on 
the value of a branching condition (as part of the static evaluation of v~ ~ r v~)). 
On the contrary, when several ud-edges exist for a variable occurrence, the corresponding 
definitions can only be related through the confluence operator of the framework, which 
may lead to more pessimistic results. 

III Symbolic interpretation 

Symbolic interpretation consists in assigning values to variables at each point in a program 
irrespective of the possible execution paths leading to this point. To solve the problems 
induced by joins and circular definitions, the domains of program operations are replaced 
by sets of symbols with adequate properties. For example, in the type propagation prob- 
lem described in the paper, the domain of program operations (methods) is replaced by 
sets of upper bounds on types and a join operation is defined on them. 


