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Abstract 

We discuss the application of Centaur to designing data-parallel SIMD languages. We 
first present the main functionalities of this system. We describe a simple language, called 
s which embodies the basic concepts of real SIMD languages like C*, MPL or POMPC. We 
give an operational semantics to this language and we discuss in detail its implementation 
under Centaur. Finally, we present a SIMD programming environment created with Centaur 
for the s language. 

Introduction 

The Centaur system [17] is a software toolbox to design and develop programming languages. It 
provides a variety of tools to study their syntactic and semantic aspects, and enables to create 
specific editors, interpreters or debuggers. Centaur is based on the manipulation of abstract 
trees, which are the internal representation of programs in the specified language. 

The syntactic aspect of a language is given by the correspondence between the representation 
of a program as a linear text and as an abstract tree. For the semantic aspect, Centaur uses the 
notion of natural semantics. Evaluating a program amounts to prove a particular proposition 
using a set of inference rules and axioms. This set constitutes in fact the semantic specification of 
the language. Finally, a windowing system is also provided to develop specialized multiwindow 
programming environments. 

Centaur has already been used to study the semantics of sequential languages such as Pas- 
cal [6], functional languages such as ML [8] and parallel languages such as ADA. Until now, 
those parallel languages were control-parallel languages, aimed at MIMD (Multiple Instruction, 
Multiple Data) architectures [7]. Parallelism is there expressed with new parallel control struc- 
tures. But data-parallel languages, such as those designed for SIMD (Single Instruction, Multiple 
Data) architectures are of interest too. In these languages, control is centralized and data are 
distributed: the processors execute all the same instruction, but on their own data. 

Unlike MIMD languages, few theoretical studies of S1MD languages have been made, even 
though many such languages are commercially available. A number of SIMD languages are 
derived from the C language: C* [5] for the Connection Machine [9], MPL [11] for the Maspar 
MP-1 [1] and POMPC [14] for the data-parallel POMP machine [10]. Recently, Boug6 and Garda 
have proposed in [2] and [3] a simple language called s which embodies the basic concepts of 
those languages. In particular, they show that c is minimal and expressive in a certain sense. 
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We discuss here the implementation of the s language using Centaur. We choose this 
language because of its simplicity and its expressiveness. This ensures that any SIMD algorithm 
can be written in the s language. We also describe the basic functionalities of a programming 
environment for SIMD languages. Centaur is well suited to design, study and improve such an 
environment. 

First, we describe the Centaur system and its main components. Then, we present the 
s language and give its operational semantics. Based on this precise semantic definition, we 
describe its implementation under Centaur. Finally, we present the resulting programming 
environment through an example of program. 

1 Centaur 

Centaur is a software toolbox to assist users in designing programming languages and developing 
programming environments. It mainly consists in a kernel which manipulates internal objects, 
a number of specification languages to define the syntactic and semantic aspects of a language, 
and an interface which handles communication between Centaur and the user. 

1.1 The kernel 

The kernel is divided into two parts. The first part is concerned with the syntactic aspect of 
a language. The fundamental object manipulated by the kernel is the abstract syntax tree. It 
corresponds to the arborescent representation of program terms. The nodes of these trees are 
called operators. Two types of operators are distinguished. 

The atomic operators correspond to the leaves of the trees. One specifies the type of 
their values using the following classes: INTEGER, IDENTIFIER, CHAR, STRING, SINGLETON 
(operator without value). An additional class, called TREE, is used when the value of 
the operator is a tree from an another language. This mechanism allows to stratify the 
specification of languages, and to use common parts in different languages. 

The non-atomic operators correspond to the internal nodes. One specifies their arity (fixed 
arity, list, non-empty list) and the type of their descendents. Such a type consists for each 
possible son in a set of valid operators. This set is called a phylum. 

The Virtual Tree Processor (VTP), a collection of Lisp [4] primitives, enables the user to create, 
modify or examine these trees. 

The second part of the kernel i8 a semantic machine which evaluates programs written 
in the language under study. The semantics of a language is specified with a collection of 
rules concerning its terms. This machine is a logical engine, written in Mu-Prolog [13], which 
constructs proofs corresponding to a given term using this set of rules. Such a proof corresponds 
in fact to a computation of the program. Finally, communication primitives between the VTP 
and Mu-Prolog enable the conversion of abstract trees into Prolog terms and conversely. They 
are called before and after each evaluation. 

1.2 Using Centaur 

Implementing a language with Centaur consists in the following steps. 
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The user specifies the concrete syntax (text) of his language, its abstract syntax (VTP 
tree) and the translation from the first syntax to the second one. He describes in fact a 
parser which is used when loading a program to detect syntax errors, and to construct 
the corresponding abstract syntax tree. The specification language used to define such a 
translation is called Metal (Meta-Language). 

Then, he has to describe the inverse process: translation from an abstract tree to text. 
This is done with PPML (Pretty Printer Meta Language). At this point, the user has 
generated a language-oriented editor for programs in his language. 

The semantic aspect is specified with the Typol language. This Typol specification is 
compiled into a set of Prolog clauses used by the logical engine to evaluate a program. 

Finally, the user builds a specific programming environment in the Lisp language, using 
window managing primitives. He can manipulate the abstract trees with the VTP, and 
call the semantic engine from his environment. 

1.3 The Typol semantic specification language 

A Typol program consists in a set of rules, which are either axioms, or inference rules. Inference 
rules look like 

premises 
conclusion 

This means that the conclusion is proved as soon as premises are. A premise is either a condition, 
or a sequent. A sequent is a proposition (the consequent) associated with the hypotheses required 
to prove it. It is denoted 

hypotheses F- consequent 

A conclusion is always a sequent. Finally, different infix symbols (->, ffi>, :) can be used in the 
propositions, in order to separate various semantic aspects of terms in a language (instructions 
and expressions for instance). Intuitively, the expression at the left of the proposition symbol 
in a consequent corresponds to an abstract tree of the language. The right part represents its 
semantics. Typol uses pattern matching to find the inference rule or the axiom corresponding 
to the given program. 

Let us consider the following rule 

sigma I- EXP : v ~t sigma l- X, v ffi> sigma' 

sigma I -asslgn(X,  EXP) -> sigma'; 

It means 

Executing instruction asss from environment sigma produces an envi- 
ronment sigma', so that sigma' is deduced from sigma by substituing the value of 
X with v, where v is the evaluation of expression EXP in sigma. 

The abstract tree of the consequent is the instruction assign(X, EXP). Its evaluation (symbol 
->) yields an environment (a function which binds a variable to its value). In the same way, the 
evaluation (symbol : ) of an expression yields a value, an integer for instance. 
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2 The ~ language and its semantics 

The s language has been proposed by Boug6 and Garda as a simple programming model. This 
model covers most recent SIMD machines, such as the Connection Machine CM-2 or the Maspar 
MP-1. We consider a set of Processing Elements (PEs), each managing a private memory. The 
PEs are controlled by a unique external sequencer, which broadcasts the common instruction 
to be executed. Thus, all PEs do the same instruction, but on their own data. Furthermore, 
an inhibition mechanism, called the contezt, is associated to each processor. A P E  modifies its 
local memory only if its context is in an active state. A P E  which is not active is said to be 
idle. This possibility is essential to implement parallel conditioning branch. Finally, a global bus 
links the set of PEs to the sequencer, and computes the global or of the elements of a boolean 
vector, of which e a ~  component is local to a PE. This feature enables the sequencer to detect 
the termination of loops. 

The s language includes five constructions: assignation, communication, sequencing, itera- 
tion and conditioning. We give here a Structured Operational Semantics (SOS) [15] for s This 
kind of semantics defines a transition system, given by a set of rules and axioms. It works by 
induction on a program P. The states of the semantics consist in the program remaining to be 
executed, the environment o, and a stack ct of contexts, which are boolean vectors. A stack is 
necessary to implement nested conditional structures. 

We adopt the following notations. Identifiers with an initial uppercase letter denote parallel 
variables, which we also called vectors (possibly mnltidimensionnal). Processor locations will be 
denoted u, v etc. XI,, denotes the element of X located on the processor whose address is u. 
The states of the semantics will be denoted (P, o, ct) and �9 denotes the empty program. [El(o) 
is the evaluation of the expression E in the environment 0. e is the empty stack. By convention 
Pop(e) --- e and Top(e) = Tt,  the boolean vector whose all elements have the true value. Finally, 
we define the active predicate as follows 

active(u) = ( rop(ct)[,, = it). 

Assignment The instruction X := E stores into variable X the value of expression E. An idle 
processor remains idle, and leaves its local memory unchanged. 

( x  := E, o, cO - - -*  ( , ,  o', ct/ 

with 

o'(X)l~ = [E](o)l~ if active(u); 
o'(T)]~ = o(T)l~ if T ~ X or -~ active(u). 

In s all expressions are required to be ehmentwise: the value of an expression at a PE 
depends on the value of variables at this PE only. 

Communication For simplicity, we consider only regular communication patterns here. The 
instruction s h i f t  X along d shifts the vector X along the constant common direction d. 
Again, an idle processor leaves its local memory unchanged. For a PE located at u, d(u) 
is the address of the PE located in the direction opposite to d. 

(shift X along d, ct, ct) ~ (% ~', ct) 

with 
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~. , r  = or(x)l~r(,,) i f  ~ t i ve (* ` ) ;  

t> or ' (T)l , ,  = , r (T) l , ,  si T ~ x or  -. a c t i ve ( , , ) .  

Sequencing The construct P; Q executes P then Q. 

(P, ,,, ct) ---. (P' ,  or', ct') P '  # �9 
(P; O, or, a )  - - .  (P'; Q, or', ct') 

(e, or, ct) - - ,  (., or', ct'~ 
(P; Q, or, ct) ..... (Q, or', a') 

I terat ion The construct while B do P end iterates program P upto a point where the element- 
wise boolean expression B evaluates to false at each active PE. Notice that this construct 
does not modify the context stack. 

(3*` ( [ B ] ( - ) l u  ^ active(*`)))  - tt 
( " b i l e  B do P end, or, ct) ----+ (P; while B do P end, or, ct) 

(3*` ( [B](a) lu ^ acave(  *`) ) ) = f f  

(whi le  B do P end, or, ct) -'-+ (e, or, ct) 

Conditioning The construct where B do P end inhibits, during the execution of program P, 
those PEs whose elementwise boolean expression B evaluates locally to false. The new 
activity corresponds to the boolean vector Top(ct) ^ [B](a),  and is pushed on the context 
stack. To keep track of conditional blocks, we introduce the new syntactic construction 
begin  P end. 

(where B do P end, or, ct) ~ (begin P end, ey, ct') 

with d = Push(Top(ct )^  [B](or), ct). The following rules express that P is executed up to 
its termination, and, at that time, the former activity is restored by popping the context 
stack. 

(P, or, ct) - ,  (P',or' ,ct ')  
(begin P end, or, ct) --+ (begin P~ end, or', ct') 

(begin �9 end, 0", ct) ~ (e, O', Pop(ct)) 

3 Implementing s under Centaur 

The first step of this implementation is to define a grammar for s particularly for the boolean 
and arithmetic expressions. We use the syntax of the C language, except incrementation and 
decrementation operators which have side effects. Thus, writing the Metal and PPML specifi- 
cations presents no specific difficulties. The only technical point is to set correctly the priorities 
on the operators of the language. Vectors are implemented by list operators, so that we can 
choose the size and the geometry of them. Moreover, they have no concrete syntax, because L 
provides no way to define vectors extensively. 

In the following Typol rules, sigma represents the environment. It is implemented as a list 
of assignment operators. These operators bind a variable name to its vectorial value. A variable 
named POSITION is defined in the initial environment. It associates to each processor a unique 
identifier, starting at 0. The context is denoted c~ in the Typol rules. It is a list of vectors, and 
represents the stack ct previously defined. Two alternative approaches are possible to write the 
Typol specification of L. 
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3.1 The direct method 

This is the more natural and simple approach. It is used for the implementation of classical 
sequential languages. The method corresponds to a Big-Step operational semantics in that sense 
that a program evaluation consists in only one big derivation. The program is not modified 
by its evaluation, but only the environment. The definition of such a semantics amounts to 
describing the modifications of the environment made by the statements and the constructs of 
the language. This method could also be applied to SIMD languages, like f .  The only difference 
with the sequential case comes from the context, which is also modified during the evaluation. 
Thus, this semantics of s would be specified as a function with two variables. Let us consider the 
rules for iteration. The Prolog predicates for_a l l_ac t i f_nol ;  (c t  ,v) and e x i s t _ a c t i f  (c t  ,v) 
respectively test whether the value of the vector v is false on all active PEs, and whether there 
exists at least one active PE such that this value is true. 

sigma I -  EXP : v & fo r_a l l_ac r162162  

sigma, ct I- while(EXP, P) -> sigma, ct ; 

sigma I- EXP : v k exist_actif(ct,v) k 

sigma, cr I- P -> sigma', ct' k 

sigma ~, cr j I- .hile(EXP, P) -> sigma ~' , ct ~ 

sigma, cr I- .hile(EXP, P) -> sigma'', ct ~' ; 

The first rule expresses the termination of the loop, in which case environment and context 
remain unchanged. The second one contains a recursive call to itself, after the derivation of one 
iteration. Notice here that the environment and context resulting from this iteration, sigma' 
and c t  ' ,  become the initial environment and context of the following iteration. This corresponds 
to function composition. 

When using this type of semantics, the evaluation of a whole program consists in evaluating 
exactly one Prolog term. Indeed, this evaluation is recursively made on the structure of the 
program. The main advantage of this method is that Centaur provides directly a debugger 
during the evaluation of a term, the Typol debugger. It traces the Typol rules successively 
applied, and the user can set breakpoints in his program, or examine variables which appear in 
the rule. An interesting feature is that he can also make a rule to fail, which forces Prolog to 
backtrack. The program is then executed upside down. Figure 1 shows, in the left window, the 
environment with the rule to be applied, and, in the right window, the current value of sigma. 
It is assumed here that the architecture is a 4 • 4 square grid of PF.s. 

The main drawback of this method is that the whole evaluation of a program is made under 
Prolog: since it keeps track of its whole proof, environment and context are stored between each 
application of rules. The memory space is then rapidly exhausted especially if vectors of large 
size (say, more than 16 elements) are manipulated. 

3.2 The transformational method 

This approach is more complex than the previous one. It has already been used with Centaur for 
languages with explicit control parallelism, such as MIMD languages. It is based on a Small-Step 
operational semantics where a step modifies the program under evaluation. An entire program 
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Skip 
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;Igma, ct ]- P -> sigma', ct' & 
;tgma', ct"  I -  uh|le(EXP, P) -> stgma'' ,  ct 

stgml, c t  ] -  uhtle(EXP, P) -> stgma'' ,  ct" 

Edtt 
ffi e ,  1 , 2 , 3 "  

1,2,3s4 
2,3,4,5 
3,4,5,6 

= 1,2 ,~i ,3  
2 , 3 , 3 , 3  
3,3,3,:3 
3,3,3,3 

: 1,1,2,2 
1,2,2,2 
2,2,2,2 

~2,2r2 

Figure i: The Typol debugger. 

evaluation consists then in many steps. This semantics transforms a program associated with 
an environment and a context into a new program, environment and context. It corresponds 
exactly to the operational semantics given in the previous section. The implementation is easier 
than for the MIMD case: the s language is deterministic, and communications axe synchronous. 
We deduce Typol rules directly from the SOS rules. For instance, the rule for conditioning is 

evaluate(EXP, sigma, V) 
push_and(or, V, c~') 

~- .here(EXP, P), sigma, ct ~-> begin(P), sigma, ct' ; 

where evaluate and push_and are Prolog pre~cates which respectively evaluate the expression 
EXP and modify the context stack accordingly. 

We can now see that the evaluation of a program consists in a sequence of term evaluation, 
each term being derived from the previous one by application of a semantic rule. Each call to 
Prolog corresponds to one transition in our semantics. Observe that it may involve many Typol 
inferences, as Typol rules axe recursive in general. The result is a new state made of the new 
program, environment and context. Computing an entire program requires then as many calls 
to Prolog as transitions in the SOS semantics. The evaluation of a program stops when the 
returned program is �9 and no more rule applies. 

The interesting point of this method is that the memory space required by Prolog for the 
evaluation of an entire program corresponds to that required for computing one transition. It 
amounts to the space used to represent the environment and the context, and to evaluate an 
expression. Hence, this method avoids the memory overflow if the complexity of expressions 
remains beyond reasonable limits. 

On the other hand, we have to design a specific debugger. The Typol debugger is only 
available during the computation of a transition, that is during a call to Prolog. Between each 
Prolog computation, the control returns to the Lisp top-level. The debugger has to combine both 
Centaur and Lisp graphic primitives. It uses the communication primitives between the VTP 
and Prolog in order to exchange program, environment and context at each step. The skeleton 
of the debugger is a simple loop which iterates calls to Prolog and displays the new program at 
each iteration. In practice, this implementation works fine with bidimensionnal vectors of size 
16 x 16. However, this size can be interactively modified by the user before the execution of a 
program. 
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3.3 The programming environment 

Centaur and Lisp provide various graphic and interface functions to develop a specific pro- 
gramming environment. In our case, we have implemented the functionalities of the Maspar 
MP-1 programming environment MPPE (Maspar Programming Environment [12]) with several 
extensions. 

Regarding the execution control, the user can choose between two modes: a step-by-step 
mode, with or without a call to the Typol debugger (Step and Step(db)),  and a continuous mode 
(Go). In the second case, the evaluation can be stopped by clicking on a button (Break). The 
direct definition of breakpoints is difficult because the program is modified during its evaluation. 
It would require to add new structures to keep track of the localization of the breakpoints. 

The more natural way to display vectors is to use grids. But rather than displaying the 
value of their elements, we show the value of a predicate concerning the selected variable, X = 0 
for instance. To obtain the value of an element, the user simply clicks on it and a window will 
present the coordinates of the chosen element and its value. The context is displayed with a 
grid too, so the user can inspect at any time the current activity. Our implementation provides 
also the capability to trace predicates. These predicates can depend on both variable values 
and activity. For instance, the set of active processors so that the condition A = (B + 1) holds 
is represented by the predicate ACTIF && (A == (B + 1)). This is an important improvement 
on MPPE, which resticts predicates to the comparison between one variable and a constant. 

The following figures present these functionalities using a program which computes the con- 
nected component of a point in the image IMAGE. The point coordinates are (10,3), so it is 
located in the bottom left square of the image. The connected component C is build by dilating 
a wave from the initial point. The final component is found when the wave does not extend in 
the current iteration. 

The left window of Figure 2 is the main window, containing the program and the execution 
control button. The window on the right displays the environment with a button (Examine) 
to display a selected variable, and a button (Predicate)  to trace a predicate. The two left 
windows of Figure 3 show two variables, with the value of one element. The right window 
displays a predicate with a dialog box used to modify it. 

Conclusion 

This work presents the first implementation of a SIMD data-parallel language under Centaur. 
The s language is fairly primitive. It can be extended to include the complex data-parallel 
flow control structures of MPL, such as the plural while with the associated plural break and 
continue. We actually implemented under Centaur an extension of s containing such control 
rupture statements. 

We can observe a hierarchy of languages in terms of adequacy to Centaur. Classical sequential 
languages are the most easier to implement because of the simplicity of their control and data 
structures. Conversely, implementing MIMD languages is very difficult due to non-determinism, 
asynchronous communication and parallel execution. Finally, SIMD languages lie between these 
extreme cases. They are closer to sequential languages in terms of control. The main difficulty 
comes from the large size of data. 

Centaur appears as an interesting semantic design tool. Implementing a language under 
Centaur helps the designer to study various alternatives for its semantics and to explore their 
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m s, [ ]  F i l e  Ois~s~_].~. E d l t  J l s c t l o n s  
Step ~ := IHAG~-'&'& C; l l ~ Envlronnement 

~hile (CPRINE != C) do I Step (db) I CPRIME := C; POSITION 
Go AUX := C; POSX 

g r i d _ s h i f t  AUX along no r th  ~111 g; POSY 
Break C := C I I  AUX; .IMAGE 

AUX := C; 
g r i d _ s h i f t  AUX along east  f t l l  B; 

CPRIHE C := C I I  AUX; ~UX 
AUX := C; 
g r | d _ s h ] f t  AUX along south f i ] ]  8; 
C := C I I  AUX; 
AUX := C; 
g r J d _ e h | f t  AUX aIong west f i l l  B; 

Restore C := C t l  AUX; 

Exam|ne P r e d | c a t e  

Figure 2: Connected component of a point in an image. Windows presenting the program and 
the environment. 

Figure 3: Windows presenting the variables IMAGE and C. The point is located in the bottom left 
square of the image IMAGE and variable C is the current component. The right window shows 
the predicate (IMAGE && C) with its dialog box. 
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impact. The existing SIMD languages present some differences as a consequence of the choices 
made during their design. For instance, in MPL the body of a conditional block is not executed 
if all the processors become inactive. This is not the case in C* and POMPC. Those differences 
may generate expressiveness problems between SIMD languages. 

We can also use this implementation to refine SIMD programming environment and to de- 
velop software engineering tools. The existing software tools for sequential languages may be 
adapted to SIMD languages. These adaptations can be performed by the use of this application. 

Finally, various extensions are possible. We can extend the language to include more gener- 
alized communication commands. We can also improve it by adding notion of shape as in C* 
or POMPC.  Moreover the Centaur system can be used to provide intelligent syntax-directed 
editors to commercial languages. Our research group is currently developing a proof system 
based on Hoare's logic [16]. A future work will consist in integrating it in this environment. 
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