
The Tensor Product in Wadler's Analysis of Lists

Flemming Nielson & Hanne Riis Nielson,
Dept. of Comp. Science, Aarhus University,

DK-8000 Aarhus C, Denmark.

E-mail: fnielson@daimi.aau.dk

We consider abstract interpretation (in particular strictness analysis) for pairs
and lists. We begin by reviewing the well-known fact that the best known de-
scription of a pair of elements is obtained using the tensor product rather than
the cartesian product. We next present a generalisation of Wadler's strictness
analysis for lists using the notion of open set. Finally, we illustrate the in-
timate connection between tke case analysis implicit in Wadler's strictness
analysis and the precision that the tensor product allows for modelling the
inverse cons operation.

1 I n t r o d u c t i o n

Let us begin wi th pairs. It is common belief that to describe a pair one must use a pair
of descriptions. As an example consider a pair (true,false) and an analysis for detecting
constants (see the figure). It is immediate that T is the best description of 'true' and F
is the best description of 'false' so that it is natural to use (T,F) as the description of
(true,false).

It is well-known (but perhaps to too few!) that in general this approach does not give
the best description possible. As an example consider the pair (x,x) where x is either
'true' or 'false' and thus is described by 1. Here the above strategy would call for using
(1,1). A similar description would arise for the pair (x,",x) and if the use of the pair was
to test for equality of the two booleans we will obviously not obtain precise information:
it would appear that the result of the test is (1= 1) which clearly is 1.

The solution is immediate: we will describe (x,x) by (T,T) or (F ,F) and (x,-~x) by
(T,F) or (F, T) - - assuming of course that x is described by 1. Then the test will always
yield T in case of (x,x) and always F in case of (x,-~x).

This observation is by no means novel. It dates back (at least) to [9] that distinguished
between independent attribute analyses (the first kind) and relational analyses (the sec-
ond kind). The first systematic treatment was given in [11] and the highlights are also
presented in [12, 13, 14]. It amounted to the following identifications:

independent attribute method -- cartesian product

relational method =- tensor product

352

2 2 = F

The notion of tensor product is a very general notion from category theory [10]. One
has to be specific about the category (complete lattices) and the property (additivity or
distributivity) in order to home in on the concept. An early reference to tensor products
of complete lattices is [2] and [11] gave a direct construction that was closer to motivating
w h y the tensor product would be useful for the relational method; the construction
we give in Section 2 is a cut-down version that applies to finite complete lattices only.
(Hence the reader can happily forget about compact elements, consistently complete cpo's,
algebraicity, ideal completions etc. for the duration of this paper.)

Le t us now t u r n to lists. Here the difficulty is not to find a general description of
lists but to find one that is useful for the analysis of lazy languages. The first remarkable
success in this area was Wadler's strictness analysis for lists [17]. For lists of base types,
like Int list, it used a four-point domain:

=

I e describing all lists

Oe describing all lists that contain a L-element if finite

1 describing all non-finite lists

0 describing only the L-list

Here a list is finite if it is of the form Vl:...:vn:NIL, and is non-finite if it is either infinite,
i.e. vx:v2:..., or else partial, i.e. v,:...:vn:L.

Much work has been directed at generalizing Wadler's construction to other recursive
data structures (e.g. [5]). In a sense this is not hard; however, it would seem that
no one has been able to obtain a generalisation that is equally natural. (Almost all
generalisations contain far too many descriptive elements and more or less ad-hoc ways
have to be found to throw some of them out again.) Here we consider the more mundane
task of generalising Wadler's analysis from lists of base types to arbitrary lists. One
easy approach (discovered by many) is to note that Wadler's construction amounts to the
double lifting of the two-point domain

T 1 describing all elements
2

0 describing only the L-element

used to describe the strictness properties of base types. However, this does not give the
desired descriptive power when the elements of the lists have more structure. This was also
observed in [5] and in Section 3 we shall see how to do better - - without first introducing
many more descriptive elements and next making sure that only the interesting ones are

retained.

353

The success of Wadler's analysis is not only due to the use of a four-point domain but rests
at least as much on the (implicit) use of case analysis when analysing function definitions.
In Section 4 we then show that case analysis amounts to nothing but the use of an inverse
cons operation - - provided that the range of the inverse cons operation is modelled Using
tensor product. This amounts to a formalisation of Wadler's remark that the case analysis
is performed by using the abstraction of cons "in a backward manner".

2 Tensor products for pairs

Let us consider a small lazy functional language with types given by 1

t : : = I n t [Boo1 [t • I t ~ t I t |] t l i s t

The first step in describing an analysis by means of abstract interpretation is to describe
the complete lattice A(t) associated with each type t. For strictness analysis it is common
to model the base types using the two-point lattice 2 described above. However, to
illustrate how lists of structured types are handled we shall be a bit more ambitious in
some of our choices:

A(Int) = 2

A(Bool) = 2 2

Thus our modelling of In t is a proper strictness analysis whereas our modelling of Bool
amounts to an analysis for detecting constants; however, if only the 0 and 1 elements are
retained we have a proper strictness analysis corresponding to the use of A(Bool) = 2.

For composite types our starting point will be the following definitions:

A(t l x t2) = (A(t l) x A(t2))•

A(t l --* t2) = (A (t l) --, A (t 2)) •

The basic idea is that a property of a pair of elements is a pair of properties (one for
each component) and that a property of a function is a function that maps properties
of arguments to properties of results. There is the additional twist that we use an outer
lifting. This is in order to distinguish between the undefined element of a product or
function space and the least "defined" element (a pair of _l_-properties or the function
mapping any property to the 1-property). The choice corresponds to the choice made
in the standard semantics (see the Appendix) and is invaluable in order to model the
behaviour of a lazy functional language.

E x a m p l e 1 Consider the function eq : Bool x Bool ~ Bool that tests for equality of
its two arguments. In the analysis A it will be natural to set

A(eq) = up(eq o dn)

1In a realistic language one would have only one of x and @, say x. Some occurrences of x will then
be interpreted as we interpret x and others as we interpret | The actual choice will depend on the
precision wanted and the context of the occurrence.

354

where eq : 2 2 • 2 2 ~ 2 2 is given by

eq (T ,T) = T, eq(F,F) = T, eq(T,F) = F, eq(F,T) = F, eq(1,1) = 1, . . .

and where up and dn are the standard "polymorphic operators" that transform between
domains D and D• i.e.

up: D--* D I

dn : Dx --* D

with dn(3-) = .1_ as well as dn(up(3-)) = 3-; thus dn o up is the identity, id, but up o dn
is greater than the identity because it sends _L to up(L). []

Returning to the example of the Introduction let us consider the behaviour of a func-
tion

f (x) = e q (x , x)

upon an element x that can be either ' true' or 'false'. Here 1 describes x and using A(eq)
as specified in Example 1 we obtain 1 as the result, even though we know that the result
must be ' true' so that one would have hoped for T as the result of the analysis.

The crux of the problem is that

u p ((T , T)) U up((F,F)) = up((T ,F)) 0 up((F ,T))

and that we are therefore not able to describe the difference between the pairs (x,x) and
(x,-~x) where x is described by 1. The solution we propose is to use lifted tensor product
rather than lifted cartesian product. This will enable us to achieve

up(cross(T , T)) O up(cross(F,F)) • up(cross(T ,F)) U up(cross(F,T))

for a suitable function cross. However, to be able to compare the possibilities we shall
keep the interpretation of A(t l x t2) and instead interpret A(t l | t2) as stated.

To conduct this development we need a few auxiliary notions. A function f:L--+M
is (binary) additive if f(l~Ol2) = f(l~)Uf(12) holds for all l~ and 12 in L. A function
f :L • L'--*E is separately (binary) additive if

f(llO12,1') = f(ll , l ')tlf(12,1'), and f(l,l~ 0 I~2) = f(l,l'x)Of(l,l'2)

for all choices of ll, 12, l, l~, l~ and I'. It is easy to show that if f : L • is additive
then it is also separately additive but the converse does not hold. The tensor product may
then be regarded as a way of turning separately additive functions into additive ones. To
be more precise consider complete lattices L and L'.

D e f i n i t i on 2 A pair (L| is a tensor product of L and L' (with respect to
additivity) provided that

�9 L@L' is a complete lattice,

�9 cross: L x L ' ~ L @ L ' is a continuous function that is separately additive,

355

�9 for all complete lattices M and for all continuous functions f:LxL'--*M that are
separately additive the following universal property holds: there exists precisely
one continuous function f| L| that is additive and satisfies the equation
f| o cross= f . []

This may all be illustrated by the following diagram:

LxL'

c r ~

L| I " M
f|

More precisely we have "defined" the tensor product (with respect to additivity) within
the category CL of complete lattices (as objects) and continuous functions (as mor-
phisms). We have as yet no guarantee that the tensor product always exists in C L or
in subcategories. However, it follows from general categorical reasoning that the tensor
product - - if it exists - - is unique up to isomorphism; this means that if (Ml,CrOSSl) and
(M2,cross2) are both tensor products of L and L' there is an isomorphism 0 from M1 to
M2 such that Oocrossl=cross2. (Here an isomorphism 0 is a bijection such that it and its
inverse are both morphisms of the category in question.)

E x a m p l e 3 The lower powerdomain 7)(D) of an algebraic cpo D is

79(D) = ({ YC_Bo[Y# 0 A Y--LC(Y)},C)

where BD is the set of compact elements of D and

LC(Y) = {d[3yeY: dE_y}

is the left-closure of a subset Y. (If D is finite one has BD=D.) Then

(P(DxD'), A(Y, Y').{(y,y')]ye YA y'e Y'})

is a tensor product of 79(0) and P(D'). []

The above example shows that the tensor product always exists in the category of
distributive and finite lattices and monotonic (hence continuouos) functions; this follows
from [6, Section 7] that in effect shows that L is a finite and distributive lattice if and
only if L=79(D) for a finite cpo D. A much more general result may be found in [2] but
note that the notion of tensor product studied there is slightly different 2. Here we shall
be content with demonstrating the existence of the tensor product within the category
F C L of finite complete lattices and monotonic (hence continuous) functions.

The elements of L| will be be certain subsets Y of LxL'. To this end we shall say
that a set Y is left-closed when Y = LC(Y) and where LC(Y) is as above. We shall
say that a set Y is closed in both components when Y = CCI(Y) and Y = CC2(Y) and
where

2It is the tensor product with respect to complete additivity. Which tensor product is the more
adequate depends on the setting at hand. We believe that the tensor product studied in this paper is
well suited for lazy languages whereas that of [2] is well suited for eager languages.

356

CCI(Y) = {(lltAl2,1') l (ll,l'),(12,1')e Y }

c c ~ (r) = {(l,l~ u t~)I (l,l~),(1A)e Z }

denote the closure in the first and second components, respectively.

Fac t 4 For each subset YC_LxL' the set

TC(Y) = N {Y'C_LxL'] Y C Y ' h Y'=LC(Y') A

r ' = c c , (v ') ^ r ' = c c ~ (z ') }

is the least left-closed set that contains Y and that is closed in both components. []

P r o p o s i t i o n 5 The following data

L| = ({ Y C L x L ' [Y~OAY=LC(Y)=CCI(Y)=CC2(Y)} , C__)

cross = ~(/,/ '). LC({(/,I')})

f| = A Y. I I{f(l,l')l(l,l')E r }

constructs a tensor product (with respect to additivity) in the category F C L of finite
complete lattices and monotonic (hence continuous) functions. []

P roof : See [15, Chapter 7] or possibly [11] or [14]. []

We can now return to the definition of the analysis A where we have already hinted at
the desire to use

A(t l | t2) = (A(t l) | A(t2))•

E x a m p l e 6 In Example 1 we considered the analysis of the function eq. Now consider
the similar function eq ~ : Boo1 | Boo1 ~ Boo1. For this it is natural to set

A(eq ~) = up()~a. I I{eq(l,l')l(l,l')Edn(a)})

In this way A(eq ~) will give F when applied to up(cross(T, F)) tl up(cross(F, T)) and will
give T when applied to up(cross(T, T)) U up(cross(F,F)). Thus the required precision
has been obtained, t::l

3 Wadler-like analysis of general lists

To prepare for our analysis of lists we need some terminology. Given a partially ordered
set D and a subset YC_D we define the right-closure of Y, or upwards closure of Y, as

RC(Y) = { deD I3 y e Y : yEd }

(In the literature this is sometimes written T Y.) A subset YC_D is Scott-open, or open
in the Scott-topology, if and only if

�9 Y is right-closed, and

�9 for all chains (dn)n: if I.J= dn E Y then dn E Y for some n.

357

Given our restriction to finite lattices the second condition is trivial and Scott-open just
means right-closed throughout this paper. It is immediate that RC(Y) is the least right-
closed set that contains Y. We now define

O(D) = ({YC_DI Y=RC(Y) n Y#0}, _D)

as the partially ordered set of non-empty right-closed sets.

Fact 7 If D is a finite complete lattice then O(D) is a finite complete lattice with least
element D, greatest element {TD} where TD is the greatest element of D, and least upper
bounds and greatest lower bounds given by N and U, respectively, o

Example 8 0 (A (I n t)) has elements {0,1} and {1} with {0,1}E{1}; thus O(A(In t))
is isomorphic to 2.

O(A(Bool)) has elements {1}, {F,1}, {T,1}, {T,F,1}, and {O,T,F,1}. The partial
order may be depicted as follows

0

where 1 denotes {i}, T denotes {T,1}, TandF denotes {T,F,1} etc. (Clearly it is
isomorphic to (22)1.)

Since A(In t x Int) is isomorphic to A(Bool)• it follows that O (A (I n t • is as
above but with an additional least element, o

For our analysis of lists we shall then use the following generalisation of Wadler's
construction:

A(t list) = (O(A(t)) l)•

To overcome the growing notational complexity it is helpful to write

0 for 2,
1 for up(]-),
Ye for up(up(Y)),
ye for RC({y})e, that is up(up(RC({y}))).

The intended meaning of these elements is as follows:

0 describes the l-list,
1 additionally describes all infinite lists and all partial lists,
Te describes all lists.

Finally, let YeEA(t l i s t) satisfy Y~RC({T}). We may write Y = {al ," ",ak} and we
know that k>0. Then

358

Yr describes all infinite lists and all partial lists and some finite
lists; a finite list [vl,.. ",vn] = vl:." ":Vn:NIL is described if there
are k values jl , '" ",Jk such that the property ai describes the
element vjl.

A more precise definition of the relationship between properties of lists and concrete lists
may be found in the Appendix.

E x a m p l e 9 For the strictness analysis we get A (I n t list) = 4 as in Wadler's approach
because C9(A(Int)) is isomorphic to A(In t) (cf. Example 8). A similar remark applies
to lists of lists of base types etc.

The difference between Wadler's approach and ours arises when the elements have
more structure as for lists of booleans. Here we get:

A(Bool list) =
dFr

0~

The element TandFe really is RC({T,F})c = { 1 , T , F } e and it is the only element of
(O(A(Bool))• that is not accounted for in (A(Bool) .) . . Thus we are able to give a
more precise description of a list like [true,false] than Wadler is, because we can record
that both 'true' and 'false' are present in the list.

As follows from Example 8 the analysis of A((I n t x In t) l i s t) would be very similar
except that there would be an additional element between 1 and 0~. The list [true,false]
now corresponds to the list [up((1,_l_)),up((_l_,2))] which does not have an adequate de-
scription in Wadler's approach (cf. the discussion of [5] where the inadequacy of a gen-
eral•177 of Wadler's approach is described). The Appendix contains a slightly more
detailed discussion of these matters. []

E x a m p l e 10 Returning to Example 9 the concrete lists described by these properties
may be described as follows:

0 describes •

1 additionally describes all infinite lists and all partial lists (e.g.
true:false:l) ,

0e additionally describes all finite lists with at least one •
element (e.g. [•

359

TandFr additionally describes all finite lists with at least one 'true'-
element and at least one 'raise'-element (e.g. [true,false]),

Te additionally describes all finite lists with at least one 'true'-
element (e.g. [true]),

Fe additionally describes (wrt. TandFr all finite lists with at
least one 'false'-element (e.g. [false]),

1 ~ additionally describes [].

To illustrate the benefit of using (O(A(Bool))•177 rather than (A(Bool)•177 consider the
(Miranda-like) function

g 1 = isnil (filter (=true) 1) V isnil(filter (=false) l)

Here i s n i l tests for a list being n i l and f i l t e r (=x) 1 denotes the list consisting of
those elements of 1 that equal x. Thus

g([true,false]) = false

g([true,_l_]) = 2.

g(false:_L) = _l_

g([true]) = true

g([false]) = true

If we let g denote the optimal analysis of g it follows that

g(0) = 0
g(TandFe) = F

g(Te) = g(Fe) = 1

Now consider the list [true,false]. It is described by all of Te, Fe and TandF~ but not by
Oe; hence TandFe is the optimal description of [true,false]. Thus the inclusion of TandFe
allows the analysis of g([true,false]) to give a better result than if TandFe had not been
included.

An analogous example can be constructed for the type (In t x In t) l i s t . rl

4 T e n s o r p r o d u c t s a n d c a s e a n a l y s i s for l i s t s

So far we have not shown how to interpret the functions associated with the tensor
product, nor the notion of case analysis implicit in Wadler's analysis. This is all rectified in
this section where the connection is also demonstrated. When doing so we shall introduce
the required language primitives as the need arises; we do not have the space to give a
full interpretation, nor do we have the space to explain the intricacies of the fixed point
operator.

E x a m p l e 11 Turning to operations on lists of integers we recall the strictness properties
0, 1, 0r and 1~ and consider the functions hd that takes the head of a list, l e n g t h that

360

computes the lenght of a list and sum that adds a list of integers. The optimal analysis of
these functions are up(hd), up(length) and up(sum) where hd, length and sum are given
by

0 i O~ l e
hd 0 1 1 1
length 0 0 I 1
sum 0 0 0 1

We shall regard hd as a primitive of the functional language whereas l e n g t h and sum will
be programs; as we shall see it will cost some effort to obtain a compositional and optimal
analysis A of l e n ~ h and sum. []

To account for Wadler's notion of case-analysis we shall assume that there is a case
construct. Informally, the meaning of case(e, ,e2) should be "equivalent" to 3 c o n d (i s n i l ,
e,, e2otuple(hd,%l)) where cond is the familiar conditional, i s n i l is the test for whether
a list is empty or not, hd and t l are the selection functions for lists and tup le (e , , e2) is
intended to map v to (e,(v),e2(v)). By incorporating case as a language primitive we
will be able to specify the strictness properties of case freely.

E x a m p l e 12 Using the case construct we may define the following version of the l e n g t h
and sum programs:

lengthl : Int list -* Int

l e n g t h , = fix(hf, case (ze ro , addotuple(one , fosnd)))

sum I : Int list --+ Int
sum, = f i x (h f , case(zero, addotuple(fst, fosnd)))

We shall return to their analysis, when we have defined the analysis A. []

Most of the definitions needed are rather straightforward:

A (z e r o) = up(ha. 1)

A(one) = up(ha. 1)

A(add) = up(ha, alna where

A (t u p l e) = strict(hhl. strict(hh2. up(ha.
up((dn(hl)(a),dn(h2)(a))))))

A (f s t) = up(ha, ax where (a,,a2) = dn(a))

A(snd) = up(ha, a2 where (al,a2) = dn(a))

A(cons) = strict(hh:. strict(,~h2, up(ha.
I if dn(h2)(a)E_l
Yet'l(dn(hl)(a))e if dn(h2)(a)=Ye)))

A(ni l) = up(ha. Te)

aThey will be equivalent in the semantics S of the Appendix but the whole point is that they will not
be equivalent in the analysis A.

361

1 if a=0
A(hd) = up(Aa. T if a~_l)

0 i f a=O
A (t l) = up(Aa. 1 if a=l)

Te if a=Ye

0 i f a=O
A (i s n i l) = up(Aa. F if ar A aCTe)

1 if a=Tr

A (f i x) = FIX' where F I X ' = AH. Un>i Hn(up(-I-))

Here we have used the notation

H h if h~_l_
strict(H) = Ah. .1_ otherwise

Note that if A(Bool) = 2 was used instead of A(Bool) = 2 2 then we would have to let
h (i s n i l) return 1 rather than F and thus loose precision. The more interesting construct
is cas@:

A(case) = strict(Ahl. strict(Ah2. up(Aa.
"J-A(tl)
dn(h2)(up((T A(to), 1)))
U{dn(h~)(up((n g', (YO Y')~))) [Y'C_ Y}
dn(h2)(up((TA(to),Tr II dn(hl)(Te)

where we have used the notation

if a=O
if a= l
if a=Yr ~ Tr
if a=Te

)))

Y@ Y ' = RC(Y\RC(Y')) U {T}

The two first and the last clause should be fairly straightforward. In the third clause Y'
is the set of possible descriptions of the first element of the list and then YO Y' will be
the corresponding description of the tail of the list. All choices of Y'_C Y are possible so
we join the results. The correctness of this definition is demonstrated in the Appendix.

E x a m p l e 13 In the case of lists of base types the above definition of A(case) amounts
to the following:

A(case) = strict(Ahl. strict(Ah2. up(Aa.
0 if a=O
dn(h2)(up((1,1))) if a = l
dn(h2)(up((1,O~))) II dn(h2)(up((O,le))) if a=0e)))
dn(h2)(up((1,1e))) U dn(h,)(10 if a = l e

We shall explain the definition in the case where a=0e. Here we use that a=0e really
stands for a=Y~ with Y={0,1}. The subsets Y' of Y are 0, {0}, {1} and {0,1} but we
only need to consider {1} and {0,1}. Since

lq{0,1} = 0 and {0,1}0{0,11 = {1}

lq{1} = 1 and {0,110{1} = {0,1}

362

this gives the contribution

dn(h2)(up((1,O~))) t_J dn(h2)(up((O,l~)))

as stated. Thus our general definition of A(case) specializes to Wadler's notion of case
analysis for lists of base types. []

Example 14 As we have already said hd is a primitive and thus there is no need to
analyse it here. We may now perform the following analysis of length:

llength~](A) = up(Aa.case a of
O: 0
1 : 0
Oe: 1
ie: 1)

Thus dn([lengthl](A)) equals the optimal result of Example 11. Turning to sum we may
perform the following analysis:

isuml](A) = up(Aa.case a of
O: 0
1 : 0
Oe: 0
le: 1)

Thus also dn([suml](A)) equals the optimal result of Example 11. []

We shall now see how to obtain a similar effect by using the tensor product and then
dispensing with the case construct. We begin by considering the operators tuple ' , f s t ~
and snd' associated with (tensor) products:

A(tuple ') �9 A(to-*t,) --+ A(to--+t2) -* A(to--+tl|
A(tuple') = strict(Ahl. strict(Ah2. up()ta.

up(cross(dn(hl)(a), dn(h2)(a))))))

A(fs t ') �9 A(tl|
A(fs t ') = up(Aa. I I{l[(1,1')�9

A(snd') �9 A(tl|
A(snd') = up(Aa. I I{l ' t(l , l ') �9)

Furthermore,

A(add') �9 A(Int|

A(add') = up(Aa. I1{ al•a2 I (al,a2)�9 })

However, the weak point is that tuple ' is the only operator that constructs an element
of the tensor product and that this element is of the form cross(. . . , . . .) and so does not
exploit the additional precision of the tensor product. This can be rectified by letting
the interpretation of tuple ' consider the atoms or the irreducible elements of the argu-
ment a (or dn(a)); references to approaches following these ideas may be found in the

363

Conclusion. Here we shall take a shortcut and introduce special operators for exploiting
the tensor product. One is s p l i t which is the inverse cons operation and it is supposed
to be "equivalent" to euple ' (hd , t l) . The other is pair(e~, e2) that is supposed to be
"equivalent" to t u p l e ' (e l o f s e ' , e2osnd'). For the analysis we then have

A(split) �9 A(t list --~ t| list))

A(sp it) =

cross(_l_,O) if a=O
cross(T,1) if a=l
O{cross(n Y', (YE3 Y')r [Y'C Y} if a=Yr # -I-r))
cross(T,T~) if a=Tr

A(pair) �9 A(t l ---* /3) "--* A(t2 ~ t4) ~ A(t l | --* t3|

A (p a i r) = strict(Ahl. strict(Ah~. up(Aa.
up(U{cross(dn(hA(O, l (t,t')edn(a)}))))

Note the similarities between the definition of A (s p l i t) and that of A(case) .

E x a m p l e 15 In the case of lists of base types the above definition of A ' (s p l i t) amounts
to the following:

cross(O;O) if a=0

A ' (s p l i t) = up(Aa.up(cross(I,1) if a = l
cross(O,le)Ocross(1,O~) if a=0r))
cross(1,1r) if a = l r

Naturally this has many similarities to the simplification of A(case) obtained in Example
13. []

We also need

A (c o n d) �9 A(to---+Bool) ---+ A(to---*tl) ---* A(t0---*tl) ---* A(to--*t l)
A(cond) = strict(Ahl. strict(,kh2, strict(~h3. up(Aa.

/ if dn(hl)(a)=O
dn(h:)(a) if dn(hl)(a)= T
dn(h3)(a) if dn(h~)(a)=F))))
dn(h:)(a)LJdn(ha)(a) if dn(h~)(a)=l

E x a m p l e 16 Using split and sum we may now consider the following definitions of
l eng th and sum:

length~ : Int list -~ Int

length2 ---- fix(Af, cond(isnil, zero, add'opair(one,f)osplit))

sum2 : Int list -+ Int

sum2 = fix(lf, cond(isnil, zero, add'opair(id,f)osplit))

Again there is no need to redefine hd and thus no need to analyse it. We may then perform
the following analysis of length:

364

[length2](A) = up(Aa.case a of
0 : 0
1 : 0
0~: 1
1~: i)

Thus dn(~length2](A)) equals the optimal result of Example 11. This is not due to the
use of tensor product but more to the use of A(Bool) = 2 2 instead of A(Bool) - 2 (cf.
the definition of A (i s n i l) given earlier).

Turning to sum we may perform the following analysis:

[sum21(A) = up(~a.case a of
0 : 0
1 : 0
0r 0
1r I)

Thus also dn([[sum2](A)) equals the optimal result of Example 11. This is in contrast to
what would happen if cartesian product was used instead of tensor product. Q

5 C o n c l u s i o n

Judging from the development of the previous section we can obtain optimal results for
key functions using either case-analysis or the tensor product. Admittedly our treatment
had a few special operators but these may be dispensed with at the price of a more
complex theory: [11] contains formulations for a general tuple '-construct where the join-
irreducible elements are used for case analysis. A similar development but using atoms is
contained in [12]. This all relates to the study of so-called expected forms [11, 14].

One should take care, however, to note that there is a certain "duality" in the sets
considered. For lists we are using right-closed sets whereas for tensor products we are
using left-closed sets (that are additionally closed in each component). The use of left-
dosed sets is rather natural for abstract interpretation as is evidenced by the central role
the lower powerdomain plays in many formulations of abstract interpretation. The use of
right-closed sets for lists seems to be necessary to capture the essence of Wadler's insight:
the ability to describe long finite lists that may have arbitrary elements except that one
of these has to be 1 . In the terminology of [1] one might say that the Wadler-like analysis
of hsts necessitates a formulation of liveness aspects in addition to the safety aspects.

We should like to investigate the relationship between our use of open sets and the use
of least Moore families in [4] for extending abstraction lattices with additional elements.
It is important to note that (unlike [5]) our construction specialises to that of [17] in the
case where the abstraction lattice for the element type is a chain. One may view o u r

use of A(t l i s t) = ((O(A(t)))a_). as opposed to A(t l i s t) = ((A (t)) .) . as a way of
introducing the required 'meets'.

A final note concerns the exclusion of the empty set in the definition of O(. . .) . We
believe that a more "uniform" development would result if the empty set was admitted;
in particular the correctness predicate val of the Appendix could then be defined in a
more "natural" way on the top-element. However, for lists of base types we would then
get a five-point domain rather than Wadler's four-point domain.

365

Acknowledgement
The Semantique meeting at Barra gave the impetus for writing this paper. The present
research is part of The DART-Project which is funded by The Danish Research Councils.

References
[1] S.Abramsky: Abstract Interpretation, Logical Relations and Kan Extensions, Jour-

nal of Logic and Computation 1 1 (1990), 5-40.

[2] H.-J.Bandelt: The tensorproduct of continuous lattices, Mathematische Zeitschrifl
172 (1980) 89-96.

[3] G.L.Burn, C.Hankin, S.Abramsky: Strictness analysis for higher-order functions,
Science of Computer Programming 7 (1986) 249-278.

[4] P.Cousot, R.Cousot: Systematic Design of Program Analysis Frameworks, Procedings
POPL 1979.

[5] A.B.Ferguson, R.J.M.Hughes: An Iterative Powerdomain Construction, Functional
Programming, Glasgow 1989, K.Davis and J.Hughes (eds.), Springer-Verlag (1989)
41-55.

[6] G.Grhtzer: Lattice Theory: First concepts and distributive lattices, W.H.Freeman
and Company (1971).

[7] J.Hughes: Strictness detection in non-flat domains, Proc. Programs as Data Objects,
Springer Lecture Notes in Computer Science 217 (1986) 112-135.

[8] J.Hughes: Backwards Analysis of Functional Programs, Partial Evaluation and Mixed
Computation, D.Bjr h.P.Ershov and N.D.Jones (eds.), North-Holland (1988)
187-208.

[9] N.D.Jones, S.S.Muchnick: Complexity of flow analysis, inductive assertion synthesis
and a language due to Dijkstra, Program Flow Analysis: Theory and Applications,
S.S.Muchnick and N.D.Jones (eds.), Prentice-Hall (1981).

[10] S. Mac Lane: Categories for the Working Mathematician, Springer-Verlag (1971).

[11] F.Nielson: Abstract Interpretation using Domain Theory, Ph.D.-thesis CST-31-84,
University of Edinburgh, Scotland (1984).

[12] F.Nielson: Tensor Products Generalize the Relational Data Flow Analysis Method,
Proceedings of the ~ 'th Hungarian Computer Science Conference (1985) 211-225.

[13] F.Nielson: Towards a Denotational Theory of Abstract Intepretation, Abstract Inter-
pretation of Declarative Languages, S.Abramsky and C.Hankin (eds.), Ellis Horwood
(1987) 219-245.

366

[14] F.Nielson: Two-Level Semantics and Abstract Interpretation, Theoretical Computer
Science - - Fundamental Studies 69 2 (1989) 117-242.

[15] F.Nielson, H.R.Nielson: Two-Level Functional Languages, Cambridge University
Press (to appear 1992).

[16] G.D.Plotkin: Lambda definability in the full type hierarchy, To H.B.Curry: Essays
on Combinatorial Logic, Lambda Calculus and Formalism, Academic Press (1980).

[17] P.Wadler: Strictness analysis on non-flat domains (by abstract interpretation over
finite domains), Abstract Interpretation of Declarative Languages, S.Abramsky and
C.Hankin (eds.), Ellis Horwood (1987) 266-275.

[18] P.Wadler, R.J.M.Hughes: Projections for Strictness Analysis, Proceedings Functional
Programming Languages and Computer Architecture, Springer Lecture Notes in Com-
puter Science 274 (1987), 385-407.

Appendix: Correctness

So far we have only given informal explanations of the intended meaning of the (strictness)
properties in A(t). Since the definition of the analysis presupposes a clear understanding
of these meanings we shall begin by explaining some facets of the semantics, S, and then
define a safety predicate valt.

The semantics of types, S(t), is given by the following definitions where T is the flat
cpo of truth values ('true', 'false' and _1_) and Z is the fiat cpo of integers (...,-1,0,1,...
and A-):

S(Int) = Z, S(Bool) = T, S(tl• = (S(tl)•177

S(tl-'-~t2) = (S(tl)---~S(t2))• S(tlQt~) = S(Qxt2), S(to list) = S(to) ~176

Here we note that the lifting used for product allows to distinguish between the completely
undefined value (_1_) of a product type and the value being a pair of undefined values
(up((.l_,_l_))). Similarly for functions we distinguish between the undefined function (1)
and the function (up(Av.• that always yields an undefined result when applied.

To explain the semantics of lists consider a partially ordered set (D,E) and how to
define the partially ordered set (D~176 of potentially infinite lists. Let us say that a set
of positive integers is convex if it equals {1,2,...} or if it equals {1,2,...,n} for some n>0;
we shall say that the set has supremum n exactly when it equals {1,2,.-.,n}. Assuming
that * is an element not in D we define

D ~176 = { I:K--~DU{*} I (K is a convex set of positive integers) A
(YnEg: l (n)=, =~ n is the supremum of K) }

We shall feel free to write dom(l) = K when I:K--+DU{,} and we define dom*(l) =
{iEdom(l)ll(i) # ,}. Next define

IEl' if and only if ((dom(l)Cdom(l')) A (Vnedom(l): l(n)El'(n)))

367

where l (n)El ' (n) implies that if one of l(n) or l'(n) is * then so is the other. - - To allow
for a more convenient notation for the elements of D r162 we shall write the least element
of D ~176 as _1_ and allow the usual notation involving ':', i.e. infix cons, for constructing
elements.

Turning now to the issue of correctness we shall define a safety relation

valt: S(t) x A(t) - -* {true,false}

by structural induction over types t. This technique is commonly called logical relations
[16] although the use of tensor product gives a twist:

val~t(v,a) = (a=0 ~ v=_l_)

valBool(V,a) =-- (a=0 =~ v=_l_) A (a= T =r v Etrue) A (a=F ~ v Efalse)

valt, xt~(v,a) = (a=_l_ =r v=_t_) A
val i(vl,al) ^
where (vl,v2) = dn(v)
and (a , ,a2)= dn(a)

valt,~t2(f,h) = (h=_l_ =r f=_l_) h
VvZS(ta): VaEA(tl) :

valt,(v,a) ~ valt2(dn(f)(v),dn(h)(a))

valtl| =_ (a=_l_ =r v=_l.) A
(3(al,a2)Edn(a): valt~(vl,a~) A valt2(v2,a2)
where (v~,v2) = dn(v))

val, ~i,t(vl,al) = (al=0 ~ vl=3_) ^
(a l= l => Vi6dom(vl): vl(i)#*) A
(alr162 ^ (3iedom(vl): vl(i)=.)
=> Vaedn(dn(al)): 3iedom*(vl): valt(vl(i),a))

The cases of base types, product types and function types should be rather straightfor-
ward. In the case of tensor product we use an existential quantifier to reflect tha t an
element of the tensor product is a set of possible properties where only one of them needs
to hold. The clause for lists formalises the meaning of properties of the form al= Ye. It
is here important to realise that for each property a of Y there must be some element of
the concrete lists that enjoys that property. In the case where the type t of the elements
has A(t) to be a chain (as for t one of In t , In t l i s t etc.) this is equivalent to Wadler's
requirement that the 'meet ' of all the elements in the concrete list must be described by
a. As was also observed in [5] this does not make sense in general, hence our use of a
universal quantifier.

The safety predicate valt enjoys a number of properties that are indicative of what one
would expect to hold for an arbitrary analysis. (Just think of valt(v,a) as a shorthand for
~t(v)Ea for a sufficiently well-behaved function fit, i.e. one that is strict and continuous
and maps compact elements to compact elements4.)

4Note on terminology: Our fit corresponds to abs of [3]; in an analogous way the (~ and 7 of [11, 14]
correspond to Abs and Conc, respectively, of [3]. (The use of a and 7 is motivated by the notation in
the original papers on abstract interpretation, e.g. [4].)

368

L e m m a 17 The above clauses define an admissible (or inductive) predicate

vat,: s(t) • n(t) {true,false)

that enjoys the following properties:

VaEA(t) : valt(_l_s(o,a)

VvES(t): valt(v,T Att))

VvES(t): Val,a2EA(t): valt(v,a,) A alEa2 :~ valt(v,a2)

VvES(t): Val,a2EA(t): valt(v,al) A valt(v,a2) ~ valt(V,al[qa2)
VVl,V2ES(t): VaEA(t): v ~ v 2 A valt(v2,a) ~ valt(v~,a) []

The safety predicate valt also enjoys another property that only holds because we were
careful to use lifting when interpreting • and --+. It is a key result for the analysis A
to be useful for optimizations based on strictness analysis. (In terms of the function ~t
mentioned above just suppose that it reflects _1_, i.e. /3t(v)=.l_=~v=_k.)

L e m m a 18 VvES(t): valt(v,.J_A(t)) =6 v=.l. []

The correctness of the analysis A with respect to the standard semantics S, in the sense
of the val predicate, is demonstrated in [15, Chapter 7]. One of the more interesting
ingredients in this proof is the correctness of A(case) .

L e m m a 19 (Correctness of A(case)) Whenever

valtollst--.tl (f l ,hi)

val(to x (t01ist))--*tl (f2,h2)

we also have

 atCt0,,st)-.,l(s(c se) fa A(c e) h,

(for an 'obvious' definition of S(case)) . []

P r o o f : For the proof we shall assume that

valtoust.-.tl (f l,hl)

val(to x (t01ist))~tl (f 2, h2)

val toli,t (v , a)

and that none of f~, f2, hi or h2 equals _1_. The definition of A(case)(hx)(h2) applied to
a then amounts to a case analysis upon the strictness property a.

If a=0 we know that the list v is _1_ so that S(case) (f l) (f2) applied to v gives -I-s(t,).
It is therefore natural to use the strictness property -kA(tl).

If a = l we know that the list v is infinite or partial. Hence any element v' of S(to)
may be the head of v (unless v is .1_) and the tail v" of v will still be infinite or partial.
Hence TACt~ aptly describes v' and 1 aptly describes v" so that

dn(h2)(up((r A(to),l)))

369

aptly describes dn(f2)(up((v',v"))) as well as Is(,,) (in case v is •
If a=Tr we know nothing about the list v; it may be the empty list [], its head v'

may be any element of S(t0) and its tail v" may be any list of S(t0 l i s t) . Thus

dn(hl)(T)

aptly describes dn(fl)([]) and

aptly describes dn(f2)(up((v',v"))) as well as • By using the least upper bound we
obtain a strictness property that aptly describes both possibilities.

Finally consider the case where a=Yr and Yg r Te; we then know that the list v
cannot be []. It therefore might be natural to use the strictness property

since indeed the head v' of the list v may be any element of S(t0). However, the snag
is that the tail v" cannot necessarily be any list of S(t0 l i s t) because there are certain
constraints from Y that may still have to be satisfied. Thus while dn(h~)(up((T,Tr
would not be incorrect we shall be able to do better.

Consider the situation where v i s a finite list; since v is not • it will be of the form
v=v':v". We then have a mapping

3 : Y ~ dom*(v)

such that valto(V(3(a)),a) holds for all aEY. We now have a number of possibilities
concerning

Y' = {hE Y[l(a)=l}

For each of these we shall argue that

ViE Y': valto(V',a)

vah0u.t(v",(Ye

The first of these is immediate and gives

valto (v',N Y')

using Lemma 17 where we set ~[~=T. The second of these is immediate if Y@ Y' = {T};
so assume that YOY'#{T} and note that RC(Y') then is a proper subset of Y. For each
aE Y\RC(Y') we have aC_r' and hence 3(a)r Thus

3'(a) = 3(a)-i

defines a mapping

t : (Y\RC(Y')) ~ dom*(v")

such that valto(v"(t(a)),a) holds for all aEY\RC(Y') . This mapping may be extended
(in at least one way) to a mapping

370

3" : YO Y' --~ dom*(v ')

such that val,o(V'(y'(a)),a) holds for all aeYO Y'.
Returning to each choice of Y'C_ Y we now have a contribution

Y',(Ye

and by taking the least upper bound of all of these we aptly describe all possibilities. Ac-
tually we may assume that Y' is nonempty, or Y 'ST, as nO=n{T} and Y~O= YO{T},
and therefore no contributions will be missed. Furthermore one may assume that Y' is
right-closed as n Yt=r3RC(Y') and YO Y'= YORC(Y') , and therefore no contributions
will be missed. In summary we only need to consider those Y'EO(A(to)) such that
Y~C Y. []

