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A b s t r a c t  

The type inference problem for partial types, introduced by Thatte [15], is the problem 
of deducing types under a subtype relation with a largest element ft and closed under 
the usual antimonotonic rule for function types. We show that this problem is decidable 
by reducing it to a satisfiability problem for type expressions over this partial order and 
giving an algorithm for the satisfiability problem. The satisfiability problem is harder 
than the one conventionally given because comparable types may have radically different 
shapes. 

1 I n t r o d u c t i o n  

Statically-typed languages are desirable for many reasons, but they are often more restric- 
tive than dynamically-typed languages. In particular, it is desirable to Mlow strongly- 
typed languages to have "holes" in the type structure, so that portions of the program 
that are not fully understood may be written using dynamic typing. There have been 
several proposals for creating such holes, such as [5, 15, 17]. Typically, one gives the 
result of such an untyped computation a special type, untyped. Such a value ca~l be 
passed as an ordinary value, but is not manipulable except by a polymorphic procedure, 
such as p r i n t  [17]. Thatte [15] called this partial type inference. 

The addition of a type untyped allows several different kinds of flexibility. It allows 
portions of a program to escape the scrutiny of the type-checker [17]; it allows for hetero- 
geneous lists and persistent data [15]; and it can also be used to facilitate binding-time 
analysis or analysis of type errors [5]. It also serves as a basis for dealing with the "don't 
care" types for records in [14]. 

Here we consider the problem of type inference for a language with a type untyped. 
In [15], Thatte proposed a type system for dealing with this problem. His idea was 
to treat this as a subtyping problem, with the inequalities between types generated by 
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t < I2 for all types t; we follow That te  by using [2 to denote the type untyped.  By well- 
known reductions [18, 16], the type inference problem for" untyped lambda-terms reduces 
to determining the satisfiability of inequalities over this system. That te  presented the 
system and showed how to determine the satisfiability of single inequalities. Here we 
show how to solve general sets of inequalities, thus solving the partial type inference 
problem. 

2 T h e  F o r m a l  S y s t e m  

2.1 T y p e s  

The set of types is defined by the following grammar: 

(type) ::= [2 I (type) ~ (type) 

Note that  types have no variables. It is easy to extend these results to allow additional 
base types [16]. 

The inclusions between types are defined by the rules: 

t < [ 2  

s'  < s t <_t' 

s ---~ l < st ---~ t ' 

where s, t, etc., range over types. We will refer to the second rule as the cougruence  rule 
for arrow types. 

Thus, typical inclusions are [2 ---, [2 < [2, [2 ---. [2 < ([2 ~ [2) ---* [2, etc. 

While our coercions are not atomic in the sense of [13], they have the property that  
for any t and u there is at most one proof of t < u, and this proof follows the structure 
of u. This makes it easier to reason about these inequalities. For example, we do not 
include the reflexive or transitive rules, because these are admissible: 

T h e o r e m  1 T h e  relat ion < is a part ia l  order. 

Proof :  It is easy to show that  for all types t, t < t is provable from these rules. The 
base case is [2 < [2, and the rest follows by induction on the size of t. 

For the transitive property, assume t < t '  and t '  < t"  are provable. We need to show 
that t < t"  is provable as well. We proceed by induction on the structure o f t " .  If t! I -- [2, 
then t < t". If t '  = [2, then t"  = [2, so t < t" .  Otherwise all of t, g, and t"  are arrow 
types, and both proofs must have the congruence rule as their last step. Then the result 
follows by induction on the components. 

For the asymmetry property, assume that  t _< g and t '  _< t. If either t or t '  is [2, then 
the other must be [2 also. If neither is [2, then both proofs must have the congruence 
rule as their last step, and the result follows by induction, ra 
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2.2 P r o g r a m s  

Programs are ordinary untyped lambda-terms with typed constants. Polymorphic le t  
can be treated by using the equivalence le t  x = M in N as N[M/z] . .  We use the usual 
typing rules plus the subsumption rule 

A b  M : t  t < t  t 

A b  M : t  ~ 

The details are routine. 

This system types terms which are not typable in the simply-typed lambda-calculus 
without coercions. For example, consider A f . ( f K ( f I ) ) ,  where K and I are the usual 
combinators. This is not typable in the ordinary calculus, since K and I have different 
types, but  it is typable under partial typing: assign f the type f~ --o f~ --, f~. both the 
K and I can be coerced to type f~, and the result ( f I ) ,  of type ~2 --* f~, can be coerced 
to ~ to form the second argument of the first f .  Therefore the entire term has type 

Similarly, some self-application is possible: (Az.xx) has type (f~ --* t) ---, t for all t, 
since the final z can be coerced to f~. 

However, not all terms are typable in this system. For example: 

P r o p o s i t i o n  1 ( A z . z z ) ( A z . z z )  is not typable in this system. 

Proof: The types of (Ax.xz) are those types which are bounded below by a type of 
the form (tl -~ t2) ~ t~ where t l  --+ t2 _< ~1. In order to type (Az.zz)(Az.xz) ,  we need to 
find two such types, one for each occurrence of (Ax.xz) ,  such that  the type of the second 
coerces to the argument type of the first. By a standard argument, we need consider only 
the case in which the types are actually of the lower-bound types; all the coercion can 
be incorporated into the coercion of the argument. T h a t  is, we need to find two types of 
the form (tl -* t2) --~ t2 and (ul --~ u2) --o u2, where (ul -+ u2) ~ u2 < (tl ~ t2). After 
splitting the last equation, we are left with four inequalities to solve: 

t l - -+ t2  < t l  
Ul --'+ ~2 _< Ul 

t l  <Ul - -Ou2  
u~. _< t2 

From these a short deduction leads to ul --~ u2 < ul _ ul --+ u2. Since < is a partial 
order, we have ul = ul --* u2, which has no solution in our system, rn 

We will use this as a running example in the paper. It can be shown that  every term 
typable in this system is strongly normalizing; we hope to present this result elsewhere. 

2.3 S e m a n t i c s  

We can give semantics for these rules in the fashion of [9]: the rules are obviously 
sound for either the simple or the F-semantics, interpreting ~ as the entire set. A 
more interesting semantics is given via PERs: Let D be a model of the untyped lambda 
calculus, and define a type to be any partial equivalence relation ( that  is, a symmetric, 
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transitive, but  not necessarily reflexive relation) on D, with type inclusion given by set- 
theoretic inclusion between the PERs. Let f2 denote the P E l t  D x D. Then the rules 
for inclusion and type inference are sound. This model has the property that  elements of 
type  f2 are indistinguishable; this nicely mimics the idea that  elements of type f2 are not 
manipulable by any ordinary functions. The completeness of these rules (in the sense of 
[9]) is considered in [13]. 

3 T h e  P r o b l e m  

We begin by introducing type expressions, which are defined by 

{type exp ) : :=  (type variable) [gt [{type exp) --+ {type exp) 

A constraint is a judgement of the form s < t, where s and t are type expressions. We 
say that  a set E of constraints is satisfiable iff there is some substitution ~r, mapping type 
variables to types, such that for each constraint s < t in the set, s~r < t~r is provable. We 
write ~rv for the value of cr on the variable v, and we write Ecr for the effect of applying 

to some composite object (type, constraint, set of constraints) E.  

It is well-known that  the type inference problem reduces to the problem of satisfying 
a set of constraints between type expressions. For type inference without subtyping, this 
reduction is folkloric (e.g. [3, 2, 18]), and.is implicit in [8, 11]. For the case of subtyping, 
the reduction is given in detail in [13]. 

Thc solution of the satisfiability problem depends on the details of the definition of 
the ordering <. In the case where the ordering is generated by the congruence rule alone, 
a solution can be obtained by observing that  comparable types must have the same shape 
[12, 13]; see also [4]. 

The satisfiability problem for the system considered here is harder, because it no 
longer has the same-shape property. Indeed, in constrast to ordinary unification, one 
may have satisfiable constraints v < t where v occurs in t. For example, v _< v ---* f2 is 
satisfiable, since ~2 ---* f2 < (f2 --, ~2) ---* f2. However, there appears to be no simple rule 
characterizing which such occurrences are solvable. 

4 T h e  A l g o r i t h m  

The algorithm has three main steps. The first step puts the constraints in a s tandard 
form, by introducing a new variable for every interior node of a tree in the original 
constraints. The  second step calculates lower and upper bounds for each variable. The 
third step generates a satisfying assignment while propagating necessary information and 
doing a check for circularity. The steps arc divided into substeps. 

S t e p  1: Convert every constraint t < t ~ to constraints of the form vt ---* v2 < w or 
w < vl ~ v2 or f~ < v or v < w, where the v and w's are type variables. To do this we 
proceed as follows: 

S t e p  l a :  First, if any constraint has one side that  is a term tl  ---* t2 where either 
t l  or t2 is not a variable, replace each non-variable ti by a variable vi and add two new 
constraints vi < ti and ti < vi. This transformation preserves satisfiability and always 
decreases the number of interior nodes in the set of constraints. 
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S t e p  l b :  When this step is done, we are left with constraints where each side is 
either a variable v, the constant ~,  or a type expression Vl --+ v2. These can be cleaned 
up as follows: 

�9 Replace v --~ w < v'  --+ w' by v'  <_ v and w <_ w'. 

�9 Replace t _< f~ by nothing. Such a constraint is always provable. 

�9 If  any constraint is of the form ~2 <_ vl --* v2, then terminate  and report  failure, as 
this constraint is not satisfiable. 

Note that  there is no substi tut ion during this phase of the algorithm; there is an 
implicit  substi tution in step la ,  but  these substi tutions are bounded by the size of the 
problem. 

S t e p  2: Let A denote the set of arrows v --* w in the set of constraints at  the end 
of the Step 1. For each variable appearing in the constraints, we will keep track of the 
those arrows in A which are lower and upper  bounds for tha t  variable. We will also do 
this for ~2. More precisely, let v be a variable or f/. Define Lv and U~ to be the smallest 
subsets of A such that:  

1. I f  v <_ V 1 --+ ~32 is among the constraints, then (V 1 --'+ ~32) E Vv.  

2. If  vl ~ w. < v is among thc constraints, then (vl ~ v2) E L v .  

3. If  v < w is among the constraints, then Uw CUv and Lv C Lw. 

4. If  vl "-* v2 E Lw and wl --* w2 E U~o, then 

L.~ C Lw= 

These sets can be built by a simple closure operation. Since each Lv and Uv is a subset 
of the finite set A, this closure process must terminate in finite time. Furthermore, it 
is clear tha t  for any satisfying assignment a, (Lv)a and (Uv)~r will be sets of lower and 
upper  bounds for v. Therefore, if at the end of this step Uf~ is non-empty, then terminate 
and report  failure, since ~2 is not less than or equal to any arrow type. 

From now on, we discard the constraints and work entirely with the the bound sets 
Lv and U.. 

For our example of ()~x.zx)(Az.xx), Step 1 is trivial, since the constraints are already 
of the desired form. For Step 2, "the first two closure conditions give: 

L U 
t l  t l  -"* t2  Ul  ~ U2 

'Ul ~1 --+ u2  
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All the other sets are empty. I terat ing condition 4 twice gives: 

L U 

61 61 ----+ 62 Ul ~ U 2 

~2 ~ 'U2 

Ul 'Ul ~ U2 Ul ~ '~2 

which satisfies all the closure conditions. 

S t e p  3: In this section of the algori thm, we develop the satisfying assignment a.  As 
we do this, we will generate a new variable for each interior node of the assignment, and 
for each such variable v we will generate sets of  bounds L~ and Uv; these bounds will 
also be subsets of A. 

S t e p  3a: Choose a variable v. I f  there are no more variables to process, return the 
substi tut ion ~. If  Uv is empty, then set Cry ---- ~2 and go to step 3a. 

S t e p  3b:  (Occurs Check). Consider the set { w [ v occurs in ~w }. This  is the set of 
variables above v in the tree described by ~r. If, for any such w, L~ -- Lv and Uw = Uv, 
then terminate and report  failure. 

S t e p  3c: If v passes the occurs check, proceed as follows: Since v is bounded above 
by an arrow, it must also be an arrow. Generate  two new variables vl and v2, and set 

= ~[v := vl -~ v2]. 

We must  next definc the bound sets for vl and v2. We do this by looking, at  the 
bound sets for v. For example,  if (a ---* b) E Uv, then we must have ~z, <_ avl for any 
satisfying assignment a. Therefore La C Lo~ for each (a ~ b) E Uv. Therefore we set 
Lt,! = ~ {  La [ (a ---* b) E Uv ). We proceed similarly for each of the four sets: 

Lv, = U { L a  [(a---+b) c Uv } 
v~, = U{  u .  I (~ - ~  b) e L~ } 
L ~  = U{ Lb I (~ - ~  b) c L~ } 
U~ = I.J{ gb I~a---*b) c U,,} 

Then go to step 3a. 

This completes the description of the algorithm. 

For our example, we can assign f~ to any variable except tl  or ul .  If  we select ul ,  
then we assign a(ul)  = u11 ~ u12. Calculating the bound sets for uH and u12 gives 

tl 

Ul 

~11 

B12 

L U 

~1 "-+ 62 Ul ~ U2 

U2 ~ U2 

Ul ll~ U2 Ul ~ B2 

"Ul ~ U2 ~1 ~ U2 

0 0 

When we select uH for expansion, we discover tha t  its bounds sets are the same as 
those of ul,  so the occurs check fails and the algori thm reports  tha t  the term is untypable,  
as desired. 
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5 P r o o f  of the  Ma in  T h e o r e m  

We must show two things: if the algorithm reports failure, then there is no satisfy- 
ing solution; and if the algorithm reports success, then all the original constraints are 
satisfied. 

L e m m a  1 For any satisfying assignmen~ or, L, cr and U,a will be sets of lower and upper 
bounds for v. 

Proof: Easy. [] 

L e m m a  2 If  the algorithm reports failure, then there is no satisfying solution. 

Proof: The algorithm can report  failure in two ways: either by noting that  Ua is 
nonempty, or by failure of the occurs check. If Un is nonempty, then the constraints 
imply that  ~2 is less than some arrow type, which is impossible. So the constraints are 
unsatisfiable. 

Next, consider the occurs check. Let w be a variable such that  v occurs in crw. For 
every variable z along the path from w to v, Uz r @, since otherwise the path would 
terminate at z. 

The path from w to v is determined entirely by Lw and Uw, since each bounds pair 
(Lz, Us) along the path is determined by the preceding bounds pair. Since Lv = Lw and 
Uv = Uw, if the occurs check were omitted, then the algorithm would loop by duplicating 
this path indefinitely. Every node between w and v must be an arrow node, and this 
path would be replicated infinitely. 

Now, recall that  if a type has an upper bound which is an arrow type, then it must 
be an arrow type itself. In the algorithm, a variable is assigned an arrow type only if it 
has an arrow upper bound. Hence, if the algorithm assigns an arrow type to a variable, 
that  variable must be all arrow type in any satisfying assignment. Therefore, if there is 
a path from w to v in the generated assignment ~r there must be a path from w to v in 
any satisfying assignment. 

If the upper and lower bounds for v are the same as those for w, then the algorithm is 
guaranteed (in the absence of the occurs check) to loop by duplicating this path infinitely. 
But since every satisfying assignment must have an arrow type at every node along this 
path, we conclude that  every satisfying assignment must have an infinite repetition of 
this path. Hence there is no (finite) satisfying assignment. [] 

We need the following lemlna: 

L e m m a  3 If  L~ C Lw and U~ C U~, then av < a,o. 

Proof: Define a relation ___ on variables by v E w iff Lv C Lw and U,o _ U.. Then 
the lemma can be rephrased as v E w =r Cry < aw. We proceed by induction on the size 
of ~v and ~w. 

If 0r~ - f~, then the conclusion holds trivially. If o% - ~,  then we must have had 
U~ = @. But v __ w implies Uw C_ U~, so Uw = 0 and gv = f~ as well. 
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The remaining case is that  both 0-v and a,o are compound, that  is, 

O'IJ = 0 - v t  --.o. O'It 2 

0"w ~- 0"~I ~ GW2 

However, in this case, if we check the set-theoretic arithmetic in Step 3c, we discover that  
v if_ w implies that wl ~ vx and v2 if_ w2. For example, since v K w, we have L~ C L~, 
SO 

U~ - U { U ~  I (c--* d) e L,, } C_ [..J{ Ur I (c ~ d) EL, , , }=U,o ,  

The other inclusions follow similarly. 

Hence, by induction, o-w, < ~rv~ and 0-o~ < 0"w2. Therefore 0"v < o'to. [] 

T h e o r e m  2 Given a set of constraints E, the algorithm always terminates, and it r$- 
turns a substitution ~ iff E is satisfiable. 

Proof: Tile algorithm always terminates, since the occurs dmck prevents any branch of 
the solution from being longer than 2 IA[+I. We have already shown that  if the algori thm 
reports failure, then the constraints are unsatisfiable. We can now complete the proof  of 
the theoreln by showing 'that 0- satisfies each of the constraints at the end of step 3. 

If the constraint is of the form v < w, Step 2 guarantees that  Lv C Lw and Uw CUv. 
Hence c~ satisfies tile constraint. 

If the constraint is of the form ~ < v, then Uv is empty (otherwise we would have 
failed), and the algorithm assigns c% = f2, which satisfies the constraint. 

If the constraint is of the form Vl --~ v2 < w, then there are two cases: either Uw 
is empty or not. If U~, is ernpty, then aw = f2, and the constraint is satisfied. If Uw 
is nonempty, then we have ~rto = aw, --+ aw~. We claim ~hat Lwz C L ~ ,  Uv, _C Uw,, 
L, 2 C L~o~, and U~o~ C_ Uw. 

Let us do the lower-bound cases of the claim. To show Lw~ C Lye, we recall tha t  
Lw, = [..J{ L ,  [ (a ---+ b) E U~o }. S.o choose (a ~ b) e U~,. We have (vl ---* v2) e L~, and 
(a ---* b) E Uw, so by closure condition 4 in Step 2, L~ C_ Lv,. So Lv~ is an upper bound 
for all the L, .  Lwa is their least upper bound, so Lw, C Lye. To show Lv~ c Lw2, we 
observe that  vt --+ v2 E L~, and Lw~ = [..J{ Lb [ (a ---* b) e L~, }. The uppei'-bound cases 
follow symmetrically. 

We can now apply lemma 3 to deduce that a~,~ < av,, 0-~2 < ~r~,2, and therefore the 
constraint is satisfied. 

If the constraint is of the form w _< vl -+ v2, then Uto is nonempty, so we have 
aw = 0-~o, ~ a~o2. The result then follows by an argument like the preceding one. [] 

The algorithm runs in exponential space, since it has a number of states bounded by 
the number of (L, U) pairs, which is 2 IA[+I. If one builds a cache of these states, then 
the algorithm requires only exponential time. 

6 R e l a t e d  W o r k  

In addition to the applications cited in the introduction, there are a number of related 
topics. Gomard [5] used a variant of this system to do binding-type analysis, in which 
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untyped represented an untyped run-time value. Henglein [6] gives an almost-linear-time 
algorithm for doing this analysis. We do not currently understand the gap between Hen- 
glein's algorithm and our exponential algorithm, but there appear to be some essential 
differences [7]. 

This work is somewhat related to the work on dynamics in ML [10]. Dynamic types 
are oriented towards persistent objects, which have some type that is part of its repre- 
sentation; the hard part about such a system is reading the object back into the system 
within something close to the ML type system. This is rather different from our approada. 

Amadio and Cardelli have solved a related but different problem. They consider a 
type system with both a bottom and top element, so that _L < t < T for all types, 
and with recursive types. In [1] they solve the problem of validity (truth under all 
substitutions) for recursive type expressions in this system. It would be interesting to 
see if this result could be extended to satisfiability, as this is the natural problem arising 
from type inference. 

7 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

We have shown the decidability of the satisfiability problem, and therefore the type 
inference problem, for Thatte's system of partial types. We have formulated the problem 
in the simplest way possible in order to facilitate theoretical study; the next step is to 
extend the system with enough features to make it practical. It should be easy to extend 
it to allow a bottom element, as in [1], or additionM base types under an arbitrary partial 
order, as in [16]. Product types should also pose no difficulties. Polymorphic let can be 
included by translating let x = M in N as N[M/x], but a more efficient method would 
be preferable. We conjecture that this system can also be used to solve the system of 
flags in [14]. A more difficult problem is to extend it to handle recursive types, as in 
[1]. Also it would be desirable to have some lower bounds on the complexity of these 
problems. 
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