
Type Inference for Partial Types is Decidable

Pat r i ck M. O 'Kee fe Mi tchel l Wand*

ICAD, Inc.
201 Broadway

Cambr idge , M A 02139
pmo@icad . com

College of C o m p u t e r Science
N o r t h e a s t e r n Unive r s i ty

360 H u n t i n g t o n Avenue , 161CN
Bos ton , M A 02115, USA

w a n d @ c o r w i n . c c s . n o r t h e a s t e r n . e d u

A b s t r a c t

The type inference problem for partial types, introduced by Thatte [15], is the problem
of deducing types under a subtype relation with a largest element ft and closed under
the usual antimonotonic rule for function types. We show that this problem is decidable
by reducing it to a satisfiability problem for type expressions over this partial order and
giving an algorithm for the satisfiability problem. The satisfiability problem is harder
than the one conventionally given because comparable types may have radically different
shapes.

1 I n t r o d u c t i o n

Statically-typed languages are desirable for many reasons, but they are often more restric-
tive than dynamically-typed languages. In particular, it is desirable to Mlow strongly-
typed languages to have "holes" in the type structure, so that portions of the program
that are not fully understood may be written using dynamic typing. There have been
several proposals for creating such holes, such as [5, 15, 17]. Typically, one gives the
result of such an untyped computation a special type, untyped. Such a value ca~l be
passed as an ordinary value, but is not manipulable except by a polymorphic procedure,
such as p r i n t [17]. Thatte [15] called this partial type inference.

The addition of a type untyped allows several different kinds of flexibility. It allows
portions of a program to escape the scrutiny of the type-checker [17]; it allows for hetero-
geneous lists and persistent data [15]; and it can also be used to facilitate binding-time
analysis or analysis of type errors [5]. It also serves as a basis for dealing with the "don't
care" types for records in [14].

Here we consider the problem of type inference for a language with a type untyped.
In [15], Thatte proposed a type system for dealing with this problem. His idea was
to treat this as a subtyping problem, with the inequalities between types generated by

*V~brk supported by the National Science Foundation and DARPA under grants CCR-9002253 and
GCR-9014603.

409

t < I2 for all types t; we follow That te by using [2 to denote the type untyped. By well-
known reductions [18, 16], the type inference problem for" untyped lambda-terms reduces
to determining the satisfiability of inequalities over this system. That te presented the
system and showed how to determine the satisfiability of single inequalities. Here we
show how to solve general sets of inequalities, thus solving the partial type inference
problem.

2 T h e F o r m a l S y s t e m

2.1 T y p e s

The set of types is defined by the following grammar:

(type) ::= [2 I (type) ~ (type)

Note that types have no variables. It is easy to extend these results to allow additional
base types [16].

The inclusions between types are defined by the rules:

t < [2

s' < s t <_t'

s ---~ l < st ---~ t '

where s, t, etc., range over types. We will refer to the second rule as the cougruence rule
for arrow types.

Thus, typical inclusions are [2 ---, [2 < [2, [2 ---. [2 < ([2 ~ [2) ---* [2, etc.

While our coercions are not atomic in the sense of [13], they have the property that
for any t and u there is at most one proof of t < u, and this proof follows the structure
of u. This makes it easier to reason about these inequalities. For example, we do not
include the reflexive or transitive rules, because these are admissible:

T h e o r e m 1 T h e relat ion < is a part ia l order.

Proof : It is easy to show that for all types t, t < t is provable from these rules. The
base case is [2 < [2, and the rest follows by induction on the size of t.

For the transitive property, assume t < t ' and t ' < t" are provable. We need to show
that t < t" is provable as well. We proceed by induction on the structure o f t " . If t! I -- [2,
then t < t". If t ' = [2, then t" = [2, so t < t" . Otherwise all of t, g, and t" are arrow
types, and both proofs must have the congruence rule as their last step. Then the result
follows by induction on the components.

For the asymmetry property, assume that t _< g and t ' _< t. If either t or t ' is [2, then
the other must be [2 also. If neither is [2, then both proofs must have the congruence
rule as their last step, and the result follows by induction, ra

410

2.2 P r o g r a m s

Programs are ordinary untyped lambda-terms with typed constants. Polymorphic le t
can be treated by using the equivalence le t x = M in N as N[M/z] . . We use the usual
typing rules plus the subsumption rule

A b M : t t < t t

A b M : t ~

The details are routine.

This system types terms which are not typable in the simply-typed lambda-calculus
without coercions. For example, consider A f . (f K (f I)) , where K and I are the usual
combinators. This is not typable in the ordinary calculus, since K and I have different
types, but it is typable under partial typing: assign f the type f~ --o f~ --, f~. both the
K and I can be coerced to type f~, and the result (f I) , of type ~2 --* f~, can be coerced
to ~ to form the second argument of the first f . Therefore the entire term has type

Similarly, some self-application is possible: (Az.xx) has type (f~ --* t) ---, t for all t,
since the final z can be coerced to f~.

However, not all terms are typable in this system. For example:

P r o p o s i t i o n 1 (A z . z z) (A z . z z) is not typable in this system.

Proof: The types of (Ax.xz) are those types which are bounded below by a type of
the form (tl -~ t2) ~ t~ where t l --+ t2 _< ~1. In order to type (Az.zz)(Az.xz) , we need to
find two such types, one for each occurrence of (Ax.xz) , such that the type of the second
coerces to the argument type of the first. By a standard argument, we need consider only
the case in which the types are actually of the lower-bound types; all the coercion can
be incorporated into the coercion of the argument. T h a t is, we need to find two types of
the form (tl -* t2) --~ t2 and (ul --~ u2) --o u2, where (ul -+ u2) ~ u2 < (tl ~ t2). After
splitting the last equation, we are left with four inequalities to solve:

t l - -+ t2 < t l
Ul --'+ ~2 _< Ul

t l <Ul - -Ou2
u~. _< t2

From these a short deduction leads to ul --~ u2 < ul _ ul --+ u2. Since < is a partial
order, we have ul = ul --* u2, which has no solution in our system, rn

We will use this as a running example in the paper. It can be shown that every term
typable in this system is strongly normalizing; we hope to present this result elsewhere.

2.3 S e m a n t i c s

We can give semantics for these rules in the fashion of [9]: the rules are obviously
sound for either the simple or the F-semantics, interpreting ~ as the entire set. A
more interesting semantics is given via PERs: Let D be a model of the untyped lambda
calculus, and define a type to be any partial equivalence relation (that is, a symmetric,

411

transitive, but not necessarily reflexive relation) on D, with type inclusion given by set-
theoretic inclusion between the PERs. Let f2 denote the P E l t D x D. Then the rules
for inclusion and type inference are sound. This model has the property that elements of
type f2 are indistinguishable; this nicely mimics the idea that elements of type f2 are not
manipulable by any ordinary functions. The completeness of these rules (in the sense of
[9]) is considered in [13].

3 T h e P r o b l e m

We begin by introducing type expressions, which are defined by

{type exp) : := (type variable) [gt [{type exp) --+ {type exp)

A constraint is a judgement of the form s < t, where s and t are type expressions. We
say that a set E of constraints is satisfiable iff there is some substitution ~r, mapping type
variables to types, such that for each constraint s < t in the set, s~r < t~r is provable. We
write ~rv for the value of cr on the variable v, and we write Ecr for the effect of applying

to some composite object (type, constraint, set of constraints) E.

It is well-known that the type inference problem reduces to the problem of satisfying
a set of constraints between type expressions. For type inference without subtyping, this
reduction is folkloric (e.g. [3, 2, 18]), and.is implicit in [8, 11]. For the case of subtyping,
the reduction is given in detail in [13].

Thc solution of the satisfiability problem depends on the details of the definition of
the ordering <. In the case where the ordering is generated by the congruence rule alone,
a solution can be obtained by observing that comparable types must have the same shape
[12, 13]; see also [4].

The satisfiability problem for the system considered here is harder, because it no
longer has the same-shape property. Indeed, in constrast to ordinary unification, one
may have satisfiable constraints v < t where v occurs in t. For example, v _< v ---* f2 is
satisfiable, since ~2 ---* f2 < (f2 --, ~2) ---* f2. However, there appears to be no simple rule
characterizing which such occurrences are solvable.

4 T h e A l g o r i t h m

The algorithm has three main steps. The first step puts the constraints in a s tandard
form, by introducing a new variable for every interior node of a tree in the original
constraints. The second step calculates lower and upper bounds for each variable. The
third step generates a satisfying assignment while propagating necessary information and
doing a check for circularity. The steps arc divided into substeps.

S t e p 1: Convert every constraint t < t ~ to constraints of the form vt ---* v2 < w or
w < vl ~ v2 or f~ < v or v < w, where the v and w's are type variables. To do this we
proceed as follows:

S t e p l a : First, if any constraint has one side that is a term tl ---* t2 where either
t l or t2 is not a variable, replace each non-variable ti by a variable vi and add two new
constraints vi < ti and ti < vi. This transformation preserves satisfiability and always
decreases the number of interior nodes in the set of constraints.

412

S t e p l b : When this step is done, we are left with constraints where each side is
either a variable v, the constant ~, or a type expression Vl --+ v2. These can be cleaned
up as follows:

�9 Replace v --~ w < v' --+ w' by v' <_ v and w <_ w'.

�9 Replace t _< f~ by nothing. Such a constraint is always provable.

�9 If any constraint is of the form ~2 <_ vl --* v2, then terminate and report failure, as
this constraint is not satisfiable.

Note that there is no substi tut ion during this phase of the algorithm; there is an
implicit substi tution in step la , but these substi tutions are bounded by the size of the
problem.

S t e p 2: Let A denote the set of arrows v --* w in the set of constraints at the end
of the Step 1. For each variable appearing in the constraints, we will keep track of the
those arrows in A which are lower and upper bounds for tha t variable. We will also do
this for ~2. More precisely, let v be a variable or f/. Define Lv and U~ to be the smallest
subsets of A such that:

1. I f v <_ V 1 --+ ~32 is among the constraints, then (V 1 --'+ ~32) E Vv.

2. If vl ~ w. < v is among thc constraints, then (vl ~ v2) E L v .

3. If v < w is among the constraints, then Uw CUv and Lv C Lw.

4. If vl "-* v2 E Lw and wl --* w2 E U~o, then

L.~ C Lw=

These sets can be built by a simple closure operation. Since each Lv and Uv is a subset
of the finite set A, this closure process must terminate in finite time. Furthermore, it
is clear tha t for any satisfying assignment a, (Lv)a and (Uv)~r will be sets of lower and
upper bounds for v. Therefore, if at the end of this step Uf~ is non-empty, then terminate
and report failure, since ~2 is not less than or equal to any arrow type.

From now on, we discard the constraints and work entirely with the the bound sets
Lv and U..

For our example of ()~x.zx)(Az.xx), Step 1 is trivial, since the constraints are already
of the desired form. For Step 2, "the first two closure conditions give:

L U
t l t l -"* t2 Ul ~ U2

'Ul ~1 --+ u2

413

All the other sets are empty. I terat ing condition 4 twice gives:

L U

61 61 ----+ 62 Ul ~ U 2

~2 ~ 'U2

Ul 'Ul ~ U2 Ul ~ '~2

which satisfies all the closure conditions.

S t e p 3: In this section of the algori thm, we develop the satisfying assignment a. As
we do this, we will generate a new variable for each interior node of the assignment, and
for each such variable v we will generate sets of bounds L~ and Uv; these bounds will
also be subsets of A.

S t e p 3a: Choose a variable v. I f there are no more variables to process, return the
substi tut ion ~. If Uv is empty, then set Cry ---- ~2 and go to step 3a.

S t e p 3b: (Occurs Check). Consider the set { w [v occurs in ~w }. This is the set of
variables above v in the tree described by ~r. If, for any such w, L~ -- Lv and Uw = Uv,
then terminate and report failure.

S t e p 3c: If v passes the occurs check, proceed as follows: Since v is bounded above
by an arrow, it must also be an arrow. Generate two new variables vl and v2, and set

= ~[v := vl -~ v2].

We must next definc the bound sets for vl and v2. We do this by looking, at the
bound sets for v. For example, if (a ---* b) E Uv, then we must have ~z, <_ avl for any
satisfying assignment a. Therefore La C Lo~ for each (a ~ b) E Uv. Therefore we set
Lt,! = ~ { La [(a ---* b) E Uv). We proceed similarly for each of the four sets:

Lv, = U { L a [(a---+b) c Uv }
v~, = U{ u . I (~ - ~ b) e L~ }
L ~ = U{ Lb I (~ - ~ b) c L~ }
U~ = I.J{ gb I~a---*b) c U,,}

Then go to step 3a.

This completes the description of the algorithm.

For our example, we can assign f~ to any variable except tl or ul . If we select ul ,
then we assign a(ul) = u11 ~ u12. Calculating the bound sets for uH and u12 gives

tl

Ul

~11

B12

L U

~1 "-+ 62 Ul ~ U2

U2 ~ U2

Ul ll~ U2 Ul ~ B2

"Ul ~ U2 ~1 ~ U2

0 0

When we select uH for expansion, we discover tha t its bounds sets are the same as
those of ul, so the occurs check fails and the algori thm reports tha t the term is untypable,
as desired.

414

5 P r o o f of the Ma in T h e o r e m

We must show two things: if the algorithm reports failure, then there is no satisfy-
ing solution; and if the algorithm reports success, then all the original constraints are
satisfied.

L e m m a 1 For any satisfying assignmen~ or, L, cr and U,a will be sets of lower and upper
bounds for v.

Proof: Easy. []

L e m m a 2 If the algorithm reports failure, then there is no satisfying solution.

Proof: The algorithm can report failure in two ways: either by noting that Ua is
nonempty, or by failure of the occurs check. If Un is nonempty, then the constraints
imply that ~2 is less than some arrow type, which is impossible. So the constraints are
unsatisfiable.

Next, consider the occurs check. Let w be a variable such that v occurs in crw. For
every variable z along the path from w to v, Uz r @, since otherwise the path would
terminate at z.

The path from w to v is determined entirely by Lw and Uw, since each bounds pair
(Lz, Us) along the path is determined by the preceding bounds pair. Since Lv = Lw and
Uv = Uw, if the occurs check were omitted, then the algorithm would loop by duplicating
this path indefinitely. Every node between w and v must be an arrow node, and this
path would be replicated infinitely.

Now, recall that if a type has an upper bound which is an arrow type, then it must
be an arrow type itself. In the algorithm, a variable is assigned an arrow type only if it
has an arrow upper bound. Hence, if the algorithm assigns an arrow type to a variable,
that variable must be all arrow type in any satisfying assignment. Therefore, if there is
a path from w to v in the generated assignment ~r there must be a path from w to v in
any satisfying assignment.

If the upper and lower bounds for v are the same as those for w, then the algorithm is
guaranteed (in the absence of the occurs check) to loop by duplicating this path infinitely.
But since every satisfying assignment must have an arrow type at every node along this
path, we conclude that every satisfying assignment must have an infinite repetition of
this path. Hence there is no (finite) satisfying assignment. []

We need the following lemlna:

L e m m a 3 If L~ C Lw and U~ C U~, then av < a,o.

Proof: Define a relation ___ on variables by v E w iff Lv C Lw and U,o _ U.. Then
the lemma can be rephrased as v E w =r Cry < aw. We proceed by induction on the size
of ~v and ~w.

If 0r~ - f~, then the conclusion holds trivially. If o% - ~, then we must have had
U~ = @. But v __ w implies Uw C_ U~, so Uw = 0 and gv = f~ as well.

415

The remaining case is that both 0-v and a,o are compound, that is,

O'IJ = 0 - v t --.o. O'It 2

0"w ~- 0"~I ~ GW2

However, in this case, if we check the set-theoretic arithmetic in Step 3c, we discover that
v if_ w implies that wl ~ vx and v2 if_ w2. For example, since v K w, we have L~ C L~,
SO

U~ - U { U ~ I (c--* d) e L,, } C_ [..J{ Ur I (c ~ d) EL, , , }=U,o ,

The other inclusions follow similarly.

Hence, by induction, o-w, < ~rv~ and 0-o~ < 0"w2. Therefore 0"v < o'to. []

T h e o r e m 2 Given a set of constraints E, the algorithm always terminates, and it r$-
turns a substitution ~ iff E is satisfiable.

Proof: Tile algorithm always terminates, since the occurs dmck prevents any branch of
the solution from being longer than 2 IA[+I. We have already shown that if the algori thm
reports failure, then the constraints are unsatisfiable. We can now complete the proof of
the theoreln by showing 'that 0- satisfies each of the constraints at the end of step 3.

If the constraint is of the form v < w, Step 2 guarantees that Lv C Lw and Uw CUv.
Hence c~ satisfies tile constraint.

If the constraint is of the form ~ < v, then Uv is empty (otherwise we would have
failed), and the algorithm assigns c% = f2, which satisfies the constraint.

If the constraint is of the form Vl --~ v2 < w, then there are two cases: either Uw
is empty or not. If U~, is ernpty, then aw = f2, and the constraint is satisfied. If Uw
is nonempty, then we have ~rto = aw, --+ aw~. We claim ~hat Lwz C L ~ , Uv, _C Uw,,
L, 2 C L~o~, and U~o~ C_ Uw.

Let us do the lower-bound cases of the claim. To show Lw~ C Lye, we recall tha t
Lw, = [..J{ L , [(a ---+ b) E U~o }. S.o choose (a ~ b) e U~,. We have (vl ---* v2) e L~, and
(a ---* b) E Uw, so by closure condition 4 in Step 2, L~ C_ Lv,. So Lv~ is an upper bound
for all the L, . Lwa is their least upper bound, so Lw, C Lye. To show Lv~ c Lw2, we
observe that vt --+ v2 E L~, and Lw~ = [..J{ Lb [(a ---* b) e L~, }. The uppei'-bound cases
follow symmetrically.

We can now apply lemma 3 to deduce that a~,~ < av,, 0-~2 < ~r~,2, and therefore the
constraint is satisfied.

If the constraint is of the form w _< vl -+ v2, then Uto is nonempty, so we have
aw = 0-~o, ~ a~o2. The result then follows by an argument like the preceding one. []

The algorithm runs in exponential space, since it has a number of states bounded by
the number of (L, U) pairs, which is 2 IA[+I. If one builds a cache of these states, then
the algorithm requires only exponential time.

6 R e l a t e d W o r k

In addition to the applications cited in the introduction, there are a number of related
topics. Gomard [5] used a variant of this system to do binding-type analysis, in which

416

untyped represented an untyped run-time value. Henglein [6] gives an almost-linear-time
algorithm for doing this analysis. We do not currently understand the gap between Hen-
glein's algorithm and our exponential algorithm, but there appear to be some essential
differences [7].

This work is somewhat related to the work on dynamics in ML [10]. Dynamic types
are oriented towards persistent objects, which have some type that is part of its repre-
sentation; the hard part about such a system is reading the object back into the system
within something close to the ML type system. This is rather different from our approada.

Amadio and Cardelli have solved a related but different problem. They consider a
type system with both a bottom and top element, so that _L < t < T for all types,
and with recursive types. In [1] they solve the problem of validity (truth under all
substitutions) for recursive type expressions in this system. It would be interesting to
see if this result could be extended to satisfiability, as this is the natural problem arising
from type inference.

7 C o n c l u s i o n s a n d F u t u r e W o r k

We have shown the decidability of the satisfiability problem, and therefore the type
inference problem, for Thatte's system of partial types. We have formulated the problem
in the simplest way possible in order to facilitate theoretical study; the next step is to
extend the system with enough features to make it practical. It should be easy to extend
it to allow a bottom element, as in [1], or additionM base types under an arbitrary partial
order, as in [16]. Product types should also pose no difficulties. Polymorphic let can be
included by translating let x = M in N as N[M/x], but a more efficient method would
be preferable. We conjecture that this system can also be used to solve the system of
flags in [14]. A more difficult problem is to extend it to handle recursive types, as in
[1]. Also it would be desirable to have some lower bounds on the complexity of these
problems.

A c k n o w l e d g e m e n t s

Thanks to Jonathan Young for numerous conversations on types and coercions. Thanks
also to Fritz Henglein who enthusiastically predicted the outcome.

R e f e r e n c e s

[1] Amadio, R.M., and Cardelli, L. "Subtyping Recursive Types," Conf. Rec. 1991 ACM
Symp. on Principles of Programming Languages, 104-118.

[2] Cldment, D., Despeyroux, J., Despeyroux, T., and Kahn, G. "A Simple Applicative
Language: Mini-ML" Proc. 1986 ACM Symp. on Lisp and Functional Programming,
13-27.

[3] Cardelli, L. "Basic Polymorphic Typechecking," Polymorphism Newsletter 2,1 (Jan,
1985). Also appeared as Computing Science Tech. Rep. 119, AT&T Bell Laborato-
ries, Murray Hill, NJ.

417

[4] Fuh, Y.-C., and Mishra, P. "Type Inference with Subtypes," Proc. European Sym-
posium on Programming (1988), 94-114.

[5] Gomard, C.K. "Partial Type Inference for Untyped ~unctional Programs," Proc.
1990 ACM Conf. on Lisp and Functional Programming, 282-287.

[6] Henglein, F. "Efficient Type Inference for IIigher-Order Binding-Time Analysis,"
Functional Programming Languages and Computer Architecture, 5lh ACM Confer-
ence (J. ttughes, ed.), Springer Lecture Notes in Computer Science, Vol. 523, 1991,
pp. 448-472.

[7] Henglein, F. personal communication, 1991.

[8] Hindley, R. "The Principal Type-Scheme of an Object in Combinatory Logic,"
Trans. Am. Math. Soc. 146 (1969) 29-60.

[9] Hindley, R. "The Completeness Theorem for Typing ,~-Terms" Theoret. Comp. Sci.
22 (1983) 1-17. See also IIindley, R. "Curry's Type-rules are Complete with Respect
to the F-Semantics Too" Theoret. Comp. Sci. 22 (1983) 127-133.

[10] LeRoy X., and Mauny, M. "Dynamics in ML," Functional Programming Languages
and Computer Architecture, 5th ACM Conference (J. Hughes, ed.), Springer Lecture
Notes in Computer Science, Vol. 523, 1991, pp. 406-426.

[11] Milner, R. "A Theory of Type Polymorphism in Programming," J. Comp. FJ Sys.
Sci. 17 (1978), 348-375.

[12] Mitchell, J.C. "Coercion and Type Inference (summary)," Conf. Rec. l l th Ann.
ACM Syrup. on Principles of Programming Languages (1984), 175-185.

[13] Mitchell, J.C. "Type Inference with Simple Subtypes," J. of Functional Program-
m.ing / (1991), 245-285.

[14] R6my, D. "Typechecking records and variants in a natural extension of ML," Conf.
Rec. 16th Ann. ACM Symp. on Principles of Programming Languages (1989), 77-88.

[15] Thatte, S. "Type Inference with Partial Types," Proc. ICALP '88 (1988), 615-629.

[16] Wand, M., aad O'Keefe, P. "On the Complexity of Type Inference with Coercion,"
Conf. on Functional Programming Languages and Computer Architecture (London,
September, 1989).

[17] Wand, M. "A Semantic Prototyping System," Proc. ACM SIGPLAN '84 Compiler
Construction Conference (1984) 213-221.

[18] Wand, M. "A Simple Algorithm and Proof for Type Inference" Fundamenta Infor-
maticae 10 (1987), 115-122.

