
Compositional Refinements In Multiple Blackboard
Systems 1

X. J. Chen
Scuola Normale Superiore

Piazza dei Cavalieri 7, 56100 Piss, Italy

C. Montangero
Dipart. di Informatica, Univ. di Piss

Corso Italia 40, 56100 Pisa, Italy

Abstrac t

In this paper we introduce CONESP, a concurrent system built according to the
SMoLCS methodology to provide an abstract model of the coordination language
Extended Shared Prolog (ESP). ESP is based on the integration of the blackboard
paradigm with Logic Programming. CONESP is a hierarchy of entities, each con-
sisting of a passive blackboard tree and a collection of active components including
parallel agents and dynamic (sub) entities. An implementation relation between
two hierarchies is defined, which is shown to be compositional.

ESP is being used in the Oikos environment for software process modeling. The
results of this paper are the base for the formal verification of the correctness of the
software process models built by stepwise-refinements in Oikos.

1 Introduct ion

This paper presents the first results towards an algebraic t reatment of software process
specifications in Oikos [1], and of the related refinement method.

Software process modeling deals with the problem of describing the entire life cycle
of software production. Among the current approaches, Darwin [11] has a declarative
approach, introducing Law Ruled environments; Marvel [9] models tool activation with
a rule based language, emphasizing automatic planning; Arcadia [14] is a very com-
prehensive approach to software process enactment, resting on the extension of Ads
with a relational calculus; Melmac [8] introduces an intermediate level representation
of software processes by high-level Petri Nets.

Oikos is an environment for software process modeling which integrates the black-
board paradigm with Logic Programming in a hierarchical system. In fact, the black-
board paradigm is suitable to deal with the problems related to the cooperation and
coordination among people and machines, and Logic Programming allows to specify
software processes declaratively. An essential feature of Oikos is that process specifi-
cations are developed by step-wise refinements: the hierarchy is well suited to such an
approach. In Oikos, all the software process modeling entities~ like processes, environ-
ments, roles~ services, etc. are represented by a blackboard system which is dynamically
organized into a hierarchy.

1This work has been partially founded by Progetto Finalizzatto Sistemi Informatici e Calcolo Parallelo,
Sotto Progetto 6 under contract 91.00920.PF69.

94

Oikos exploits the logic distributed language Extended Shared Prolog [1,6] to enact,
i.e. execute, software processes. As the name shows, ESP extends Shared Prolog [4]: this
paper gives a formal specification of ESP extending the one given for Shared Prolog.
In doing so, we are taking into account the need of proving the correctness of the
refinements that are essential in the Oikos approach. Therefore, our formal description
accomodates smoothly a notion of refinement, i.e. how an ESP system can implement
another one (in general, with more details and with a higher degree of parallelism).

To cover the characteristics of ESP we introduce CONESP, a concurrent system
constructed using labelled transition system according to the Structured Monitored
Linear Concurrent Systems (SMoLCS) methodology [2,13]. SMoLCS is a methodology
for the formal specification of concurrent systems and languages, especially useful in the
formal description of large complex systems with multilevel architecture and interference
among the sequential part and the concurrent part.

The paper is organized in this way: section 2 and 3 review ESP and SMoLCS; section
4 describes CONESP and section 5 defines the implementation relation in ESP, with
the proof that it is compositional.

2 Shared Pro log and E S P

Shared Prolog and ESP are based on the blackboard model of problem solving. Accord-
ing to this model, the knowledge on a particular problem is partitioned into distinct
subsets, in order to keep domain knowledge separated from control knowledge and to
organize communications via a centralized data structure, named blackboard.

2 . 1 S h a r e d P r o l o g

A Shared Prolog system is composed of a unique blackboard and of a collection of agents
working in parallel and communicating via the blackboard. Neither a global state nor
a global clock must be assumed.

The behavior of an agent is defined by a theory, which is a Prolog program extended
by a guard mechanism coordinating communication and synchronization via the black-
hoard. More precisely, a theory is a Prolog program augmented with a set of activation
patterns, each having form:

(In_Guard} Read_Guard I Body (Out_Set}

which specifies: (i) a set of atoms to be consumed before the theory can be activated
(In_Guard); (ii) some conditions to be verified on the blackboard before the theory
can be activated (Read_Guard); (iii) the initial goal of the logic program of the theory
(Body); (iv) a set of atoms that will be written on the blackboard at the end of the
activation (Out_Set).

A blackboard holds a multiset of facts which are Prolog ate,ms. Gettlng/putting
facts exploits unification. Input and output on the blackboard ate mutually exclusive.

95

2.2 E S P

An ESP system has a tree of blackboards. Each node on this hierarchy is a blackboard
containing agents, facts, and subsystems. Each agent belongs to a blackboard, i.e. its
source of facts, and has a list of targets to put its facts.

ESP patterns extend Shared Prolog patterns in three ways: First, there are several
Out_Sets, each followed by a target (denoted by symbol "O", the target of the agent's
own blackboard may be omitted); second, the failure of execution of Prolog program
may also cause output. So, the output is divided in two: a success Out_Set and a failure
Out_Set, separated by ";". The failure Out_Set is optional, and if there's no failure
Out_Set when the Prolog execution fails, nothing will be written on the blackboards.
Finally, there may be several read guards and in guards in a pattern. Generally, an ESP
pattern has the following form:

re~dl {i,,1} . . . r e~d . {i,~.} ,~ > 0

I body

[; {failx}[@targetx]... {failv}[~targetp]]

E x a m p l e

m > O

p > O

Seqlmp in figure 1 gives the initial state of the ESP program in table 1,
which models a Sequential Machine:

t h e o r y coord(Target2, Target3) : -
{ i n ~ t (x) , a~ te (V)}

I
{ i n w t l (X), i ~ t 2(Y) } ~T ~r ga3

{o~t (x)}

I
{ ,t~te(X)}
{ output(X) }@Target2

theory pcomb(Targe t) : -
{input l (X), input 2(Y) }
I
f (x , y, z) .
{o~,t(Z) }eTarget

wi th
f (X , Y, Z):- computes Z from X, Y.

Table 1. The theories of Seqlmp

There are two blackboards (represented by boxes with their names on up-left corners)
named Seq and Comb respectively.

Blackboard Comb and the agent on it (working on theory pcomb in Table 1) model
the combinational network of the Sequential Machine, while blackboard Seq and the
agent on it (working on theory coord) model the rest of the machine: inputs are sent to
Seq, and the agent on Seq feeds them to Comb together with the current state, receives
the output, updates the state and produces the output of the Sequential Machine.

Blackboard Seq contains a fact state(initial), and an agent (denoted by a circle)
with three targets (denoted by arrows from circles to blackboards) for its output: its
own blackboard Seq (denoted by number 1), the outer system (2) and blackboard Comb
(3). This agent works on theory coord which uses parameter Target2/Target3 as its
second/third target. In this example, they are instantiated as UP/Comb (Note: UP

96

Sub

I

I _~c2or d I ~eq

I I

I state(Inltial)

' I Ii :omD (~
I pcomb
I

?
3
t

i

I
Seqlmp

Sub Sequ r- - - i

II I state(initial) q
I
L--

SeqSpec

Figure 1: Two specifications of the Sequential Machine

is a special blackboard name for all outside targets). Targetl is omitted since it is
the agent's own blackboard. Theory coord has two patterns (separated by #) . In the
first pattern, it consumes facts that match input(X) and state(Y) respectively, and
then gives facts inputl(X) and input2(Y) to its third target Target3. In the second
pattern, it consumes facts that match out(X) and then gives facts like state(X) to its
own blackboard and facts like output(X) to its second target Target2. In both these
patterns, the Body is empty.

Initially, blackboard Comb contains no facts but only an agent working on theory
pcomb, which has only one pattern and one target which is instantiated to blackboard
Seq. This pattern consumes facts of form inputl(X) and input2(Y), executes goal
f(X, Y, Z) by the Prolog program (beginning from keyword with in the theory), and
then gives output out(Z) to its target. []

The blackboard hierarchy is dynamic, i.e. new subtrees of blackboards may be created
at run-time. At the same time, the targets of the agents are also dynamically defined.
So the total dynamicity of the system means: the agents, the sources from where to
absorb information and the targets to where to send information may change. Due to
the lack of space, we no longer deal with the dynamic facets of ESP.

2 .3 R e f i n e m e n t s i n E S P

A software process model may be very large. To deal with it, one may construct, at
first, a small system with a simple structure only to describe the main properties (the
tasks to fulfill), then substitute it with another one with more implementation details.
For example, consider SeqSpec in figure 1, where theory pseq is

t h e o r y pseq(Target) : -

{i tCX), stateCr)}
I

97

wi th

f(x,Y,z).
{o t t(Z)}OTarge
{:tate(Z)}

f(X, Y, Z) :- the same as that in theory pcomb.

It can be seen as the initial specification of the Sequential Machine corresponding to
Seqlmp in figure 1. So one may use SeqSpec at the beginning and then substitute it
by Seqlmp.

The problem rises: is this substitution correct? I.e., is SeqImp a correct imple-
mentation of SeqSpec, which means: can SeqImp generate all I /O streams that can
be generated by SeqSpee, and will it not generate spurious streams in the context of
the substitution? The way to solve the problem is to forget intermediate derivations,
which is done by the monitoring step in CONESP that gives the support to define the
implementation relation in CONESP.

3 A B r i e f O v e r v i e w o f S M o L C S

To build CONESP, which is the formal system that defines ESP semantics, we adopt
the SMoLCS methodology [2,3,13] which is based on labelled transition system. A set
of processes is described by a labelled transition system, in which atate8 represent the
states of processes, and tranaitiona represent the capability of the processes to evolve
from one state to another while the interaction with the outside world is represented
by the label. In other words, the label contains the information for the condition of the
external environment so that the capability of the processes to evolve becomes effective.
This interpretation of labelled transition system has turned to be classical since it was
inspired by CCS [10] and SOS [12]. In the simplest case, when the transition is purely
internal to the system and there is no relationship with the environment, the label can
be dropped or better represented by a special label.

Based on labelled transition system, SMoLCS is a methodology intended to add
abstraction and modularity to the specification of concurrent systems and languages,
especially considered for the formal description of large systems.

Def. A label led t r ans i t i on sy s t em is a triple (STATE, LABEL, '..) where

STATE~LABEL is a set of atates/label8 of the system, and

~ C STATE • LABEL x STATE is the transition relation.

i 8' if (8,l,a') Note Usually, we simply write s ;-

Example If agent Agent1 can put facts F onto blackboard B, and then changes into
Agent'l, this can be represented by

Agent1 Se~d(V,r) "~ Agent 1

0

98

Given transition systems for the simple components, the dynamic activity of a compound
system is defined in SMoLCS in a canonical way, following three steps: syncronization,
parallelism and monitoring, which are specified by giving appropriate abstract data
types. In this way, one can easily modify part of a specification, which is badly needed
in practice for large projects. To fix notations, in the following we review these steps,
which are applied in the next section to define CONESP.

The syncronization step defines those transitions that represent syncronized actions
of a group of process components and their effects on global information: given a tran-
sition system CTS (with transition relation ~) that represents the process compo-
nents, the syncronization step defines a new algebraic transition system STS where the
transition relation ~ corresponds to the syncronized actions of a group of process
components.

The state of STS is a couple whose elements are a multiset of states in CTS and some
values (called global information of the process components) representing the status of
the passive components. Here, passive means that it has no transitions of its own, but
may be changed as a consequence of the transitions of processes. Thus, the states in
STS have form

< g , ~ l I . . . [l ~ n >

where 9 is the global (passive) part, pr~ are states of CTS, and prl I . . . I prn is a multlset
of (parallely composed) process states in CTS.

The transitions of STS are deduced from the transitions of CTS by STS axioms that
have the following form:

Al_<i_<,, ~ J ~ ^ Cond ~ < g,pr l I . . . I ~ , > ~ < g ,pr~ 1 . . . I~,~ >

where 81 is a new label denoting the interaction of prl,... ,prn with the outside, and
Cond expresses that the actions of process components prl (s = 1,...,n) can be syn-
cronized. The intuitive meaning of such an axiom is that, if each prl can evolve into
the new process state pr~ by performing the action Ii, and Cond holds, then the whole

I t #

system can evolve into the new state ~ g ,pr I I ... [pr,~ :> by some label 81, while the
global information g is relatively changed into a new one w.r.t, the actions ll,..., l,~.

The parallelism step defines those transitions that represent the admissible parallel
executions of a group of syncronized actions and their complex transformation of global
information. For example, the problem of mutual exclusion is faced on this step.

The actions on this step are defined by using a composition function H (binary,
commutative and associative) on actions of a group of process components. Intuitively,
it defines that two actions can be executed in parallel (without syncronization). The
actions that need to be considered for the composition are the syncronized actions
defined in the syncronization step and those already obtained by composition.

The fonowing a~om expresses the capability of two actions to be executed in paral-
Id:

i #

<~ g , ~ s l ~> e ~ <~ g1,m81 ~> A <: g, m82 ~> 01~ <~ g2, m82 ~> A Cortd

d l i [~ I ' I

< g, m81 [m82 >) < g , m 8 1 I m82 >

99

where Cond defines the transformation of the global information (from g to 9' as a
function of g and gl) caused by action sll][sl~.

The Monitoring step may define some global restrictions on the transitions of the
entire system, llke restricting the labels which can be observed from the outside.

Analogously to the previous steps, the monitoring step is also defined by giving
a new (modular) concurrent system starting from the concurrent system obtained in
parallelism step. The axioms on this step offer some conditions under which the action
in parallelism step

ta
< g, mp) ~ < gl, mpl >

is allowed by the monitor and it will become an action of this step represented by
transition

<= g, mp [mpl > l , < gt, mpl imp1 >

where rap1 represents the multiset of the states of the active components in previous Step,
and l represents the interaction of the resulting action with the external environment.

4 C O N E S P , a c o n c u r r e n t s y s t e m for E S P

In this section, we describe an ESP-entity as an abstract data type and then introduce
the derivations that define its behaviors.

4.1 C O N E S P Ent i t i es

CONESP is constructed as a hierarchy of ESP-entities, where each ESP-entity corre-
sponds to a blackboard system in ESP. An ESP-entity named N A M E can be expressed
a s -

N A M E :< TR, A C >

where (TR, A C ~ represents the state of the entity: a passive blackboard tree T R
and a collection A C of parallel active components (separated by "1").

4.1.1 TR: t h e b lackboard tree

The passive part T R represents the blackboard tree of ESP and is a dynamic struc-
ture describing the evolving state of the dynamic system. Its nodes are multlsets of
facts. Each blackboard in the tree has a unique name. This passive part is specified
as an abstract data type TREE using partial algebra [7]. We give here only a simple
example.

E x a m p l e 4.1.1 The passive part of the ESP-entity representing the blackboard tree
of Seqlrnp in figure 1 can be specified as

(R(Seq, {state(initial)}), Seq, Comb, ~) (Trimp)

100

where r is the empty multiset of facts. In general, (TR, B1,B2, F) is a tree generated
from tree TR by adding a new blackboard B~ under blackboard B1, with the initial set
of facts F. Also, R(B, F) denotes a tree with only a root B containing facts F.

4 .1 .2 A C : a c o l l e c t i o n o f a c t i v e c o m p o n e n t s

There are two kinds of active components: the agents and (sub) ESP-entities.
Each agent in an entity has a coordinate blackboard, denoting the source to get

facts. In order to meet the characteristics in ESP that each agent has a list of targets
to give its output, we also explicitly express, for each agent, this dynamic binding as a
list of targets. Besides, each agent has a predefined theory, the task it executes. In this
sense, we exphcitly specify an agent in CONESP together with these three dements as
prefixes. Generally, we express an agent as

(B, Th, Tar) : Astate

where B is the blackboard of the agent, Th is its theory, Tar is its target list, Astate is
a state holding execution information and is discussed in section 4.2.1.

No te The target list of an agent includes parameters and may be changed dynami-
cally.

Example 4.1.2.1 The agents in Seqlmp (figure 1) are expressed as

(Sea, coord, [Seq, UP, Comb]) : nil (Agimpl)

(Carnb,pcomb, [Seq]) : nil (Agimp2)

N o t e : Here, nil is the state, in which an agent is ready to activate the patterns in
its theory. []

The detailed structure of an ESP-entity is shown in figure 2.

Example 4.1.2.2 The initial entity Seqlmp in figure I (named Sub) can be described
a s

Sub :< Trimp, Agimpl I Agimp2 >. (SeqImp)

Example 4.1.2.3 The entity named UpName (figure 3, right) contains entity SeqImp
and some other active components UpAc, and is expressed as

UpName :< UpTr, UpAc I SeqImp >

where UpTr is its passive part.

4 . 2 C O N E S P S p e c i f i c a t i o n s

The structure of CONESP specifications is as follows: (i) Agent Transition describes
how the agents work on their theories. (ii) Syncronization Step describes the syn-
cronized transitions of entities including the syncronization among agents, blackboards,
and subentities. (iii) Parallelism Step describes the entity transitions on all agents and
subentities. On this step, conditions w.r.t. ESP, e.g. mutual exclusion on blackboard,

101

a list of target blackboard
coordinate blackboar~ suloentity's name

entity' i~ name]~ t h I ~ agent'sl state subentlty's~ state

Name: < Tr, (B, Th, Tar >: Astate I I S: Estate I >
1 " '

passive blackboard tree a collection of subenties
a collection of agents

Figure 2: structure of entities in CONESP

UpName

'1

I UpSpec
I

Sub

[I I

I seqspec I I
I I I

.I

Up Nam e

Uplmp
Sub

f I

I $eqlmp I

L I

I

Figure 3: ESP-entity examples

102

pattern activation
Q - b

pattern a c t ~ j ~ , . .~c t , va t len
/ ~ ''~176 \

body execution

Figure 4: execution states of theories in CONESP

will be given. (iv) Observational Step describes the observable actions and related
transitions.

We use the following ~sorts for the axiom quantifiers: bid for blackboard identifier
and subentity's names, facts for multiset of Prolog atoms (sort fact) in a blackboard,
th for theory's names, name for entity's names, sub for substitutions, tree for passive
blackboard trees, tar for lists of agent's targets, ag/ent for agents/entities and ae for
active components (whenever it is convevient we will distinguish between agents and
entities).

4.2.1 Agen t Trans i t ion (t heo ry execu t ion)

Like in Shared Prolog, each agent works recursively on its theory, having three execution
states as shown in figure 4:

1. It may stay in state Initial. In this state, the agent is ready for pattern activation,
i.e. to choose, among those in its theory, a pattern whose guards are satisfiable.

2. It may stay in state Task, ready to do the task of this activated pattern, e.g.
Prolog(Bod90), which indicates that the agent is going to execute Prolog pro-
gram for goal BodyO. Here Body is the body part of the pattern chosen in the
previous step, and 0 is the substitution got from the previous step. Such Tasks
are described as internal derivations, i.e. we do not go into the details of Prolog
execution. Other tasks include creating subentities, deleting subentities, instan-
tiating targets, deleting targets and are not dealt with here, due to the lack of
space.

3. After finishing a task, the agent is in state Output, and is going to give output
to its targets. This output comes from the Out_Set of the pattern together with

103

the substitution from pattern activation in the first step and, if it has successfully
terminated the body, the resetting substitution.

Generally, we use nil for state Initial; A.nil for state Output where A is the output set
denoted by ~ if it is empty; A.(B; C).nil for the state Task where A is the task to fulfill
and B/C is the success/failure output set.

N o t e Since the body part and postactivation part in ESP theory may be empty, we
may also go from state Initial to state Output or to itself, from Task to Initial. []

The change from one state to another should satisfy the corresponding rules on agent
transitions including pattern activation, body execution, output to targets. Generally,
we have the following schema for pattern activation:

V B : bid, T : tar, O : sub
Activate(B ,ITl~,p 6,RTlL,p =,0)

(B, Th, T) : nil

(B, Th, T) : Prolog(GoaITh,p=O).(SUCCTh,p=8; Failrh,p=8).nil

for each pattern Pa in theory Th such that its body is a Prolog goal GoaIya,p=.

N o t e

1. CONESP specification is parameterized and this is only a schema: for any theory
Th in the program, it may be applied to any of its pattern P a provided that its
body part is a Prolog goal.

2. Prolog(F) calls for Prolog program using F (including variables) as a goal.
ITh,p=/Rrh,p= is the In_Guard/Read_Guard of pattern P a in theory Th.

3. SuccTh,pJ FaiITh,p= has form AddF(targetl,outl) H.-. [[AddF(target,,,, out,~)
corresponding to the success/failure Out_Set (cfr. section 2.2) of pattern P a in
theory Th. AddF(targetl, F) adds a set of facts F to the i-th target of the agent.

4. Blackboard B and target T are parameters for the coordinate blackboard in which
this theory is executed, and the instantiation for the targets of this theory.
Substitution 0 appears also as a parameter. Its value will come from the commu-
nication with its blackboard by matching ITh,p= and Rrh,p= in blackboard B (See
next step for the communication between agents and their blackboards).

As a special case when the Body part of a pattern is empty, the agent goes directly to
give the success Out_Set after activating the pattern.

E x a m p l e 4.2.1 Theory eoord's first pattern (section 2.2) has an empty body part.
For agent Agimpl (Example 4.1.2.1) in entity Seqlmp (figure 1), the agent's blackboard
and targets being instantiated by Seq, Seq, UP and Comb respectively, we have

V 0 : sub

Agimpl

(Seq, coord, [Seq, UP, Comb]): AddF(3, {inputl(X), input2(Y)}O).niI (Agimpl')

104

4.2.2 Syncron iza t ion Step

An agent's action includes creating/deleting subentities, pattern activation (getting
facts), internal derivation (those that have no effects on other part of the entity, e.g. in-
stantiating/deleting targets, executing Prolog program), sending facts to targets (black-
boards or subentities).

An entity may receive facts from an agent from outside. As we hide all the details
of an entity to outside, the agent knows neither the structure of the entity nor any
blackboard name in it. For the moment, we adopt the principle that the agent from
outside sends facts to an entity by calling its name, and the facts are put into the root
of the entity. We use Send(S, F) to describe the agent's action of sending facts F to
entity S, and we use In(S, F) to describe that the entity receives facts from outside.
On the other hand, an entity may send facts F into a blackboard B in super entity,
which is described as Out(B, F). Thus, as an active component, an entity acts in two
ways: In(S, F) and Out(B, F). These two actions are distinct from the others.

On this step, we define entity transitions of syncronized actions and their effects to
the blackboard tree. The rules for syncronizations considering these actions have the
canonical form in the same step in SMoLCS (cfr. section 3). Notice that in blackboard
systems, no two agents can communicate directly, but via the blackboard. So the
syncronization happens only between agent and blackboard, between subentity and
blackboard, and between agent and subentity. Here we only show how the agent's
pattern activation effects its blackboard and causes the transition of its entity.

When an agent is in Initial state, it may activate a pattern in its theory provided
that In_Guard and Read_Guard of this pattern can be satisfied by the current state.
This test is done by

eval(In_Guard, Read-Guard, Blackboardl) = < Blackboard2, 0 >

where function eval takes the In_Guard, the Read_Guard, the blackboard of the system
(Blackboardl), and returns, if the evaluation succeeds, the set of atoms (Blackboard2)
to be retracted from blackboard (Blackboardl) and the computed substitution (0) to be
passed to the rest of the pattern. Otherwise, the special symbol F A I L U R E is returned
(cfr. [41).

From section 4.2.1, we know that in Agent a~a~,(S.1,R,e) > Agent~ ' the agent has
coordinate blackboard B, the activated pattern has In_Guard I, Read_Guard R, and
the matching between the guards and facts in blackboard B should be 0. So we have

V Tr : tree, Pr, Pr I : ae, B : bid, I , R , F : facts, Ename : name, O : sub

Pr Pr' ^ eval(I,R, getb(Tr, B)) =< F,O > ^ D(< Tr, Pr >)
R~S,F)

Ename :< Tr, Pr > , Ename :< delf(Tr, B , F) , P r I >

for the entity transition of theory activation, where the matched facts F are deleted
(delf(Tr, B, f)) from the blackboard S in the tree Tr.

Note Partial algebras [5] are used. Here D(< Tr, Pr >) denotes the definedness of
entity Ename :< Tr, Pr >. Condition eval(I,R, getb(Tr, B)) =< F,O > guarantees

105

the definedness of < dell(T% B, F) , P r ' > since we have that D (< Tr, Pr >). getb is a
function that , given a tree and a blackboard name in the tree, returns the multiset of
facts on the named blackboard in the tree.

E x a m p l e 4.2.2 Once enti ty SeqImp (Example 4.1.2.2) receives a fact input(a) from
outside into its blackboard Seq, it transforms into Seqlmpl, i.e.

Sub :< Trimpl,Agirapl I Agirnp2 >.

where Trirnp~ = addf(Trirap, Seq, {input(a)}). The transit ion in which Agirnpl acti-
vates the first pa t tern of theory coord (Example 4.2.1), can be used in entity SeqIrnpl,
because both state(X) and input(Y) can be matched on blackboard Seq in the tree
Trirnpl. In other words,

eval({ state(X), input(Y)}, c, getb(Trimp~ , Seq)) = < F, 80 >

is t rue with

F = {state(initial), input(a)} 8o = { X ~ initial, Y ~ a}

So we have
l:lec(Seq,{,t*te(initicd), input(a)})

Sub :< Trirnpl, Agirnpl > ~ Sub :< Trirnp2, Agirnpl' >

where Trimp2 = delf (Trirnpl , Seq, { state(initial), input(a) })

4.2 .3 P a r a l l e l i s m S t e p

According to SMoLCS, we describe here how the transitions introduced in the previous
step may happen in parallel, on -ll active components. The essence of this step is to give
conditions under which if enti ty Entity1 may transit into Entity2 by Aetl II . . .]1 Act, ,
and may transit into Entity3 by Actn+l, then it may transit into Entity4 by Act~ II " " II
Act, I[Act,+l.

From ESP, we know that no two accesses to the same blackboard are allowed at a
time. This also satisfies the condition in Shared Prolog that among several pat terns
of a theory, only one can succeed at a time. So, if we want to put an action Sad on
syncronization step into an action Pact on parallelism step, we must test if Sact is going
to access any blackboard already used in Pact.

E x a m p l e 4 .2 .3 It is always possible to put the internal action r into any transit ion on
parallelism step, without any condition. For example, suppose the r action is executed
by a collection of active components Prsl

Enarne :< Tr, Prsx > ~ ~ Ename :< Tr, Prs' 1 >

and suppose a collection of active components Prs2 may change into Prs' 2 by action
Rec(B, F) which changes the blackboard tree T r into Tr ' :

Ree(B,F)
Enarne :< Tr, Prs2 > ~ Enarne :< Tr', Prs 2 >

then without any condition, we have

Rec(S ,F)
Ename :< Tr , P r s l I Prs2 > , Ename :< Tr ' , P r s ' 1 I Prs'2 >

106

4.2.4 Monitoring Step

In section 4.2.3, we have seen that an enti ty has two kinds of actions for the communi-
cation with the outside. On this step, function Visible is introduced to select out these
actions from those in parallelism step, leaving all the others denoted by v, e.g.

Visible(Out(Bx, Fx) II Rec(B, , F ,)) = Out(Ba, Fa)

Besides, we add a restriction on this step that no two output actions of an entity can
succeed at a time, i.e.

O~,t(B,F)llOth~,
A , A'

on the parallelism step, implies

o=t(s,F)
A , A I

on this monitoring step, provided that there's no other action Out(B', F ~) appearing in
Other.

From the previous two steps, we know that action

In(Sl , f l) I1"" II Xn(S,,F,) for n > 1

is not allowed because this means, according to our principle of the communications
between entity and subentity (section 4.2.2), to access the root of the blackboard tree
at the same time, which is not allowed according to the mutual exclusion on blackboard.

As a consequence, we have only four kinds of actions on this step (F, F ~ : facts, B :
bid, S : name):

r, In(S, F), Out(B, F) , In(S, F) II Out(B, F')

5 I m p l e m e n t a t i o n R e l a t i o n

Based on the monitoring step, we turn to the sequences of the actions defined on mon-
itoring step in order to give a suitable notion of implementat ion relation in ESP, as
announced in section 2.3.

We want to consider action sequences (of sort seq) tha t start from a given state, but
not all of them. For the initial state SeqImp, for example, we expect that the inputs
are unifiable to input(X) or state(X) (which are all tha t make sense for SeqSpec), but
not to out(X).

Def . Action sequence 11 ... l,, is covered by X, denoted by lz . . . l= r- X , if

l, is In(S, F) or In(S, F) II Out(B, F') implies F C_ X. [:3

Notice that F ~ can be any set of facts, i.e. only the input set is concerned.
Function I IF is thus introduced to get from a given entity the interesting input facts

under our consideration. For instance, IIF(SeqSpec) contaln's all the facts unifiable to
input(X) or state(X), while IIF(SeqImp) contains all the facts unifiable to input(X)
or state(X) or out(X) . So the sequences used to compare SeqSpec and SeqImp should
be covered by IIF(SeqSpec).

107

Observing predicate Perftrrm(tr, A, X) is used to characterize our observations - -
the action sequence ~ starting from the initial state A and covered by set of facts X.
By definition,

Perform(l l . . . I , , A , X) - Ai~=I A~ l, ~ Ai+l A 11 . . . l , r- X

Now we introduce our implementation relation, denoted by -.-*. A --~ B means that B
is an implementat ion of A:

Def. A --~ B iff IIF(A) C IIF(B) and

V~r : seq. Perform(~r, A, I IF(A)) iff Perform(~, B, I IF(A)) .

E x a m p l e Now our problem on Sequential Machine can be s tated as

Vu : seq.

Perform(tr, SeqSpec, IIF(SeqSpec)) - Perform(~r, Seqlmp, IIF(SeqSpec)) ? o

It is easy to see that if Xx C_ X2 then

Per form(tr, A, X2) implies Per forrn(~r , A, X1).

So we have the following

Fac t -.-* is transitive.

L e m m a If A1 and B1 have the same name S, A1 ~ B: and agents in R only send
facts in I IF(A1) to S (i.e. in their actions Send(S,F), F always belong to II.F(A1)),
then

EAI = N :< Tr l ,AI [R > -.~ EBI = N :< Trl ,B1] R >

P r o o f We prove for the universe U of facts,

Perform(~r, EAx, U) implies Perform(u, EB1, U)

The proof of the other direction is analogous.

Consider any 11 .. . l,, : seq, s.t. for 1 < i < n, we have EA~ t, , EA~+I
i. A

where EAi+I = N :< Tri+I,Ai+:] R/+: > and Ai-2--, Ai+l.
Now, since the environment behaves correctly, i.e. agents in R / o n l y send facts in

I IF(A1) to S, we have llA.., l A V IIF(A1) , and since A1 "-* B1, we can find Bi s.t.
I.A

Bi - -~ Bi+l. Given now

EBI = N :< Tri, Bi [P~ > and EBI+I = N :< Tri+l,Bi+l [Ri+l >,

we have

EBI I, ~ EBi+I

because we only need to consider syncronization between S and the environment and,
according to CONESP specifications, the conditions for syncronization do not include
information in the entities (e.g. At, Bi), but the information in the syncronized actions
(e.g. I:). r-1

The composibility of---, may be stated as

108

T h e o r e m If Ai ".-* Bi (i=l,2,...,n), where Ai, Bi have name Si, agents in R only
use facts in IIF(A~) in their actions Send(S, F), and

E = N : < T r , A a I . . . I A , IR> ' ,~ N : < T r ' , A I I . . . I A , , I R ' >

then E -,-* N :< Tr',Bt I ... I B,,I R' >

P r o o f immediate by Lemma and transitivity. []

This composition theorem protects the implementation relation when subentities are
substituted by their implementation. So we may solve, for instance, the problem shown
in figure 3. That is: if we substitute a subentity (SeqSpec) by its implementation
(Seqlmp) which has more implementation details, the total entity (UpSpec) is also
changed into its implementation (UpImp).

6 F u t u r e W o r k

We are now working on proof techniques. In the basic cases, the proof that A -.z B must
be done by the definition and it envolves considerations of too many action sequences.
We expect to reduce their number, by considering only those that are necessary for the
proof. We call these sequences relevant ac t ion sequences, and we are considering
two methods to construct them: (i) choosing most general facts for input; (ii) finding
necessary combinations of facts as input, in order to give output. Other proof techniques
are also under development, especially to deal with recursion in the execution trees of
CONESP.

A c k n o l e d g e m e n t s
The authors gratefully acknowledge G. Reggio for her comments on earlier drafts.

R e f e r e n c e s

[1]

[2]

[3]

[4]

V. Ambriola, P. Ciancarini, and C. Montangero. Software process enactment in
Oikos. In R. N. Taylor, editor, Proc. of ACM SIGSOFT '90, ACM Soft. Eng.
Notes 15(6), Dec. 1990.

E. Astesiano and G. Reggio. Direct semantics of concurrent languages in the
SMoLCS approach. IBM Journal of Research and Development, 31(5), Sep 1987.

E. Astesiano and G. Reggio. SMoLCS-Driven concurrent calculi. In G. Goos
and J. Hartmanis, editors, Lecture Notes in Computer Science (~9): Proc. of
TAPSOFT'87, Springer-Verlag, 1987.

A. Brogi and P. Ciancarini. The concurrent language Shared Prolog. A CM Trans-
actions on Programming Languages and Systems, 13(1):99 - 123, Jan. 1991.

[5] M. Broy and M. Wirsing. Partial abstract types. Acta Informatica, 18, 1982.

109

[6] A. Bucci, P. Ciancarini, and C. Montangero. A distributed logic language based
on multiple tuple spaces. In Proc. of Logic Programming Conference, Tokyo, July
1991 (to appear in LNCS).

[7] X. J. Chen. A Formalism Towards Software Process Modelling. PhD thesis, Scuola
Normale Superiore, Pisa, Italy (in preparation).

[8] W. Deiters and V. Gruhn. Managing software processes in the environment Mel-
mac. In R. N. Taylor, editor, Proc. of ACM SIGSOFT '90, ACM Soft. Eng. Notes
15(6), Dec. 1990.

[9] G. E. Kaiser, P. H. Feller, and S. S. Popovich. Intelligent assistence for software
development and maintenance. In IEEE Software, 1988.

[10] R. Milner. A calculus for communicating systems. In G. Coos and J. Hartmanis,
editors, Lecture Notes in Computer Science (9~), Springer-Verlag, 1980.

[11] N. H. Minsky and D. Rozenshtein. Configuration management by consensus: an
application of Law-Governed systems. In R. N. Taylor, editor, Proc. of A CM
SIGSOFT '90, ACM Soft. Eng. Notes 15(6), Dec. 1990.

[12] G. Plotkin. A Structural Approach to Operational Semantics. Technical Report,
Computer Science Deot. Aarhus Univ. Denmark, 1981. DAIMI-FN-19.

[13] G. Reggio. Una Metodologia per la Specifica di Sistemi e Linguaggi Concurrenti.
PhD thesis, Dept. of Maths, Univ. of Genova, Italy, 1986.

[14] R. N. Taylor. Arcadia: a software development environment research project. In
P. Henderson, editor, Proc. of AGM SIGSOFT '88, ACM Soft. Eng. Notes 13(5),
Nov. 1988.

