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Abstrac t  

In this paper we introduce CONESP, a concurrent system built according to the 
SMoLCS methodology to provide an abstract model of the coordination language 
Extended Shared Prolog (ESP). ESP is based on the integration of the blackboard 
paradigm with Logic Programming. CONESP is a hierarchy of entities, each con- 
sisting of a passive blackboard tree and a collection of active components including 
parallel agents and dynamic (sub) entities. An implementation relation between 
two hierarchies is defined, which is shown to be compositional. 

ESP is being used in the Oikos environment for software process modeling. The 
results of this paper are the base for the formal verification of the correctness of the 
software process models built by stepwise-refinements in Oikos. 

1 Introduct ion  

This paper presents the first results towards an algebraic t reatment  of software process 
specifications in Oikos [1], and of the related refinement method. 

Software process modeling deals with the problem of describing the entire life cycle 
of software production. Among the current approaches, Darwin [11] has a declarative 
approach, introducing Law Ruled environments; Marvel [9] models tool activation with 
a rule based language, emphasizing automatic planning; Arcadia [14] is a very com- 
prehensive approach to software process enactment,  resting on the extension of Ads 
with a relational calculus; Melmac [8] introduces an intermediate level representation 
of software processes by high-level Petri Nets. 

Oikos is an environment for software process modeling which integrates the black- 
board paradigm with Logic Programming in a hierarchical system. In fact, the black- 
board paradigm is suitable to deal with the problems related to the cooperation and 
coordination among people and machines, and Logic Programming allows to specify 
software processes declaratively. An essential feature of Oikos is that  process specifi- 
cations are developed by step-wise refinements: the hierarchy is well suited to such an 
approach. In Oikos, all the software process modeling entities~ like processes, environ- 
ments, roles~ services, etc. are represented by a blackboard system which is dynamically 
organized into a hierarchy. 

1This work has been partially founded by Progetto Finalizzatto Sistemi Informatici e Calcolo Parallelo, 
Sotto Progetto 6 under contract 91.00920.PF69. 
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Oikos exploits the logic distributed language Extended Shared Prolog [1,6] to enact, 
i.e. execute, software processes. As the name shows, ESP extends Shared Prolog [4]: this 
paper gives a formal specification of ESP extending the one given for Shared Prolog. 
In doing so, we are taking into account the need of proving the correctness of the 
refinements that are essential in the Oikos approach. Therefore, our formal description 
accomodates smoothly a notion of refinement, i.e. how an ESP system can implement 
another one (in general, with more details and with a higher degree of parallelism). 

To cover the characteristics of ESP we introduce CONESP, a concurrent system 
constructed using labelled transition system according to the Structured Monitored 
Linear Concurrent Systems (SMoLCS) methodology [2,13]. SMoLCS is a methodology 
for the formal specification of concurrent systems and languages, especially useful in the 
formal description of large complex systems with multilevel architecture and interference 
among the sequential part and the concurrent part. 

The paper is organized in this way: section 2 and 3 review ESP and SMoLCS; section 
4 describes CONESP and section 5 defines the implementation relation in ESP, with 
the proof that it is compositional. 

2 Shared Pro log  and E S P  

Shared Prolog and ESP are based on the blackboard model of problem solving. Accord- 
ing to this model, the knowledge on a particular problem is partitioned into distinct 
subsets, in order to keep domain knowledge separated from control knowledge and to 
organize communications via a centralized data structure, named blackboard. 

2 . 1  S h a r e d  P r o l o g  

A Shared Prolog system is composed of a unique blackboard and of a collection of agents 
working in parallel and communicating via the blackboard. Neither a global state nor 
a global clock must be assumed. 

The behavior of an agent is defined by a theory, which is a Prolog program extended 
by a guard mechanism coordinating communication and synchronization via the black- 
hoard. More precisely, a theory is a Prolog program augmented with a set of activation 
patterns, each having form: 

(In_Guard} Read_Guard I Body (Out_Set} 

which specifies: (i) a set of atoms to be consumed before the theory can be activated 
(In_Guard); (ii) some conditions to be verified on the blackboard before the theory 
can be activated (Read_Guard); (iii) the initial goal of the logic program of the theory 
(Body); (iv) a set of atoms that will be written on the blackboard at the end of the 
activation (Out_Set). 

A blackboard holds a multiset of facts which are Prolog ate,ms. Gettlng/putting 
facts exploits unification. Input and output on the blackboard ate  mutually exclusive. 
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2.2  E S P  

An ESP system has a tree of blackboards. Each node on this hierarchy is a blackboard 
containing agents, facts, and subsystems. Each agent belongs to a blackboard, i.e. its 
source of facts, and has a list of targets to put its facts. 

ESP patterns extend Shared Prolog patterns in three ways: First, there are several 
Out_Sets, each followed by a target (denoted by symbol "O", the target of the agent's 
own blackboard may be omitted); second, the failure of execution of Prolog program 
may also cause output. So, the output is divided in two: a success Out_Set and a failure 
Out_Set, separated by ";". The failure Out_Set is optional, and if there's no failure 
Out_Set when the Prolog execution fails, nothing will be written on the blackboards. 
Finally, there may be several read guards and in guards in a pattern. Generally, an ESP 
pattern has the following form: 

re~dl {i,,1} . . .  r e~d .  {i,~.} ,~ > 0 

I body 

[; {failx}[@targetx]... {failv}[~targetp] ] 

E x a m p l e  

m > O  

p > O  

Seqlmp in figure 1 gives the initial state of the ESP program in table 1, 
which models a Sequential Machine: 

t h e o r y  coord(Target2, Target3) : - 
{ i n ~ t ( x ) ,  a~ te (V)}  

I 
{ i n w t  l ( X ), i ~ t  2( Y ) } ~T  ~r ga3 

# 
{o~t (x )}  

I 
{ ,t~te(X)} 
{ output( X ) }@Target2 

theory pcomb(Targe t  ) : - 
{input l ( X ), input 2( Y ) } 
I 
f ( x ,  y, z) .  
{o~,t( Z) }eTarget 

wi th  
f (X ,  Y, Z):- computes Z from X,  Y. 

Table 1. The theories of Seqlmp 

There are two blackboards (represented by boxes with their names on up-left corners) 
named Seq and Comb respectively. 

Blackboard Comb and the agent on it (working on theory pcomb in Table 1) model 
the combinational network of the Sequential Machine, while blackboard Seq and the 
agent on it (working on theory coord) model the rest of the machine: inputs are sent to 
Seq, and the agent on Seq feeds them to Comb together with the current state, receives 
the output, updates the state and produces the output of the Sequential Machine. 

Blackboard Seq contains a fact state(initial), and an agent (denoted by a circle) 
with three targets (denoted by arrows from circles to blackboards) for its output: its 
own blackboard Seq (denoted by number 1), the outer system (2) and blackboard Comb 
(3). This agent works on theory coord which uses parameter Target2/Target3 as its 
second/third target. In this example, they are instantiated as UP/Comb (Note: UP 
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Figure 1: Two specifications of the Sequential Machine 

is a special blackboard name for all outside targets). Targetl is omitted since it is 
the agent's own blackboard. Theory coord has two patterns (separated by #) .  In the 
first pattern, it consumes facts that match input(X) and state(Y) respectively, and 
then gives facts inputl(X) and input2(Y) to its third target Target3. In the second 
pattern, it consumes facts that match out(X) and then gives facts like state(X) to its 
own blackboard and facts like output(X) to its second target Target2. In both these 
patterns, the Body is empty. 

Initially, blackboard Comb contains no facts but only an agent working on theory 
pcomb, which has only one pattern and one target which is instantiated to blackboard 
Seq. This pattern consumes facts of form inputl(X) and input2(Y), executes goal 
f(X, Y, Z) by the Prolog program (beginning from keyword with in the theory), and 
then gives output out(Z) to its target. [] 

The blackboard hierarchy is dynamic, i.e. new subtrees of blackboards may be created 
at run-time. At the same time, the targets of the agents are also dynamically defined. 
So the total dynamicity of the system means: the agents, the sources from where to 
absorb information and the targets to where to send information may change. Due to 
the lack of space, we no longer deal with the dynamic facets of ESP. 

2 .3  R e f i n e m e n t s  i n  E S P  

A software process model may be very large. To deal with it, one may construct, at 
first, a small system with a simple structure only to describe the main properties (the 
tasks to fulfill), then substitute it with another one with more implementation details. 
For example, consider SeqSpec in figure 1, where theory pseq is 

t h e o r y  pseq(Target) : - 

{i  tCX), stateCr)} 
I 
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wi th  

f(x,Y,z). 
{o t t(Z)}OTarge  
{:tate(Z)} 

f(X,  Y, Z) :- the same as that in theory pcomb. 

It can be seen as the initial specification of the Sequential Machine corresponding to 
Seqlmp in figure 1. So one may use SeqSpec at the beginning and then substitute it 
by Seqlmp. 

The problem rises: is this substitution correct? I.e., is SeqImp a correct imple- 
mentation of SeqSpec, which means: can SeqImp generate all I /O streams that can 
be generated by SeqSpee, and will it not generate spurious streams in the context of 
the substitution? The way to solve the problem is to forget intermediate derivations, 
which is done by the monitoring step in CONESP that gives the support to define the 
implementation relation in CONESP. 

3 A B r i e f  O v e r v i e w  o f  S M o L C S  

To build CONESP, which is the formal system that defines ESP semantics, we adopt 
the SMoLCS methodology [2,3,13] which is based on labelled transition system. A set 
of processes is described by a labelled transition system, in which atate8 represent the 
states of processes, and tranaitiona represent the capability of the processes to evolve 
from one state to another while the interaction with the outside world is represented 
by the label. In other words, the label contains the information for the condition of the 
external environment so that the capability of the processes to evolve becomes effective. 
This interpretation of labelled transition system has turned to be classical since it was 
inspired by CCS [10] and SOS [12]. In the simplest case, when the transition is purely 
internal to the system and there is no relationship with the environment, the label can 
be dropped or better represented by a special label. 

Based on labelled transition system, SMoLCS is a methodology intended to add 
abstraction and modularity to the specification of concurrent systems and languages, 
especially considered for the formal description of large systems. 

Def. A label led t r ans i t i on  sy s t em is a triple (STATE, LABEL, '..) where 

STATE~LABEL is a set of atates/label8 of the system, and 

~ C  STATE • LABEL x STATE is the transition relation. 

i 8' if (8,l,a') Note  Usually, we simply write s ;- 

Example  If agent Agent1 can put facts F onto blackboard B, and then changes into 
Agent'l, this can be represented by 

Agent1 Se~d(V,r) "~ Agent 1 

0 
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Given transition systems for the simple components, the dynamic activity of a compound 
system is defined in SMoLCS in a canonical way, following three steps: syncronization, 
parallelism and monitoring, which are specified by giving appropriate abstract data 
types. In this way, one can easily modify part of a specification, which is badly needed 
in practice for large projects. To fix notations, in the following we review these steps, 
which are applied in the next section to define CONESP. 

The syncronization step defines those transitions that represent syncronized actions 
of a group of process components and their effects on global information: given a tran- 
sition system CTS (with transition relation ~) that represents the process compo- 
nents, the syncronization step defines a new algebraic transition system STS where the 
transition relation ~ corresponds to the syncronized actions of a group of process 
components. 

The state of STS is a couple whose elements are a multiset of states in CTS and some 
values (called global information of the process components) representing the status of 
the passive components. Here, passive means that it has no transitions of its own, but 
may be changed as a consequence of the transitions of processes. Thus, the states in 
STS have form 

< g , ~ l  I . . .  [ l ~ n >  

where 9 is the global (passive) part, pr~ are states of CTS, and prl I . . .  I prn is a multlset 
of (parallely composed) process states in CTS. 

The transitions of STS are deduced from the transitions of CTS by STS axioms that 
have the following form: 

Al_<i_<,, ~ J ~  ^ Cond ~ < g,pr l  I . . .  I ~ ,  > ~ < g ,pr~ 1 . . .  I~,~ > 

where 81 is a new label denoting the interaction of prl,... ,prn with the outside, and 
Cond expresses that the actions of process components prl (s = 1,...,n) can be syn- 
cronized. The intuitive meaning of such an axiom is that, if each prl can evolve into 
the new process state pr~ by performing the action Ii, and Cond holds, then the whole 

I t # 

system can evolve into the new state ~ g ,pr I I ... [ pr,~ :> by some label 81, while the 
global information g is relatively changed into a new one w.r.t, the actions ll,..., l,~. 

The parallelism step defines those transitions that represent the admissible parallel 
executions of a group of syncronized actions and their complex transformation of global 
information. For example, the problem of mutual exclusion is faced on this step. 

The actions on this step are defined by using a composition function H (binary, 
commutative and associative) on actions of a group of process components. Intuitively, 
it defines that two actions can be executed in parallel (without syncronization). The 
actions that need to be considered for the composition are the syncronized actions 
defined in the syncronization step and those already obtained by composition. 

The fonowing a~om expresses the capability of two actions to be executed in paral- 
Id: 

i # 

<~ g , ~ s l  ~> e ~  <~ g1,m81 ~> A <: g, m82 ~> 01~ <~ g2, m82 ~> A Cortd 

d l i [ ~  I ' I 

< g, m81 [ m82 > ) < g , m 8 1  I m82 > 
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where Cond defines the transformation of the global information (from g to 9' as a 
function of g and gl) caused by action sll ][ sl~. 

The Monitoring step may define some global restrictions on the transitions of the 
entire system, llke restricting the labels which can be observed from the outside. 

Analogously to the previous steps, the monitoring step is also defined by giving 
a new (modular) concurrent system starting from the concurrent system obtained in 
parallelism step. The axioms on this step offer some conditions under which the action 
in parallelism step 

ta 
< g, mp ) ~ < gl, mpl > 

is allowed by the monitor and it will become an action of this step represented by 
transition 

<= g, mp [ mpl  > l ,  < gt, mpl imp1 > 

where rap1 represents the multiset of the states of the active components in previous Step, 
and l represents the interaction of the resulting action with the external environment. 

4 C O N E S P ,  a c o n c u r r e n t  s y s t e m  for E S P  

In this section, we describe an ESP-entity as an abstract data type and then introduce 
the derivations that define its behaviors. 

4.1 C O N E S P  Ent i t i es  

CONESP is constructed as a hierarchy of ESP-entities, where each ESP-entity corre- 
sponds to a blackboard system in ESP. An ESP-entity named N A M E  can be expressed 
a s -  

N A M E  :< TR,  A C  > 

where ( TR,  A C  ~ represents the state of the entity: a passive blackboard tree T R  
and a collection A C  of parallel active components (separated by "1"). 

4.1.1 TR:  t h e  b lackboard tree 

The passive part T R  represents the blackboard tree of ESP and is a dynamic struc- 
ture describing the evolving state of the dynamic system. Its nodes are multlsets of 
facts. Each blackboard in the tree has a unique name. This passive part is specified 
as an abstract data type TREE using partial algebra [7]. We give here only a simple 
example. 

E x a m p l e  4.1.1 The passive part of the ESP-entity representing the blackboard tree 
of Seqlrnp in figure 1 can be specified as 

(R(Seq, {state(initial)}), Seq, Comb, ~) (Trimp) 
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where r is the empty multiset of facts. In general, (TR, B1,B2, F) is a tree generated 
from tree TR by adding a new blackboard B~ under blackboard B1, with the initial set 
of facts F.  Also, R(B, F) denotes a tree with only a root B containing facts F.  

4 .1 .2  A C :  a c o l l e c t i o n  o f  a c t i v e  c o m p o n e n t s  

There are two kinds of active components: the agents and (sub) ESP-entities. 
Each agent in an entity has a coordinate blackboard, denoting the source to get 

facts. In order to meet the characteristics in ESP that each agent has a list of targets 
to give its output, we also explicitly express, for each agent, this dynamic binding as a 
list of targets. Besides, each agent has a predefined theory, the task it executes. In this 
sense, we exphcitly specify an agent in CONESP together with these three dements as 
prefixes. Generally, we express an agent as 

(B, Th, Tar) : Astate 

where B is the blackboard of the agent, Th is its theory, Tar is its target list, Astate is 
a state holding execution information and is discussed in section 4.2.1. 

No te  The target list of an agent includes parameters and may be changed dynami- 
cally. 

Example  4.1.2.1 The agents in Seqlmp (figure 1) are expressed as 

(Sea, coord, [Seq, UP, Comb]) : nil ( Agimpl ) 

( Carnb,pcomb, [Seq]) : nil ( Agimp2) 

N o t e :  Here, nil is the state, in which an agent is ready to activate the patterns in 
its theory. [] 

The detailed structure of an ESP-entity is shown in figure 2. 

Example  4.1.2.2 The initial entity Seqlmp in figure I (named Sub) can be described 
a s  

Sub :< Trimp, Agimpl I Agimp2 >. ( SeqImp) 

Example  4.1.2.3 The entity named UpName (figure 3, right) contains entity SeqImp 
and some other active components UpAc, and is expressed as 

UpName :< UpTr, UpAc I SeqImp > 

where UpTr is its passive part. 

4 . 2  C O N E S P  S p e c i f i c a t i o n s  

The structure of CONESP specifications is as follows: (i) Agent Transition describes 
how the agents work on their theories. (ii) Syncronization Step describes the syn- 
cronized transitions of entities including the syncronization among agents, blackboards, 
and subentities. (iii) Parallelism Step describes the entity transitions on all agents and 
subentities. On this step, conditions w.r.t. ESP, e.g. mutual exclusion on blackboard, 
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a list of target blackboard 
coordinate blackboar~ suloentity's name 

entity' i~ name ]~ t h I ~  agent'sl state subentlty's~ state 

Name: < Tr, (B, Th, Tar >: Astate I ...... I S: Estate I ...... > 
1 " ' 

passive blackboard tree a collection of subenties 
a collection of agents 

Figure 2: structure of entities in CONESP 

UpName 

'1 

I UpSpec 
I 

Sub 

[ I I 

I seqspec I I 
I I I 

.I 

Up Nam e 

Uplmp 
Sub 

f I 

I $eqlmp I 

L I 

I . . . . . . . .  

Figure 3: ESP-entity examples 
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pattern activation 
Q - b  

pattern a c t ~ j  ~ , . .~c t , va t len  
/ ~  ''~176 \ 

body execution 

Figure 4: execution states of theories in CONESP 

will be given. (iv) Observational Step describes the observable actions and related 
transitions. 

We use the following ~sorts for the axiom quantifiers: bid for blackboard identifier 
and subentity's names, facts for multiset of Prolog atoms (sort fact) in a blackboard, 
th for theory's names, name for entity's names, sub for substitutions, tree for passive 
blackboard trees, tar for lists of agent's targets, ag/ent for agents/entities and ae for 
active components (whenever it is convevient we will distinguish between agents and 
entities). 

4.2.1 Agen t  Trans i t ion  ( t heo ry  execu t ion)  

Like in Shared Prolog, each agent works recursively on its theory, having three execution 
states as shown in figure 4: 

1. It may stay in state Initial. In this state, the agent is ready for pattern activation, 
i.e. to choose, among those in its theory, a pattern whose guards are satisfiable. 

2. It may stay in state Task, ready to do the task of this activated pattern, e.g. 
Prolog(Bod90), which indicates that the agent is going to execute Prolog pro- 
gram for goal BodyO. Here Body is the body part of the pattern chosen in the 
previous step, and 0 is the substitution got from the previous step. Such Tasks 
are described as internal derivations, i.e. we do not go into the details of Prolog 
execution. Other tasks include creating subentities, deleting subentities, instan- 
tiating targets, deleting targets and are not dealt with here, due to the lack of 
space. 

3. After finishing a task, the agent is in state Output, and is going to give output 
to its targets. This output comes from the Out_Set of the pattern together with 
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the substitution from pattern activation in the first step and, if it has successfully 
terminated the body, the resetting substitution. 

Generally, we use nil for state Initial; A.nil for state Output where A is the output set 
denoted by ~ if it is empty; A.(B; C).nil for the state Task where A is the task to fulfill 
and B/C is the success/failure output set. 

N o t e  Since the body part and postactivation part in ESP theory may be empty, we 
may also go from state Initial to state Output or to itself, from Task to Initial. [] 

The change from one state to another should satisfy the corresponding rules on agent 
transitions including pattern activation, body execution, output to targets. Generally, 
we have the following schema for pattern activation: 

V B : bid, T : tar, O : sub 
Activate( B ,ITl~,p 6,RTlL,p =,0 ) 

(B, Th, T) : nil 

( B, Th, T) : Prolog( GoaITh,p=O).( SUCCTh,p=8; Failrh,p=8).nil 

for each pattern Pa in theory Th such that its body is a Prolog goal GoaIya,p=. 

N o t e  

1. CONESP specification is parameterized and this is only a schema: for any theory 
Th in the program, it may be applied to any of its pattern P a  provided that its 
body part is a Prolog goal. 

2. Prolog(F ) calls for Prolog program using F (including variables) as a goal. 
ITh,p=/Rrh,p= is the In_Guard/Read_Guard of pattern P a  in theory Th. 

3. SuccTh,pJ FaiITh,p= has form AddF( targetl,outl) H.-. [[ AddF( target,,,, out,~) 
corresponding to the success/failure Out_Set (cfr. section 2.2) of pattern P a  in 
theory Th. AddF(targetl, F) adds a set of facts F to the i-th target of the agent. 

4. Blackboard B and target T are parameters for the coordinate blackboard in which 
this theory is executed, and the instantiation for the targets of this theory. 
Substitution 0 appears also as a parameter. Its value will come from the commu- 
nication with its blackboard by matching ITh,p= and Rrh,p= in blackboard B (See 
next step for the communication between agents and their blackboards). 

As a special case when the Body part of a pattern is empty, the agent goes directly to 
give the success Out_Set after activating the pattern. 

E x a m p l e  4.2.1 Theory eoord's first pattern (section 2.2) has an empty body part. 
For agent Agimpl (Example 4.1.2.1) in entity Seqlmp (figure 1), the agent's blackboard 
and targets being instantiated by Seq, Seq, UP and Comb respectively, we have 

V 0 : sub 

Agimpl 

(Seq, coord, [Seq, UP, Comb]): AddF(3, {inputl(X), input2(Y)}O).niI (Agimpl') 
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4.2.2 Syncron iza t ion  Step 

An agent's action includes creating/deleting subentities, pattern activation (getting 
facts), internal derivation (those that have no effects on other part of the entity, e.g. in- 
stantiating/deleting targets, executing Prolog program), sending facts to targets (black- 
boards or subentities). 

An entity may receive facts from an agent from outside. As we hide all the details 
of an entity to outside, the agent knows neither the structure of the entity nor any 
blackboard name in it. For the moment, we adopt the principle that the agent from 
outside sends facts to an entity by calling its name, and the facts are put into the root 
of the entity. We use Send(S, F) to describe the agent's action of sending facts F to 
entity S, and we use In(S, F) to describe that the entity receives facts from outside. 
On the other hand, an entity may send facts F into a blackboard B in super entity, 
which is described as Out(B, F). Thus, as an active component, an entity acts in two 
ways: In(S, F) and Out(B, F). These two actions are distinct from the others. 

On this step, we define entity transitions of syncronized actions and their effects to 
the blackboard tree. The rules for syncronizations considering these actions have the 
canonical form in the same step in SMoLCS (cfr. section 3). Notice that in blackboard 
systems, no two agents can communicate directly, but via the blackboard. So the 
syncronization happens only between agent and blackboard, between subentity and 
blackboard, and between agent and subentity. Here we only show how the agent's 
pattern activation effects its blackboard and causes the transition of its entity. 

When an agent is in Initial state, it may activate a pattern in its theory provided 
that In_Guard and Read_Guard of this pattern can be satisfied by the current state. 
This test is done by 

eval( In_Guard, Read-Guard, Blackboardl ) = <  Blackboard2, 0 > 

where function eval takes the In_Guard, the Read_Guard, the blackboard of the system 
(Blackboardl), and returns, if the evaluation succeeds, the set of atoms (Blackboard2) 
to be retracted from blackboard (Blackboardl) and the computed substitution (0) to be 
passed to the rest of the pattern. Otherwise, the special symbol F A I L U R E  is returned 
(cfr. [41). 

From section 4.2.1, we know that in Agent a~a~,(S.1,R,e) > Agent~ ' the agent has 
coordinate blackboard B, the activated pattern has In_Guard I, Read_Guard R, and 
the matching between the guards and facts in blackboard B should be 0. So we have 

V Tr : tree, Pr, Pr I : ae, B : bid, I , R , F  : facts, Ename : name, O : sub 

Pr Pr' ^ eval(I,R, getb(Tr, B)) =< F,O > ^ D(< Tr, Pr >) 
R~S,F) 

Ename :< Tr, Pr > , Ename :< delf(Tr, B , F ) , P r  I > 

for the entity transition of theory activation, where the matched facts F are deleted 
(delf(Tr, B, f ) )  from the blackboard S in the tree Tr. 

Note  Partial algebras [5] are used. Here D(< Tr, Pr >) denotes the definedness of 
entity Ename :< Tr, Pr >. Condition eval(I,R, getb(Tr, B)) =< F,O > guarantees 
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the definedness of < dell(T% B, F) ,  P r '  > since we have that  D ( <  Tr, Pr >).  getb is a 
function that ,  given a tree and a blackboard name in the tree, returns the multiset of 
facts on the named blackboard in the tree. 

E x a m p l e  4.2.2 Once enti ty SeqImp (Example 4.1.2.2) receives a fact input(a) from 
outside into its blackboard Seq, it transforms into Seqlmpl,  i.e. 

Sub :< Trimpl,Agirapl I Agirnp2 >. 

where Trirnp~ = addf(Trirap, Seq, {input(a)}). The  transit ion in which Agirnpl acti- 
vates the first pa t tern  of theory coord (Example 4.2.1), can be used in entity SeqIrnpl, 
because both  state(X) and input(Y) can be matched on blackboard Seq in the tree 
Trirnpl. In other  words, 

eval( { state( X ), input(Y)},  c, getb( Trimp~ , Seq ) ) = <  F, 80 > 

is t rue with 

F = {state(initial), input(a)} 8o = { X  ~ initial, Y ~ a} 

So we have 
l:lec( Seq,{,t*te(initicd), input(a)}) 

Sub :< Trirnpl, Agirnpl > ~ Sub :< Trirnp2, Agirnpl' > 

where Trimp2 = delf ( Trirnpl , Seq, { state( initial), input( a ) } ) 

4.2 .3  P a r a l l e l i s m  S t e p  

According to SMoLCS, we describe here how the transitions introduced in the previous 
step may happen in parallel, on -ll active components.  The  essence of this step is to give 
conditions under which if enti ty Entity1 may transit  into Entity2 by Aetl II . . .  ]1 Act, ,  
and may transit  into Entity3 by Actn+l, then it may transit into Entity4 by Act~ II " "  II 
Act,  I[ Act,+l. 

From ESP, we know that  no two accesses to the same blackboard are allowed at a 
time. This also satisfies the condition in Shared Prolog that  among several pat terns  
of a theory, only one can succeed at a time. So, if we want to put  an action Sad  on 
syncronization step into an action Pact on parallelism step, we must test if Sact is going 
to access any blackboard already used in Pact. 

E x a m p l e  4 .2 .3  It is always possible to put  the internal action r into any transit ion on 
parallelism step, without any condition. For example, suppose the r action is executed 
by a collection of active components Prsl  

Enarne :< Tr, Prsx > ~ ~ Ename :< Tr, Prs' 1 > 

and suppose a collection of active components Prs2 may change into Prs' 2 by action 
Rec(B, F) which changes the blackboard tree T r  into Tr ' :  

Ree(B,F) 
Enarne :< Tr, Prs2 > ~ Enarne :< Tr', Prs 2 > 

then without any condition, we have 

Rec( S ,F ) 
Ename :< Tr ,  P r s l  I Prs2  > , Ename :< Tr ' ,  P r s '  1 I Prs'2 > 
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4.2.4 Monitoring Step 

In section 4.2.3, we have seen that  an enti ty has two kinds of actions for the communi- 
cation with the outside. On this step, function Visible is introduced to select out these 
actions from those in parallelism step, leaving all the others denoted by v, e.g. 

Visible(Out(Bx, Fx) II Rec(B, ,  F , ) )  = Out(Ba, Fa) 

Besides, we add a restriction on this step that  no two output  actions of an entity can 
succeed at a time, i.e. 

O~,t(B,F)llOth~, 
A , A' 

on the parallelism step, implies 

o=t(s,F) 
A , A I 

on this monitoring step, provided that  there's no other  action Out(B', F ~) appearing in 
Other. 

From the previous two steps, we know that action 

In(Sl , f l)  I1"" II Xn(S,,F,) for n > 1 

is not allowed because this means, according to our principle of the communications 
between entity and subentity (section 4.2.2), to access the root of the blackboard tree 
at the same time, which is not allowed according to the mutual  exclusion on blackboard. 

As a consequence, we have only four kinds of actions on this step (F, F ~ : facts, B : 
bid, S : name): 

r, In(S, F), Out(B, F) ,  In(S, F) II Out(B, F') 

5 I m p l e m e n t a t i o n  R e l a t i o n  

Based on the monitoring step, we turn to the sequences of the actions defined on mon- 
itoring step in order to give a suitable notion of implementat ion relation in ESP, as 
announced in section 2.3. 

We want to consider action sequences (of sort seq) tha t  start  from a given state,  but  
not all of them. For the initial state SeqImp, for example, we expect that  the inputs 
are unifiable to input(X) or state(X) (which are all tha t  make sense for SeqSpec), but 
not to out(X). 

Def .  Action sequence 11 ... l,, is covered by X, denoted by lz . . .  l= r- X ,  if 

l, is In(S, F) or In(S, F) II Out(B, F') implies F C_ X.  [:3 

Notice that  F ~ can be any set of facts, i.e. only the input set is concerned. 
Function I IF is thus introduced to get from a given entity the interesting input facts 

under  our consideration. For instance, IIF(SeqSpec) contaln's all the facts unifiable to 
input(X) or state(X), while IIF(SeqImp) contains all the facts unifiable to input(X) 
or state(X) or out(X) .  So the sequences used to compare SeqSpec and SeqImp should 
be covered by IIF(SeqSpec). 
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Observing predicate Perftrrm(tr, A, X)  is used to characterize our observations - -  
the action sequence ~ starting from the initial state A and covered by set of facts X.  
By definition, 

Perform(l l  . . . I , , A , X )  - Ai~=I A~ l, ~ Ai+l A 11 . . . l ,  r- X 

Now we introduce our implementation relation, denoted by -.-*. A --~ B means that  B 
is an implementat ion of A: 

Def. A --~ B iff IIF(A) C IIF(B) and 

V~r : seq. Perform(~r, A, I IF(A) )  iff Perform(~,  B, I IF(A) ) .  

E x a m p l e  Now our problem on Sequential Machine can be s tated as 

Vu : seq. 

Perform(tr, SeqSpec, IIF(SeqSpec)) - Perform(~r, Seqlmp, IIF(SeqSpec))  ? o 

It is easy to see that  if Xx C_ X2 then 

Per form(  tr, A, X2 ) implies Per forrn( ~r , A, X1). 

So we have the following 

Fac t  -.-* is transitive. 

L e m m a  If A1 and B1 have the same name S, A1 ~ B:  and agents in R only send 
facts in I IF(A1)  to S (i.e. in their actions Send(S,F),  F always belong to II.F(A1)), 
then 

EAI = N :< Tr l ,AI  [ R > -.~ EBI = N :< Trl ,B1] R > 

P r o o f  We prove for the universe U of facts, 

Perform(~r, EAx, U) implies Perform(u,  EB1, U) 

The proof  of the other direction is analogous. 

Consider any 11 .. . l,, : seq, s.t. for 1 < i < n, we have EA~ t, , EA~+I 
i. A 

where EAi+I = N :< Tri+I,Ai+: ] R/+: > and Ai-2--, Ai+l. 
Now, since the environment behaves correctly, i.e. agents in R / o n l y  send facts in 

I IF(A1)  to S, we have llA.., l A V IIF(A1) ,  and since A1 "-* B1, we can find Bi s.t. 
I.A 

Bi - -~  Bi+l. Given now 

EBI = N :< Tri, Bi [ P~ > and EBI+I = N :< Tri+l,Bi+l [ Ri+l >, 

we have 

EBI I, ~ EBi+I 

because we only need to consider syncronization between S and the environment and, 
according to CONESP specifications, the conditions for syncronization do not include 
information in the entities (e.g. At, Bi), but  the information in the syncronized actions 
(e.g.  I:). r-1 

The composibility of---, may be stated as 
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T h e o r e m  If Ai ".-* Bi (i=l,2,...,n), where Ai, Bi have name Si, agents in R only 
use facts in IIF(A~) in their actions Send(S, F), and 

E = N : < T r ,  A a I . . . I A ,  IR> ' ,~  N : < T r ' , A I I . . . I A , , I R ' >  

then E -,-* N :< Tr',Bt I ... I B,,I R' > 

P r o o f  immediate by Lemma and transitivity. [] 

This composition theorem protects the implementation relation when subentities are 
substituted by their implementation. So we may solve, for instance, the problem shown 
in figure 3. That is: if we substitute a subentity (SeqSpec) by its implementation 
(Seqlmp) which has more implementation details, the total entity (UpSpec) is also 
changed into its implementation (UpImp). 

6 F u t u r e  W o r k  

We are now working on proof techniques. In the basic cases, the proof that A -.z B must 
be done by the definition and it envolves considerations of too many action sequences. 
We expect to reduce their number, by considering only those that are necessary for the 
proof. We call these sequences relevant  ac t ion sequences,  and we are considering 
two methods to construct them: (i) choosing most general facts for input; (ii) finding 
necessary combinations of facts as input, in order to give output. Other proof techniques 
are also under development, especially to deal with recursion in the execution trees of 
CONESP. 
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