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A b s t r a c t .  A computational framework for extracting (1) edges with an 
arbitrary profile function and (2) keypoints such as corners, vertices and 
terminations is presented. Using oriented filters with even and odd symme- 
try we combine their convolution outputs to oriented energy resulting in a 
unified representation of edges, lines and combinations thereof. We derive 
an "edge quality" measure which allows to test the validity of a general edge 
model. A detection scheme for keypoints is proposed based on an analysis 
of oriented energy channels using differential geometry. 

1 I n t r o d u c t i o n  

The interpretation of static, monocular grey-valued images is usually based on the hy- 
pothesis that the loci of strong intensity variation are tightly coupled to physical events 
such as 3D discontinuities (foreground/background) or changes of surface orientation. 
However, the corresponding intensity variations normally differ from ideal edges. They 
often have complex profiles and may not be perfectly straight. Therefore, edge detection 
has to be a truly 2D process and linear operators based on idealized edge-models (e.g. 
Canny [4]) seem to be inadequate for detecting complex intensity distributions. 

Perona & Malik [16] have pointed out that, in general, linear operators cannot detect 
and localize correctly edges and lines simultaneously. This problem becomes relevant in 
real images as many "natural" edges are neither a pure edge or a line, but rather have 
complex intensity profiles. Second order non-linearities in the form of local energy may 
provide a solution to the problem [6] [1] [13] [12] [15] [16]. 

Yet, energy models and their "linear" precursors are intrinsically one-dimensional. 
They cannot account for another important class of image features: corners, vertices, 
terminations, junctions etc.. These two-dimensional intensity variations indicate, for ex- 
ample, strong variations in contour orientation, terminations occurring in occlusion sit- 
uations and many other relevant 2D features. 

In this paper we propose a dual processing scheme which emphasizes the detection 
of 1D signal variations on the one hand, and of points of strong 2D variations on the 
other. We present a method which allows (1) to derive a valid indicator for the presence 
of 1D edges with arbitrary profiles and (2) to detect and localize complex 2D intensity 
variations. We use the term general edge (GE) for regions of 1D intensity variation and the 
term keypoint for points of strong 2D intensity variation. The concept of a general edge 
allows to develop a fully 2D filter model based on linear filters which are polar separable 
in the Fourier domain. Even and odd filter outputs are then combined to oriented energy. 

Two aspects of our approach are new: (a) The use of a contrast independent measure 
for deviations from a general edge; this enables us to limit the application of the edge 
model to points that  qualify as general edge points. The local maxima of oriented energy 

* The research described in this paper has been supported by the Swiss National Science Foun- 
dation, Grant no. 32-8968.86. 



79 

can then be used to localize the edges [16],[12]. (b) The use of differential geometry ap- 
plied to oriented energy maps, yielding a representation of strong 2D intensity variations 
(keypoints). 

The work presented here was partially motivated by our interest in biological mech- 
anisms of contour processing [20] [19] [17] [7]. 

2 General Edge, Orientation Filters and Local Energy 
We define general edges (GE) to be image features with an arbitrary intensity variation in 
one direction and constant intensity orthogonal to it. The spectrum of a GE is restricted 
to a central slice in Fourier space (cf. [2]). This property of GEs make orientation filters 
that are polar separable in the Fourier domain a natural choice because they allow to 
separate filter responses into a term which depends on the profile of the GE and a 
term that depends only on the difference between filter and edge orientation. Using polar 
coordinates in the frequency plane, we define the 2-D filters Fn(v, r --- H(u)/2n(r where 
g(u) defines the radial bandpass characteristics and/2n (satisfying/2,(r  - - /2n( r  + x)) 
controls the orientation selectivity of the filters (n: orientation index). In this paper, we 
use /2 ,  (r -- cos 2v (r - 0n - ~) with 0, defining filter orientation. 

With fn being the inverse Fourier transform of Fn the convolution with a GE of 
orientation 0 has the form s(x, y) �9 fn(x, y) = /2(0 - 0 , ) -  g(~, y). Choosing (~, 0) as 
the rotated coordinate system with ~ in the direction of the GE, g(x, y) becomes a 1D 
function g(0) which is the convolution of the 1D GE profile with the radial term of the 
filter H(v) .  In other words, polar separable filters allow to split up the convolution result 
with a GE into a term depending on orientation and a term depending on the profile of 
the GE. This reduces the design of the bandpass characteristics to a 1D problem. 

Since we allow GEs to have arbitrary profiles, simple linear filtering (e.g. [11] [4]) 
cannot warrant correct localization. Local energy concepts, however, as proposed by 
[6] [13] [12] [15], seem to overcome this deficit in that they unify the detection of edges, 
lines and hybrid forms. Local energy requires for each orientation n a pair of even and 
odd filters whose convolution output is combined by quadrature pair summation to form 
local energy. A common method is to construct these filter pairs as Hilbert transforms 
of each other [13] [16]. 

In general, however, Hilbert pairs do not guarantee a monomodal line response in local 
energy. Gabor pairs, as proposed by Adelson et hi. [1], show a monomodal line response 
but have the drawback that the even Gabor does not integrate to zero. We modified the 
Gabor scheme by introducing a frequency sweep such that both filters integrate to zero 
(cf. [7]). The Fourier transform of these 1D filters provides the radial term H(v)  of the 
polar separable 2D filters. In the present paper, local energy is then defined as the square 
root of the sum of the squared response of odd and even filters. 

3 Local Orientation and Contour Quality 
Using a sufficient number of different orientations, it is possible to determine the exact 
orientation 0 of a GE: Let Ej be the energy response in orientation j and Emax the 
maximum over all orientations. Now we define Q(r as 

N--1 ( E j ( r )  n( l r  
Q(r = E \Ema~(r)  - /2 (mink=0,  ,N-1 [r -- 0kl) /  (1) 

j=0 "" 
Since the filters are polar separable in the Fourier domain, it is possible to write Ej = 
S./2 (0 - 0 r) and, since/2 is a monomodal function, E, na~ = S-/2 (mink=0,...,N-t [0 -- 0k [). 
Therefore Q(r = 0 r r = 0. Finding the exact orientation 0 of a GE amounts to 
searching for Qmln = mine=0,, Q(r with r being the angle where Q(r = Qmi,,. 
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The value Qmln is a measure of GE conformity. It is zero for a GE and increases 
with increasing deviation from a perfect GE. If  Qmin is greater than a threshold value 
O, th we consider the image structure to differ significantly from a GE. We take the local 
orientation as given by r if Qmin < Qth. Otherwise a unique orientation is not 
defined. Fig. 1 shows in the top row four samples of a trihedral vertex with increasing 
levels of additive gaussian noise. The center row represents the values of Qrnin and emi,. 
The orientation of the lines corresponds to r whereas the match with the general edge 
model is expressed by line length L = (1 + Qmin) -1. L can be considered an estimate 
of  "GE quality". Fig. 1 clearly shows how L decreases in the neighbourhood of  a vertex. 
Noise also leads to a degradation of L. The bot tom row shows the result of edge detection 
given by the local maxima in energy orthogonal to the orientation emin. Edge processing 
stops where the GE model is no longer valid. 
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Fig. 1. Edge quality maps. 
The top row shows a s0anple 
vertex, corrupted by increas- 
ing levels of noise (from left 
to right: no noise, 20dB, 10dB 
and 5dB SNR). The center row 
shows a plot of local orienta- 
tion and edge quality, and the 
bottom row shows the result 
of edge detection. The com- 
putimg was done on 128x128 
pixel images to avoid border 
effects. Shown are 32x32 pixel 
cuts from the central part of 
the images. 

4 Keypoints 
In the previous section we have described a method of finding GEs using a measure of 
quality. On the other hand, there is a class of important  image features with pronounced 
2D variation of  intensity such as line endings, corners, junctions etc. (keypoin~s). In this 
section we present a method for detecting these keypoints. It is based on the oriented 
energy maps and does not rely on an explicit model of any particular 2D intensity dis- 
tribution. 

The basic idea is to exploit the fact that  deviations from a GE result in changes 
of local energy magnitude along the edge. Deviations may be induced by all sort of 
image features such as (a) a loss of contrast (e.g. line ending), (b) two or more edges of 
different orientation meeting at one point (e.g. corner, vertex) or (c) continuous changes 
of  orientation (curvature). Directional derivatives in the orientation of  a contour seem to 
be a straight-forward way for detecting keypoints. Local extrema of  the first directional 
derivatives would indicate features like line-endings, corners and junctions. For strong 
curvature and blobs the second directional derivatives would be more appropriate. 

On general edges, the derivatives along the edge orientation are zero. At keypoints 
a unique orientation cannot be assigned and thus derivatives in a single orientation are 
inadequate for representing such features. Using the property tha t  oriented energy sepa- 
rates orientational components, we propose to take for each energy channel the directional 
derivatives parallelto its orientation. We expect keypoints to have local extrema in deriva- 
tive magnitudes. However, the directional derivatives are non-zero, also on GEs, for all 
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orientations that differ from the edge orientation. We show that these "false responses" 
can be selectively eliminated by a compensation scheme that makes use of the systematic 
nature of these errors. This compensation scheme is based on derivatives orthogonal to 
each oriented energy channel. We use the terms p-derivative and o-derivative for direc- 
tional derivatives parallel and ovthogonal to the orientation of a channel, respectively. 

Assuming N filters with orientations given by O,~ = ~ and a GE with orientation 8, 
we define 8 ,  as unit vector parallel to filter orientation and 8,,j_ as unit vector orthogonal 
to filter orientation. At location r we define 

dEn (r) [ dUE, (r) 1+ 
p ( 1 ) ( r ) =  ~ and P ( = ) ( r ) = _ -  ~--~5 -j ,wi th  [~]+=max(0 ,~)  (2) 

as the gradient magnitude parallel to filter orientation (lst  p-derivative) and as an esti- 
mate of negative curvature of the magnitude of local energy along filter orientation (2nd 
p-derivative). The latter corresponds to 'bump 's '  of local energy along filter orientation. 
Since we are not interested in local minima along oriented energy, p(2)(r)  is defined 
to be zero for positive values of the second directional derivative. Fig. 2 shows oriented 
energy En and its directional p-derivatives for a sample corner. Each column represents 
one orientation channel. With above definitions and in analogy to local energy we may 
define a scalar keypoint map K(r):  

/ f ( r )  = max ~p(1 ) ( r )2  + p(2)(r)2 
n=0,N--1 

In Fig. 3 the raw keypoint m a p / ~  is depicted for a sample corner, a line ending and a 
T-junction. As mentioned above, the 1st and 2nd p-derivative will be zero on a GE only if 
(8 - On) = 0. For (8 - On) ~ O, 1st p-derivatives will be zero only at the exact location of 
a GE and 2nd derivatives will always be > 0 with a local maximum on the GE. Because 
of these "false responses" to GEs, /~ is insufficient for detecting keypoints selectively. 
The systematic nature of these false responses allows to construct a compensation map 
C(r): + 

Using the properties of a separable filter (orientation selectivity given by cos 2P (8 - Or,)) 
and the properties of GEs (the local energy of a GE is a GE too), it is easy to show the 
following relations: 

pO) (r) = s(r) cos up (8 - On) sin (8 - On) , P(=) (r) = s(r) cos uP (8 - On) sin = (8 - 8.)  
(a) 

where s(r) depends only on the profile of the GE and on the distance from its center. 
Eqn. (3) suggests to use the directional derivatives orthogonal to the filter orientation as 
the compensation signal for the systematic error of K.  In analogy to the p-derivatives 
we define the 1st and 2nd o-derivatives as 

0En0~aj.(r) 0(2) .[ 02E,  (r)]  + 
= and ( ' )=  0- 2/ 

On a GE, the following relation holds: 

O(n 1) (r) = $(r) COS 2p+1 (8 -- On) and O(n 2) (r) m s(r)  cos 2p+2 (8 -- On) (4) 

For all O of a GE, the maxima of the 1st and 2nd o-derivatives are greater than the 
maxima of the 1st and 2nd p-derivatives. Therefore, 

Z ( O~ l , ( r )+  P O ' ( r ) ) =  + (P(U'(r))  = , n = 0 ,  N - 1 .  
k----0 
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Using the sum over all orientat ions as compensat ion has the advantage tha t  it  is robust  
in discrete implementa t ions  and we can define the compensat ion map  as 

N-1 

~u) :  E (o~ ~ (~)+ o~ ~) (~)) ~,~ ~ou): [K(r)- ~U)] + 
k----1 

However, C is not zero at  keypoints (e.g. at  a line ending) as can be seen in Fig. 3. 
Keypoints  are characterized by the fact tha t  the or ientat ion dis t r ibut ion of local energy 
differs significantly from the dis t r ibut ion on a GE.  This  fact can be used to  implement  a 

correction mechanism by combining orthogonal  pairs of  Oi  2) (r)  to form a new m a p  R: 

N/2-1  

R(r) = E ~/oF )(r) oi~ (r) (5) 
k=0 

Fig. 3 shows/~ for the three sample keypoints.  Obvious ly /~  > 0 on GEs, but  i t  remains  
a lmost  constant with varying 0 (subst i tute  (4) into (5)). 

O R I E N T A T I O N  

K C R 

K C R 

K C R NNN  

K C R D DDFrI I 

k ~ k 

Fig .  2. Responses to a 900 corner (top im- 
age) of oriented energy E~, first p-derivative 
p(1), second p-derivative p(2), first o- 
derivative 0 (1) and second o-derivative O~ ). 
Image dimensions axe 32 x 32 pixels; filter 
paxameters axe p = 2, cr = 3. 

Fig .  3. Keypoint detection using a corner, a 
line-end and a T-junction (32x32 pixels). Top 
rows: original image, final keypoint map (K), 
corrected compensation map (C), corrected 
combination of o-derivatives (R). Bottom rows: 
uncompensated keypoint map ( / 0 ,  raw com- 
pensation map (~ and unco~ected R map (/~). 

The  e x t r e m a / ~  and ~nin  differ by less than  10 percent of ~D~n~ (using filters with 
N = 6 and p = 2). I t  is interesting to note tha t ,  supposing tha t  N is even and N > ( p + l ) ,  
the sum over all 2nd o-derivatives is constant  and does not depend on 0. Therefore we 
es t imate  the error o f /~ ( r )  on GEs with the  sum over all 2nd o-derivatives and define 

R(r)= ~/o12) (r)" Oi~ (')-~" E oi~)(r) (6) 
L k--0 k~-0 
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An estimate of 7 can be easily derived setting 0 -- 0, substituting (4) into (6) and 
resolving the resulting equation for R(r) = 0. With this definition of R(r) we finally 
define the following compensation map C: 

= ( r )  - R ( r )  + ( r )  - 

k - - - = O  

This compensation map fulfills all requirements: (1) it cancels successfully all systematic 
errors of the raw keypoint map at general edges, and (2) it is zero at the location of 
keypoints. Fig. 4 shows the different steps of keypoint detection on a simple gray-valued 
image. The keypoint detection scheme has been tested on a wide variety of complex 
natural scenes. Results will be shown in the next section. 

(A) (B) (C) 
: : : : : 

Fig. 4. Keypoint detection 
scheme: (A) input image . . . . . .  
(~12 • 512 p~e~). (B) Raw 
keypoint map K. (C) Com- " " " ~ ~ " 
pensation map C. (D) Cor- 
rected keypoint map K. (E) 
Binary edge-map with key- 
point localization indicated 
by the center of the circles. 

(D) (E) 

5 Exper imen ta l  results 
I m p l e m e n t a t i o n :  Convolutions with the twelve filter kernels were carried out in the 
Fourier domain. Six maps of oriented energy were generated by quadrature pair sum- 
mation of even and odd filter convolution outputs (we took the squareroot of oriented 
energy to reduce signal dynamics to those of the original filter outputs). Binary edge 
maps were generated by finding local maxima orthogonal to the orientation of the best 
responding energy channel at each location. 

To compute the derivatives in the various directions oriented energy maps were sam- 
pled at discrete offset positions around center pixels. First derivatives corresponded to 
the difference in value at two offset pixels and second derivatives to their average minus 
the value of the center pixel. 
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C o m p l e x  scenes :  We have tested our contour and keypoint detection scheme with a 
variety of images of different complexity. One example is shown in Fig. 5A, an outdoor 
scene. The scene contains primarily corners and vertices, but  also some T-junctions (fence 
in the lower part  of  the image). A large proportion are occlusion features generated by 
the foreground object occluding structures of the building in the background. The curved 
shape of the sculpture thus introduces some interesting variation in termination angles. 
The result of the keypoint detection scheme is shown in Fig. 5B. 

Fig. 5. Application of the keypoint scheme to an outdoor scene: (A) input image. (B) 
keypoint map superimposed on a contrast reduced version of the original image. Image size 
is 512 x 512 pixels and filter parameters are p = 2 and ,r = 2. 

Fig. 6. Edge map (A) and keypoint localization (B) for a subsection of image in Fig. 5. 
Keypoint positions (pixel accuracy) axe indicated by crosses. 



85 

The dark blobs correspond to the keypoint map superimposed on a contrast reduced 
version of the original image. Note that the keypoint strength is a function of local image 
contrast. Thus weaker markings do not necessarily indicate a weaker evidence for the 
presence of a corner, vertex etc.. It can be seen that no markings, whatsoever, occur on 
straight contour segments. This proves our compensation scheme to be effective also with 
more complex 2D intensity configurations. Fig. 6A shows, for a part of the image, the 
contour map extracted with the non-maximum suppression scheme described above. A 
threshold of 8% of the maximal oriented energy response was applied. One can see that  
while straight parts of contour are well represented we often find gaps or distortions in 
the neighbourhood of keypoints. Fig. 6B shows the location of keypoints indicated by 
crosses (threshold again 8% of the global keypoint maximum). As both general edge and 
keypoint location have been derived from oriented energy, the maps are commensurable 
and complementary. 

6 Discussion 
We have presented a computational framework for extracting (1) intensity discontinuities 
which can be described as 1D variations (general edges) and (2) keypoints with a true 
2D intensity distribution (corners, vertices, terminations etc.). 

Using oriented filters with even and odd symmetry we combine their convolution 
outputs to oriented energy. This quadrature pair summation has the advantage that  edges 
and lines and combinations thereof are treated in a unified way and can be unambiguously 
localized [12], [15], [16]. The edge quality measure we derived is used to select for the 
edge map only those pixels that exceed a predefined quality. This way we can be sure 
edge detection is valid at these locations. 

The detection scheme for keypoints represents a novel approach to the problem of 
detecting and localizing image features like corners, junctions or terminations. This is 
more difficult than detecting edges. The abundant richness of two-dimensional intensity 
variations seems to prohibit approaches of the form of simplified model prototypes as, 
for example, the Heaviside function used in edge models. What  seems to be important 
is to reduce the dimensionality of the problem by generating invariant representations. 
Oriented energy is invariant with respect to the polarity and the type of edge [15]. 

We propose to detect keypoints by taking first and second derivatives on the energy 
maps in the filter direction (p-derivatives). The idea is that true 2D features produce 
strong variations in the energy signal parallel to its orientation. However, markings also 
occur for general edges if its orientation and the direction of the derivative differ. We 
have introduced a scalar compensation map that selectively suppresses these unwanted 
derivative signals. 

It seems that differential geometry is an adequate way to attack two-dimensional 
intensity variations. However, compared to other approaches that also use methods of 
differential geometry (e.g. [3], [10], [5]) , our model is not gray-level based (smoothed 
version of the original image) but uses oriented energy maps which have the advantage 
of representing different edge types in a unified way. Furthermore, our approach does 
not contain any specific model of keypoints, as for example a corner [9], [14], [18], vertex 
[5], T-  or L-junctions. In this respect we cannot expect selectivities for these specific 
2-D intensity variations. Our scheme detects and accurately localizes corners (di-, tri-, 
tetra-hedral junctions of different angles and contrasts) as well as line-terminations, T- 
junctions, strong curvature and blobs. However, the information given by the first and 
second p-derivatives in different orientations may be used to classify the keypoints. We 
are currently working on a processing scheme to classify keypoints paying attention to 
occlusion situations and to the distinction between foreground/background structures. 
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P a r a l l e l s  i n  b i o l o g i c a l  v i s i o n :  Some of the ideas of the work presented here origi- 
na ted  from our interest in the s imulat ion of neural contour mechanisms [7]. In fact the 
different stages of our computa t ional  approach can be compared to stages in cortical 
processing of visual information:  even and odd symmetr ical ,  orientat ion selective filters 
can be compared to the propert ies  of  simple cells. The oriented energy representat ion is 
consistent with complex cells which are known to exhibit  phase independence [12]. Hy- 
percomplex or end-s topped cells respond well to short  bars,  line-ends and corners [8]. We 
have related the response behaviour of single- and double-s topped cells to first and second 
derivative operat ions based on orientat ion selective complex cells [7]. These endstopped-  
operators  can be used to generate "subject ive contours". The results have demonst ra ted  
the impor tance  of detecting keypoints when dealing with the problem of spat ial  occlusion. 
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