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intensity 

A b s t r a c t .  In this paper we develop high order non-biased spatial deriva- 
tive operators, with subpixel accuracy. Our approach is discrete and pro- 
vides a way to obtain some of the spatio-temporal parameters from an image 
sequence. In this paper we concentrate on spatial parameters. 

I Introduction 

Edges are important features in an image. Detecting them in static images is now a well 
understood problem. In particular, an optimal edge-detector using Canny's criterion has 
been designed [8,7]. In subsequent studies this method has been generalized to the com- 
putation of 3D-edges [5]. This edge-detector however has not been designed to compute 
edge geometric and dynamic characteristics, such as curvature and velocity. 

It is also well known that robust estimates of the image geometric and dynamic 
characteristics should he computed at points in the image with a high contrast, that is 
edges. Several authors, have attempted to combine an edge-detector with other operators, 
in order to obtain a relevant estimate of some components of the image features, or the 
motion field [2], but they use the same derivatives operators for both problems. 

However, it is not likely that the computation of edge characteristics has to be done 
in the same way as edge detection, and we would like to analyse this fact in this paper. 

Since edge geometric characteristics are related to the spatial derivatives of the picture 
intensity [2]. we have to study how to compute "good" intensity derivatives, that is suitable 
to estimate edge characteristics. 

In this paper, we at tempt to answer this question, and propose a way to compute 
image optimal intensity derivatives, in the discrete case. 

2 Computing optimal spatial derivatives 

2.1 Pos i t i on  of  t h e  p r o b l e m  

We consider the following two properties for a derivative filter : 

- A derivative filter is unbiased if it outputs 0nly the required derivative, but not lower 
or higher order derivatives of the signal. 

- Among these filters, a derivative filter is optimal if it minimizes the noise present in 
the signal. In our ease we minimize the output noise. 

Please note, that we are not dealing with filters for detecting edges, here, but rather 
- edges having been already detected - with derivative filters to compute edge charac- 
teristics. It is thus not relevant to consider other criteria used in optimal edge detection 
such as localization or false edge detection [1]. 

In fact, spatial derivatives are often computed in order to detect edges with accuracy 
and robustness. Performances of edge detectors are given in term of localization and signal 
to noise ratio [1,8]. Although the related operators are optimal for this task, they might 
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not be suitable to compute unbiased intensity derivatives on the detected edge. Moreover 
it has been pointed out [9] that  an important  requirement of derivative filters, in the 
case where one wants to use differential equations of the intensity is the preservation 
of the intensity derivatives, which is not the case of usual filters, ttowever, this author 
limits his discussion to Gaussian filters, whereas we would like to derive a general set of 
optimal filters for the computat ion of temporal  or spatial derivatives. We are first going 
to demonstrate some properties of such filters in the continuous or discrete case and then 
use an equivalent formulation in the discrete case. 

2.2  U n b i a s e d  f i l t ers  w i t h  m i n i m u m  o u t p u t  n o i s e  

A c o n d i t i o n  for  u n b i a s n e s s  . 
Let us note | the convolution product. According to our definition of unbiasness a 

1D-filter fr is an unbiased rth-order derivator if and only if : 

/~(z) 0 u(=) - d~u(~) 
dz r 

for all functions C r. 
In particular, for u(z)  = z n, we have a set necessary conditions : 

n! 
f r (z )  | z n = n(n - 1)...(n - r + 1)z n - r  - (n - r)! = " - r  

which is a generalization of the condition proposed by Weiss [9]. 

~r around zero, for a But, considering a Taylor expansion of u(z)  = ~ dxr ~=0 7f. 

C r function, and using the fact that  polynomials form a dense family over the set of  C r 
functions, this enumerable set of conditions are also sul~cient. 

The previous conditions can be rewritten as : 

f f ~ ( t ) ( z - t ) " d t =  ~,.="-" f $ ~ ( t ) ~ = o ~ t q x . : - - / d t =  ~ x  ~-~ 
ET=0 z"  , ~  f f~(t)tqdt = ~ z  

and these z-polynomial  equations are verified if and only if all the coefficients are equal, 
that  is : / ,, 

Equation s (1) are thus necessary and sufficient conditions of unbiasness. Moreover if 
f~ is an unbiased r-order filter, f~+l = fr ~ is an unbiased ( r+l ) -order  filter, since : 

f r - l ( Z )  | Z n - 1  "~- f f ~ - x ( z -  t)t"-Xdt = . (l~-lr)' 1 'Z(n--1)--(r--1) 
- )) 

= [~-f~-x(t)] + f f ' ~ _ x ( z - t ) ? d t  = (",-_l~)'x~-~ 
f f~- l (  - t ) ~ d t  = (~-~)" x 

| z" = $ t ' _ , ( z  - t ) t"d t  = 

If equation (1) is true for all q, the filter will be an unbiased derivative filter. It is 
important  to note that  this condition should be verified for q < r, but also for q > r. 
If not, high-order derivatives will have a response though the filter and the output  will 
be biased. This is the case for Canny-Deriche filters, and this is an argument to derive 
another set of filters. 

In fact, the only one solution to this problem is the rth-derivative of the Dirac distri- 
bution, 8r. This is not an interesting solution because this is just  the "filter" which output  
noise is maximal (no filtering!). However, in practice, the input signals high-order deriva- 
tives are negligible, and we can only conisder unbiasness conditions for 0 < q < Q < cx~. 
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M i n i m i z i n g  the output noise In the last paragraph we have obtained a set of condi- 
tions for unbiasness. Among all filters which satisfy these conditions let us compute the 
best one, considering a criteria related to the noise. 

The mean-squared noise response, considering a white noise of variance 1, is (see 
[1], for instance): f f r ( t )2d t ,  and a reasonable optimal condition is to find the filter 
which minimize this quantity and satisfy the constraints given by equation (1). Using 
the opposite of the standard Lagrange multipliers ~p this might be written as : 

�9 . 1 f f r ( t ) ~ d  t -  O 
p=O 

Prom the calculus of variation, one can derive the Euler equation, which is a necessary 
condition and which turns out to be, with the constraints, also sufficient in our case, since 
we have a positive quadratic criteria with linear constraints. 

The optimal filter equations (Euler equations and constraints) are then : 

/ ~ fr(t)  = ~p=0  Apt' 
0 <_ q <_ Q f A ( t ) ~ . d t  = 6q, 

These equations are necessary conditions for the filter to be optimum. They yield 
polynomial filters. Functions verify these equations only if they are defined, and presently, 
polynomials are only define on finite supports. Thus these equations are convergent if 
and only i f f r ( t )  has a finite support. That  is we obtain optimal filters minimizing output 
noise, only on a finite window. 

These equations have the following consequence : the optimal derivative filter is a 
polynomial filter and is thus only defined on a finite window. If not, the Euler equations 
are no more defined. In fact, we also studied infinite response filters, but we came with a 
negative answer : even if considering special families of infinite response filters (such as 
product of polynomial with Gaussian or exponentials) and applying the same constrainted 
opt imum criteria, it is not possible to obtain analytic filters as an infinite series of the 
original basis of function, because the summation is divergent (see however section 2.5 
for a discussion about sub-optimal solutions). 

We thus have to work on finite windows and in this case, we can compute the values 
of Ap, from a set of linear equations, since from the Euler equation and the constraints 
we obtain : 

= ] - dt = - 7  = (2) 
p=O q" = 

for 0_< q_< Q. 
Equations (2) define a unique optimal unbiased r-order filter. Itowever, if fr is this 

optimal unbiased r-order filter, fr+t  = fr  ~ is not the optimal unbiased (r+l)-order filter, 
as it can be easily verified, whereas each filter has to be computed separately. 

2.3 An equivalent parametric approach using p o l y n o m i a l  a p p r o x i m a t i o n  

There is another way to compute these derivatives, considering the Taylor expansion of 
the input as a parametric model. Writing : 

O tq 
x(t) ~_ E ~"-~, + A/'oise (3) 

q=0 

one can minimize :J = �89 f x(t) - E~=0 x, dt which is just a least-square criteria 

with a similar interpretation, since we minimize the variance of the residual error. 
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This quadratic positive criteria is minimum for pl d$ = 0 which provides a set of 
�9 d ~ p  

linear equations in Zq : 
Q 

f x(t)t, dt = f tP+qdt 
qt (4) 

q----O 

But,the quantities xq are just equal to the output  of the optimal filters computed 
previously from frO | x 0  at t = 0, then both approachs are equivalent 

Considering a signal with derivatives up to a given order Q, it is thus possible to 
compute unbiased estimators of these derivatives with a minimum of output  noise by 
solving a least-square problem, as in equation (3). This result is not a surprise for someone 
familiar with Optimization but is crucial when implementing such filters in the discrete 
case, as done now. 

Please note that  the integration f . . . d t  is to be made over a bounded domain, in 
order this integration to be convergent for polynomials, but  all the computations are 
valid for any Lebesgue integrals. In particular, this is still valid for a finite summation,  a 
finite summation of definite integrals, etc... This will be used in the next sections. 

2.4 C o n t i n u o u s  i m p l e m e n t a t i o n  o f  u n b i a s e d  f i l te rs  

While, the continuous implementation of such filters is not  directly usable in image 
processing, very helpful to study the properties and characteristics of these filters. In 
addition, we can compare these filters with others derivative filters, as used in edge 
detection. 

Let us consider a finite window. For reasons of isotropy this window has to be sym- 
metric I -W,  W], and it corresponds to a zero-phase non-causal filter. Moreover, changing 
the scale factor it is always possible to consider W = 1. 

We compute filters for 0 < r < 3 and r _< Q _< 6 and obtain the curves given in Fig. 2. 
The related output  noise f fi()2 is shown in Table 1. 

Q 0 1 2 3 4 5 6 7 
Smoother . o._._~5 1._~1 1.__.~8 2._.24 . 

W W W W 
First Order 1.5 9.4 25.0 65.0 

Second Order 2a.0 2s0.0 1400.0 w---r w'-Wv- w~ 
Third Order 70o.o 16ooo.o 12o00o.o w"Wr w7 

Table 1. Computation of the output noise for different unbiased filters 

We can make the following remarks : 

- For a given window, there is a trade-off between unbiasness and output-noise limita- 
tion, as in standard filtering�9 The more the signal model contains high-order deriva- 
tives, and the more noise is output.  

- The amount  of output  noise is very high as soon as the order of the model increases, 
especially for high-order derivatives. But it decreases very quickly with the increase of 
the window size. It is thus possible to tune the window size to maintain this amount 
of noise at a reasonable value 1 

- Contrary to usual filters the number of zero-crossing is not equal to the order o f  
derivative but "higher or equal. In particular the unbiased smoother has a number of 
zero-crossing equal to the order of the model as shown on Fig. 1. 

- There is no simple algebraic relations between this series of polynomials. 

1 We have, in fact, f f~()2 = O(w____~t ) 
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Smoother Q~0,2,4,6,8.10 

Fig. 1. A few examples of unbiased optimal smoothers 

Fig. 2. A few examples of unbiased optimal derivators 

2 .5  W h a t  a b o u t  i n f i n i t e  r e s p o n s e  f i l t ers  ? 

We can also design infinite response unbiased filters. 
Consider for instance the family of filters : 

d 

S (t) = 

p----O 

which correspond to the set of recursively implemented digital filters (see for instance 
[6]), having an implementation of the form : 

P q 
Yt = E blxt-i -- E ajyt-i 

i=O j--1 

Applying the unbiasness condition of equation (1) to these functions leads to a finite 
set of linear equations : 

/ ~ ---d " t ' + '  

�9 ~ J o ! 
p--O ~" 

defining a affine functional subspace of finite co-dimension. 
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In particular for d = Q there is a unique unbiased filter while if d > Q we have an 
(d - Q) - d imensional  space of solutions. If d > Q, one can again choose the solution 
minimizing the output noise, that is the one for which : 

d d 

10=0 q=0 

is minimum. This yields to the minimization of a quadratic positive criteria in the pres- 
ence of linear constraints, having a unique solution obtained from the derivation of the 
related normal equations. 

In order to illustrate this point, we derive these equations for Q < 2 and d >_ 2 for 
r = 1. And in that case we obtained : fdz(t ) = flte-I~fl which corresponds precisely to 
Canny-Deriche recursive optimal derivative filters. More generally i f  the signal contains 
derivatives up to the order of the desired derivative, usual derivative filters such as Canny- 
Deriche filters are unbiased filters and can be used to estimate edge characteristics. 

However, such a filter is not optimal among all infinite response operators, but only 
in the the small parametric family of exponential filters z. The problem of finding an 
optimal filter among all infinite response operators is an undefined problem, because the 
Euler equation obtained in the previous section (a necessary condition for the optimum) 
is undefined, as pointed out. 

Since this family is dense in the functional space of derivable functions it is indeed 
possible to approximate any optimal filters using a combination of exponential filters, 
but the order n might be very high, while the computation window has to be increased. 
Moreover, in practice, on real-time vision machines, these operators are truncated (thus 
biased t) and it is much more relevant to consider finite response filters. 

2.6 An  optimal approach in the  d iscre te  2D-case 

Let us now apply these results in the discrete case. 
Whereas most authors derive optimal continuous filters and then use a non-optimal 

method to obtain a discrete version of these operators, we would like to stress the fact 
that the discretization of an optimal continuous filter is not necessary the optimal discrete 
filter. 

In addition, the way the discretization is made depends upon a model for the sampling 
process. For instance, in almost all implementations [8,3], the authors make the implicit 
assumption that the intensity measured for one pixel is related to the true intensity by a 
Dirac distribution, that is, corresponds to the point value of the intensity at this point. 
This is not a very realistic assumption, and in our implementation we will use another 
model. 

The key point here is that since we have obtained a formulation of the optimal filter 
using any Lebesgue integration over a bounded domain, then the class of obtained filters 
is still valid for the discrete case. Let us apply this result now. 

In the previous section we have shown that optimal estimators of the intensity deriva- 
tives should be computed on a bounded domain, and we are going to consider here a 
squared window of N • N pixels in the picture, from (0, 0) to (N - 1, N - 1). We would 
like to obtain an estimate of the derivatives around the middle point (N, N). 

This is straightforward if we use the equivalent parametric approach obtained in 
section 2.3. 

2 The same parametric approach could have been developed using Gaussian kernels. 
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Generalizing the previous approach to 2D-data  we can use the following model  of the 
intensity, a Taylor expansion, the origin being at  ( ~ ,  ~ ) :  

I(x ,y)  I o - I  x - I  - I x x x 2 - I Y Y  ~ - [  x --l~t*:xs-I=~:Yx= --IxYYx 2-IYu~' S-ere 
= ~ - t  -I'YY't" 2 + 2 y + = v  y +  6 + 2 y-t- 2 y - l -  6 Y ~- "'" 

where the development is not made up to the order of  derivative to be computed,  but  up 
to the order of derivative the signal is supposed to contain. 

Let us now modelize the fact tha t  the intensity obtained for one pixel is related to 
the image irradiance over its surface. We consider rectangular pixels, with homogeneous 
surfaces, and no gap between two pixels. Since, one pixel of a CCD camera  integrates the 
light received on its surface, this means that  a realistic model for the intensity measured 
for a pixel (i, j )  is, under the previous assumptions : 

I,r = fl i+ '  f]+' I@,y)dxdy 
= IoPo(i) + I=Pl(i) + IvPx(j ) + I~rP2(i) + IxvPl(i)Pl(j) + I~yP2(j) + . . .  

where Pk(i) /,i+1 z* = j,  r ,  dx = E L 0  CLli'. 
Now, the related least-square problem is 

N - 1 N - 1  
1 

J = 2 E [Iij-(I~176 .)]2 
i=0j=0 

and its resolution provides opt imal  est imates of  the intensity derivatives 
{Io, I~, Iv, I==, I~ v, Ivv , . . . }  in function of the intensity values Iq in the N • N window. 

In other words we obtain the intensity derivatives as a linear combinat ion of the 
intensity values Iq, as for usual finite response digital filters. 

For a 5 x 5 or 7 • 7window, for instance, and for a intensity model taken up to the 
fourth order one have convolutions given in Fig3. 

This  approach is very similar to what  was proposed by Haraliek [3], and we  cal l  t h e s e  
f i l t e r s  I t a r a l i c k - l i k e  f i l te rs .  In both methods the filters depends upon two integers : 
(1) the size of the window, (2) the order of expansion of the model. In both  methods,  
we obtain polynomial  linear filters. However it has been shown [4] tha t  Haralick filters 
reduce to Prewitt  filters, while our filters do not correspond to already existing filters. 
The  key point, which is - we think - the main  improvement ,  is to consider the intensity 
at one pixel not as the simple vMue at tha t  location, but  as the integral of  the intensity 
over the pixel surface, which is closer to reality. 

Contrary  to Haralick original filters these filters are not all separable, however this not 
a drawback because separable filters are only useful when the whole image is processed. 
In our case we only compute the derivatives in a small area along edges, and for tha t  
reason efficiency is not as much an issue 3 

2 .7  C o n c l u s i o n  

We have designed a new class of unbiased opt imal  filters dedicated to the computa t ion  
of intensity derivatives, as required for the computa t ion  of edge characteristics. Because 
these filters are computed though a simple least-square minimizat ion problem, we have 
been capable to implement  these operators  in the discrete case, taking the CCD subpixel 
mechanisms into account. 

These filters are dedicated to the computa t ion  of edge characteristics, they are well 
implemented in finite windows, and correspond to unbiased derivators with min imum 
output  noise. They do not correspond to opt imal  filters for edge detection. 

3 Anyway, separable filters are quicker than genera] filters if and only if they are used on a 
whole image not a few set of points 
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1 
Ix = 

28224 

1115 380 --61 --208 --61 380 1115 
--610 --1100 --1394 --1492 --1394 --1100 --610 
--711 --956 --1103 --1152 --1103 --956 --711 

0 0 0 0 0 0 0 
711 956 1103 1152 1103 956 711 
610 II00 1394 1492 1394 1100 610 

--1115 --380 61 208 61 --380 --1115 

I y  = I x  T 

[i555  i] gooooo  
3 1 1 3 - 3 - 3 - 3 - 3 - 3  

Izz=~ - 4 - 4 - 4 - 4 - 4  Izy=~ 
- 3 - 3 - 3 - 3 - 3  
0 0 0 0 0  
5 5 5 5 5  

I yy  = I z x  T 

- -1--1--1--1--1--1  

1 1 1 1 1 1  1 
I x x z = ~  0 0 0 0 0 I z x y = ~  

1 1 1 1 1  
1 1 1 1 1  

1 - 1 - 1 - 1 - 1 - 1 1  

9 6 3 0 - 3 - 6  

6 3 4 2 0 - 2 - 4 - 6 3  
2 1 0 - 1 - 2 -  
0 0 0 0 0 

-2  - I  0 1 2 
- 4  - 2  0 2 4 
-6  -3  0 3 6 

i 
10:0  101:1 

0 0 0 0 0 
9 6 3 0 - - 3 - 6 -  
12 8 4 0 - - 4 - 8 - 1 2 [  

:I I 9 6 3 0--3--6 
0 0 0 0 0 0 

--15--i0--50 5 i0 15 J 

I z y y  = I z z y  T l y y y  = I z x x  T 

Fig. 3. Some Haralick-like 5 x 5 and 7 x 7 improved filters 

3 Experimental  result : computing edge curvature  

In order to illustrate the previous developments we have experimented our operators for 
the computation of edge curvature. Under reasonable assumptions, the edge curvature 
can be computed as :to = z~+z~] " 

We have used noisy synthetic pictures, containing horizontal, vertical or oblique edges 
with step and roof intensity profiles. 

Noise has been added both to the intensity (typically 5 % of the intensity range) a n d  
to the edge location (typically 1 pixel). Noise on the intensity will be denoted "I-Noise", 
its unit being in percentage of the intensity range, while noise on the edge location will 
be denoted "P-Noise", its unit being in pixels. 

We have computed the curvature for non-rectilinear edges, either circular or elliptic. 
The curvature range is between 0 for a rectilinear edge and 1, since a curve with a 
curvature higher than 1 will be inside a pixel. We have computed the curvature along 
an edge, and have compared the results with the expected values. Results are plotted in 
Fig.4, the expected values being a dashed curve. 

We have also computed the curvature for different circles, in the presence of noise, 
and evaluated the error on this estimation. Results are shown in Table 2. The results are 
the radius of curvature, the inverse of the curvature expressed in pixels. The circle radius 
was of 100 pixels. 

Although the error is almost 10 %, it appears that for important edge localization 
errors, the edge curvature is simply not computable. This is due to the fact we use a 
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Fig. 4. Computation of the curvature along an elliptic edge 

I-Noise 2% 5% 10% 0 0 0 
P-Noise 0 0 0 0.5 1 2 

Error (in pixel) 2.1 6.0 10.4 6.0 12.2 huge 

Table  2. Computation of the curvature at different level of noise 

5 x 5 window, and that  our model is only locally valid. In the last case, the second order 
derivatives are used at the border of the neighbourhood and are no more valid. 
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