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A b s t r a c t .  An important problem in visual motion analysis is to deter- 
mine the parameters of egomotion. We present a simple, fast method that 
computes the translational motion of a sensor that is generating a sequence 
of images. This procedure computes a scalar function from the optical flow 
field induced on the image plane due to the motion of the sensor and uses 
the norm of this function as an error measure. Appropriate values of the 
parameters used in the computation of the scalar function yield zero error; 
this observation is used to locate the Focus of Expansion which is directly 
related to the translational motion. 

1 I n t r o d u c t i o n  

We consider the motion of a sensor in a rigid, static environment. The motion produces a 
sequence of images containing the changing scene. We want to estimate the motion of the 
sensor, given the optical flow fields computed from the sequence. We model the motion 
using a translational velocity T and a rotational velocity w. These are the instantaneous 
motion parameters. 

Many procedures exist to compute the optical flow field [1,4]. Also, several methods 
have been proposed to compute the motion parameters from the optical flow field. One 
feature of most of these methods is that they operate locally. Recovering structure, which 
is contained in local information, seems to be the motivation for preferring local methods. 
However, the motion parameters are not local and they are better estimated by employing 
global techniques. In addition, using more data usually results in better performance in 
the presence of noise. Non-local algorithms are given in [3] and [8], and more recently, in 
[6]. The algorithm presented in [3] requires search over grid points on a unit sphere. The 
method of Prazdny [8] is based on a non-linear minimization. Faster methods have been 
presented recently [7,10]. Though all these methods work well on noiseless flow fields, 
there is insufficient data about their performance on real images. The work in this paper 
has been motivated by the observation that making certain approximations to an exact 
procedure gives a method that produces robust results from real data. 

The algorithm presented here determines the location of the focus of expansion (FOE) 
which is simply the projection of the translation vector T on the imaging plane. It is well 
known that once the FOE is located, the rotational parameters can be computed from 
the optical flow equations [2]. Alternative methods to directly compute the rotational 
parameters from the flow field have also been proposed [11]. We begin by reviewing the 
flow equations, then describe the algorithm and present experimental results. 

2 T h e  flow equations 

We consider the case of motion of a sensor in a static environment. We choose the 
coordinate system to be centered at the sensor which uses perspective projection for 
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imaging onto a planar image surface (Fig. 1). The sensor moves with a translational 
velocity of T -- (vl, v2, v3) and an angular velocity of w -- (wl, w2, w3). 

The transformation from spatial coordinates to the image coordinates is given by the 
equations 

x = IX~Z, y = .fY/Z 

where (X, Y, Z) = (X(x, y), Y(x, y), Z(x, y)) is the position of the point in three-space 
that is imaged at (x, y) and f is the focal length. The optical flow V = (u, v) at the 
image point (x, y) is easily obtained [2,5,9]: 

u(x,Y)= z - ' ~ [ - f v l  T xva]Twl [ ~ ! - w ~  [f T ~-] Tw3Y, 
(1) 

Here, u(x, y) and v(x, y) are the x and y components of the optical flow field V(x, y). 
In this context, we are interested in determining the location (1" = fvl/v3,77 = fv2/v3) 
which is nothing but the projection of the translational velocity T onto the image plane. 
This location is referred to as the Focus of Expansion (FOE). 

Looking at Eqn. 1, we note that the vector flow field V(x, y) is simply the sum of the 
vector field Vv(x,y) arising from the translation T and the vector field V~(x, y) due to 
the rotation w: 

v(~ ,u )  = y~(~, y) + y~(x, y). 

3 Algorithm Description 

The observation behind the algorithm is that a certain circular component computed from 
the flow field by choosing a center (x0, Y0) is a scalar function whose norm is quadratic in 
the two variables x0 and Y0. The norm is zero (in the absence of noise) at the FOE. This 
procedure will be referred to as the Norm of the Circular Component (NCC) algorithm. 

3.1 T h e  c i rcu la r  c o m p o n e n t  

For each candidate (x0, Y0), we consider the circular component of the flow field about 
(xo, Y0) defined by: 

U(~o,~o)(~, ~) = v (~ ,  y) .  ( - y  + y0,~ - x0). (2) 

Note that this is nothing but the projection onto concentric circles whose center is located 
at (x0, Y0). Since V - W + V~, we further define 

U?~o,~o)(~, y) = v~(x, ~). ( - y  + ~0, x - ~0), 

U~o,~o)(X, y) = v~(x,  y ) .  ( - y  + yo, �9 - xo), 

so that 

U(=o,,o)(X, y) = U~o,,o)(X, y) + U~=o,,o)(~, ~) 

where, denoting p(x, y) = 1/Z(x,  y), 

U~o,,o)(X, y) = v3p(x, ~) .  [(yo - , ) x  + ( - ~ o  + r)y + ,xo  - ryo], (3) 
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and 

+ - + +  oyl. (4) 

At the focus of expansion, when (zo, Yo) = (r, 77), 

[;-;] y )  = y ) .  �9 ( - y  + ,1, �9 - 7-) = o (5)  

so that  U(xo,~o) = U~o,yo) for (x0, Y0) = (% 77). Eqn. 5 is merely a result of the radial 
structure of  the translational component of the flow field. In other words, pure translation 
produces a field that  is orthogonal to concentric circles drawn with the FOE as the center. 
Observations about  the quadratic nature of U~ , (Eqn 4) lead to the convolution 

i ,  o , Y o /  

and subspace projection methods described in [6]. Here, we obtain a method that  is 
approximate but is quick and robust. 

To this end, we define an error function E(xo, Yo) as the norm of U(:~o,yo)(X , y): 

E(xo, Y0) = IIV(~o,,o)(~, y)ll =. (6) 
The important  observation is that  U(xo,~o)(x, y) is linear in the parameters x0 and Yc. 

As a result, the norm defined in Eqn. 6 will be quadratic in x0 and Y0. That  is, E(xo, yo) 
will be a quadratic polynomial in x0 and Y0. The minimum of this quadratic surface is 
purported to occur at the Focus of Expansion (FOE). We will justify this claim shortly. 
But first, if the claim is correct, we have a simple algorithm that  we describe now. 

3.2 T h e  N C C  a l g o r i t h m  

The first step is to choose six sets of values for (x0, y0) in a non-degenerate configuration 
(in this case, non-collinear). Next, for each of  these candidates, compute the circular 
component and define E(xo, yo) to be the norm of the circular component (NCC). In a 
discrete setting, the error value is simply the sum of the squares of the circular component  
values. Note that  this can be done even in the case of a sparse flow field. The error 
function values at these six points completely define the error surface because of its 
quadratic nature and so the location of the minimum can be found using a closed-form 
expression. Tha t  location is the computed FOE. 

Let us now examine the claim about the minimum being at the location of the FOE. 
Note that  the function U(~o,uo)(x , y) is made up of two parts; one is the translational 
part  shown in Eqn. 3, and the other is the rotational part  (Eqn. 4). The translational 
part  U(xo,uo)(x , y) vanishes at the FOE, as shown in Eqn. 5, and it is non-zero elsewhere. 

Thus, the norm ]]U~'~ . ,(x, y)[[2 is positive quadratic with minimum (equal to zero) at 
�9 �9 ~. 0 , u  

the FOE. This Is no longer true once we add the rotational part. However, as long as the 
contribution from the rotational part is small compared to that  from the translational 
part, we can approzirnate the behavior of [[U(~o yo)(x, y)[[2 by [[U(~o,~0)(x , y)[[2. 

The method is exact for pure translation and '~s approximate when the rotation is small 
compared to the translation or when the depth of objects is small (i.e., high p(x, y)) as 
would be the case in indoor situations. Also, there is no apparent reason for this method 
to fail in the case where a planar surface occupies the whole field of view. Previous 
methods [7,10] are known to fail in such a case. Indeed, in two experiments reported 
here, a large portion of the view contains a planar surface. In all experiments done with 
synthetic as well as actual data, this algorithm performs well. We present results from 
actual image sequences here. 
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4 E x p e r i m e n t s  

For all the sequences used in the experiments, the flow field was computed using an 
implementation of Anandan's algorithm [1]. The dense flow field thus obtained (on a 128 
by 128 grid) is used as input to the NCC algorithm. The execution time per frame is on 
an average less than 0.45 seconds for a casual implementation on a SUN Sparcstation-2. 

The helicopter sequences, provided by NASA, consist of frames shot from a moving 
helicopter that is flying over a runway. For the straight line motion, the helicopter has 
a predominantly forward motion, with little rotation. The turning flight motion has 
considerable rotation. The results of applying the circular component algorithm to these 
sequences are shown in Figure 2 for ten frames (nine flow fields). This is an angular 
error plot, the angular error being the angle between the actual and computed directions 
of translation. The errors are below 6 degrees for all the frames of the straight flight 
sequence. Notice the deterioration in performance towards the end of the turning flight 
sequence due to the high rotation (about 0.15 fads/see). 

The results from a third sequence (titled ridge, courtesy David Heeger) are shown in 
Figure 2. Only frames 10 through 23 are shown because the actual translation data was 
readily available only for these frames. In this sequence, the FOEs are located relatively 
high above the optical axis. Such sequences are known to be hard for motion parameter 
estimation because of the confounding effect between the translational and rotational 
parameters (see the discussion in [6]). The algorithm presented here performs extremely 
well, in spite of this adverse situation. 

5 C o n c l u s i o n s  

In most practical situations, the motion is predominantly translational. However, even in 
situations where only translation is intended, rotation manifests due to imperfections in 
the terrain on which the camera vehicle is traveling or due to other vibrations in the vehi- 
cle. Algorithms that assume pure translation will break down under such circumstances 
if they are sensitive to such deviations. However, the algorithm described here seems to 
tolerate small amounts of rotation. So, it can be expected to work well under the real 
translational situations and for indoor motion where the small depth values make the 
translational part dominant. 

In addition to the above situations, the method described here could also be used to 
provide a quick initial guess for more complicated procedures that are designed to work 
in the presence of large rotational values. 

R e f e r e n c e s  

1. P. Anandan. A computational framework and an algorithm for the measurement of visual 
motion. International Journal of Computer Vision, 2:283-310, 1989. 

2. D. tteeger and A Jepson. Subspace methods for recovering rigid motion I: Algorithm and 
implementation. Research in Biological and Computational Vision Tech Rep RBCV-TR- 
90-35, University of Toronto. 

3. D. Heeger and A. Jepson. Simple method for computing 3d motion and depth. In Proceed- 
ings of the 3rd International Conference on Computer Vision, pages 96-100, Osaka, Japan, 
December 1990. 

4. David J. Heeger. Optical flow using spatiotemporal filters. International Journal of Com- 
puter Vision, 1:279-302, 1988. 



257 

5. B.K.P Horn. Robot Vision. The MIT Press, 1987. 
6. Robert Hummel and V. Sundareswaran. Motion parameter estimation from global flow 

field data. 1EEE Transactions on Pattern Analysis and Machine Intelligence, to appear. 
7. A. Jepson and D. Heeger. A fast subspace algorithm for recovering rigid motion. In IEEE 

Workshop on Visual Motion, Princeton, New Jersey, Oct 1991. 
8. K.Prazdny. Determining the instantaneous direction of motion from optical flow generated 

by a curvilinearly moving observer. Computer Vision, Graphics and Image Processing, 
17:238-248, 1981. 

9. H.C. Longuet-Higgins and K. Prazdny. The interpretation of a moving retinal image. Proc. 
Royal Soc. Lond. B, 208:385-397, 1980. 

10. V. Sundareswaran. Egomotion from global flow field data. In 1EEE Workshop on Visual 
Motion, Princeton, New Jersey, Oct 1991. 

11. V. Sundareswaran and R. Hummel. Motion parameter estimation using the curl of the flow 
field. In Eighth lsraeli Conference on A1 and Computer Vision, Tel-Aviv, Dec 1991. 

y Iv2 

ba 2 

z J  
V3 

Fig.  1. The coordinate systems and the motion parameters 
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Fig.  2, Angular error plots for the helicopter sequences(left: straight line flight in solid line and 
turning flight in dotted line) and the ridge sequence (right) 


