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Abstract .  This paper describes the implementation of a 3D vision algo- 
rithm, Droid, on the Oxford parallel vision architecture, PARADOX, and 
the results of experiments to gauge the algorithm's effectiveness in pro- 
viding navigation data for an autonomous guided vehicle. The algorithm 
reconstructs 3D structure by analysing image sequences obtained from a 
moving camera. In this application, the architecture delivers a performance 
of greater than 1 frame per second - 17 times the performance of a Sun-4 
alone. 

1 Introduction 

PARADOX [5] is a hybrid parallel architecture which has been commissioned at Oxford 
in order to improve the execution speed of vision algorithms and to facilitate their in- 
vestigation in time-critical applications such as autonomous vehicle guidance. Droid[3] is 
a struciure-frora-motion vision algorithm which estimates 3-Dimensional scene structure 
from an analysis of passive image sequences taken from a moving camera. The motion of 
the camera (ego-motion) is unconstrainted, and so is the structure of the viewed scene. 
Until recently, because of the large amount of computation required, Droid has been 
applied off-line using prerecorded image sequences, thus making real-time evaluation of 
performance difficult. 

Droid functions by detecting and tracking discrete image features through the image 
sequence, and determining from their image-plane trajectories both their 3D locations 
and the 3D motion of the camera. The extracted image features are assumed to be 
the projection of objective 3D features. Successive observations of an image feature are 
combined by use of a Kalman filter to provide optimum 3D positional accuracy. 

The image features originally used by Droid are determined from the image, I ,  by 
forming at each pixel location the 2 • 2 matrix, A = w �9 [ (VI) (VI) r ] ,  where w is a 
Ganssian smoothing mask. Feature points are placed at maxima of the response function 
R [3], R = det(A) - k(trace(A)) 2, where k is a weighting constant. Often, features are 
located near image corners, and so the operator tends to be referred to as a corner finder. 
In fact, it also responds to local textural variations in the grey-level surface where there 
are no extracted edges. Such features arise naturally in unstructured environments such 
as natural scenes. Manipulation and matching of corners are quite straightforward and 
relatively accurate geometric representation of the viewed scene can be achieved. In the 
current implementation, the depth map is constructed from tracked 3D points using a 
local interpolation scheme based on Delanuay triangulation [2]. 

Droid runs in two stages: the first stage is the booting stage, called boot mode, in 
which Droid uses the first two images to start  the matching process; the second stage is 
the run stage called run mode. 
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In the boot mode, points in the two 2D images are matched using epipolar constraints. 
The matched points provide disparity information which is then used for estimation of 
ego-motion and 3D instantiation. Ego-motion is described as a 6-vector (3 in translation 
and 3 in rotation). 

The run mode of Droid includes a 3D-2D match which associates the 3D points with 
the newly detected 2D points, an updated ego-motion estimation and a 2D-2D match, 
between residual points in the feature points list and unmatched points from the previous 
frame, to identify new 3D features. Also, 3D points which have been unmatched over a 
period are retired. 

2 P A R A D O X  A r c h i t e c t u r e  

PARADOX is a hybrid architecture, designed and configured especially for vision/image 
processing algorithms. It consists of three major functional parts: a Datacube pipelined 
system, a transputer network and a Sun4 workstation. The architecture of PARADOX, 
as applied to Droid, is shown in Figure 1. 

The Datacube family contains more than 20 types of VME-based pipelined processing 
and input/output modules which can perform a wide range of image processing operations 
at video rates. Image data is passed between modules via a Datacube bus-standard 
known as the MaxBus. System control is by means of the VME bus from the host Sun 
workstation. The Datacube can be used for image digitisation, storage and display and 
also for a wide range of video frame rate pixel-based processing operations. 

The transputer network consists of a fully populated Transtech MCP 1000 board. This 
contains 32 T800 transputers - each with one Mbyte of RAM - and both hardwired and 
programmable switching devices to allow network topology to be altered. A wide range 
of network topologies can be implemented including parallel one dimensional arrays [6], 
a 2D array or a ring structure. This board delivers a peak performance of 320 MIPS. The 
connection between the Datacube and the transputer network is by way of an interface 
board designed by the British Aerospace Sowerby Research Centre [4]. 

In the parallel implementation of Droid [5], the Datacube is used to digitise, store 
and display the image sequences and graphics overlays; the corner detection is carried 
out by the transputer array and the 3D-isation is computed on the Sun workstation. 

3 P e r f o r m a n c e  E v a l u a t i o n  

Figure 2 shows an image from a sequence of frames with a superimposed Cartesian grid 
plot of the interpreted 3D surface by Droid. The driveable region can be clearly identified. 
An algorithm has been developed by D. Charnley [1] to extract the drivable region by 
computing the surface normal of each grid. 

The above demonstrates qualitatively the performance of Droid in live situations, but 
not quantitatively. A series of experiments has been conducted at Oxford and at Roke 
Manor to measure the performance of Droid in both live and static environments. The 
intention has been to demonstrate the competence of dynamic vision in a real environ- 
ment. 

The performance obtained from PARADOX for parallel Droid was 0.87 seconds per 
frame which is 17 times faster than a pure Sun-4 implementation. The overall performance 
is limited primarily by the parallel execution of the 3D-isation and corner detection 
algorithms which have comparable execution times. The Datacube control and visual 
display functions contribute negligible fraction of execution time. 
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F i g .  1 .  Machine architecture of PARADOX (Droid incarnation) 

F i g .  2 .  Droid reconstructed 3D surface, a driveable region can be clearly identified 
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The laser scanner on the vehicle can determine the AGV's location (2D position and 
orientation) by detecting fixed bar-coded navigation beacons. This allows comparison 
between the "true" AGV trajectory and that predicted by Droid. The following results 
were obtained from an experiment where the AGV was programmed to run in a straight 
line with varying speeds. 
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Fig. 3. Plane view of A G V  trajectory. Solid iine-Droid predicted motion; Dashed line-laser 
scanner readings 

Figure 3 depicts a plane view of the AGV's trajectories: the solid line represents the 
AGV trajectory reported by Droid and the dashed line as reported by the laser scanner. 
In this particular run, the AGV has been programmed to move in a straight line at 
two different speeds. For the first part of the run it travels at about 8 cm/sec and for 
the second it travels at about 4 cm/sec. Droid reports the camera position (6 degrees of 
freedom - 3 translation and 3 rotation) from the starting point of the vehicle, which has 
coordinates (z0, z0) = (0, 0) and the laser reported trajectory is re-aligned accordingly. 
It can be seen from Figure 3 that the alignment between the laser scanner readouts and 
the Droid prediction is very close. 

During the run, the vehicle has been stopped twice manually to test this system's 
tolerance under different situations. Figure 4 shows the speed of the AGV as determined 
by Droid (solid line) and by the on-board laser scanner(dashed line). The speed plots 
in figure 4 agree closely apart from the moment when the vehicle alters its speed where 
Droid consistently overshoots. This can be improved using non-critical dumping. 

4 Conclus ion and future work 

Droid constructs an explicit three-dimensional representation from feature points ex- 
tracted from a sequence of images taken by a moving camera. This paper has described 
the algorithm, the PARADOX parallel vision architecture and the implementation of 
Droid on PARADOX. Experiments have demonstrated the competence of Droid and the 
performance of PARADOX in dealing with real world problems. The results show that 
this system is capable of identifying basic surface structure and can be used to supply 
purely passive guidance information for autonomous vehicles where other sensory mecha~ 
nism finding it hard or impossible. Recently, an improved corner detection algorithm has 
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Fig. 4. Comparison of A G V  speed. Solid line-speed reported using Droid; Dashed line-speed 
reported using laser scanner 

been developed and is under test at Oxford [7]. This uses second order directional deriva- 
tives with the direction tangential to an edge. This algorithm has improved accuracy of 
corner localisation and reduced computational complexity. Consequently, it allows faster 
execution speed (14 frames per second) than the original Droid corner detection algo- 
rithm. This, together with parallelisation of the 3D-isation algorithms, will offer further 
improvements to overall execution speed. Future work will include (1) the incorporation 
of the new fast corner detection algorithm into Droid, (2) the use of odometery informa- 
tion taken from the AGV to provide Droid with more accurate motion estimations, and 
(3) to eventually close the control loop of the AGV-that  is to control AGV by utilising 
the information provided by Droid. 
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