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A b s t r a c t .  We present a computational framework for stereopsis based 
on the outputs of linear spatial filters tuned to a range of orientations and 
scales. This approach goes beyond edge-based and area-based approaches 
by using a richer image description and incorporating several stereo cues 
that have previously been neglected in the computer vision literature. 

A technique based on using the pseudo-inverse is presented for charac- 
terizing the information present in a vector of filter responses. We show 
how in our framework viewing geometry can be recovered to determine the 
locations of epipolar lines. An assumption that visible surfaces in the scene 
are piecewise smooth leads to differential treatment of image regions corre- 
sponding to binocularly visible surfaces, surface boundaries, and occluded 
regions that are only monocularly visible. The constraints imposed by view- 
ing geometry and piecewise smoothness are incorporated into an iterative 
algorithm that gives good results on random-dot stereograms, artificially 
generated scenes, and natural grey-level images. 

1 I n t r o d u c t i o n  

Binocular stereopsis is based on the cue of d i s p a r i t y  - -  two eyes (or cameras) receive 
slightly different views of the three*dimensional world. This disparity cue, which includes 
differences in position, both horizontal and vertical, as well as differences in orientation 
or spacing of corresponding features in the two images, can be used to extract the three- 
dimensional structure in the scene. This depends, however, upon first obtaining a solution 
to the correspondence problem. The principal constraints that make this feasible are: 

1. Similarity of corresponding features in the two views. 
2. Viewing geometry which constrains corresponding features to lie on epipolar lines. 
3. Piecewise continuity of surfaces in the scene because of which nearby points in the 

scene have nearby values of disparity. The disparity gradient constraint (Burr and 
Julesz, 1980; Pollard et al., 1985) and the ordering constraint (Baker and Binford, 
1982) are closely related. 

Different approaches to the correspondence problem exploit these constraints in different 
ways. The two best studied approaches are area correlation (Hannah, 1974; Gennery, 
1977; Moravec, 1977; Barnard and Thompson, 1980) and edge matching (Mart and Pog- 
gio, 1979; Grimson, 1981; Baker and Binford, 1982; Pollard et al., 1985; Medioni and 
Nevatia, 1985; Ayache and Faverjon, 1987). 

* This work has been supported by a grant to DJ from the Natural Sciences and Engineering 
Research Council of Canada (OGP0105912) and by a National Science Foundation PYI award 
(IRI-8957274) to JM. 
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The difficulties with approaches based on area correlation are well known. Because of 
the difference in viewpoints, the effects of shading can give rise to differences in brightness 
for non-lambertian surfaces. A more serious difficulty arises from the effects of differing 
amounts of foreshortening in the two views whenever a surface is not strictly fronto- 
parallel. Still another difficulty arises at surface boundaries, where a depth discontinuity 
may run through the region of the image being used for correlation. It is not even guar- 
anteed in this case that the computed disparity will lie within the range of disparities 
present within the region. 

In typical edge-based stereo algorithms, edges are deemed compatible if they are near 
enough in orientation and have the same sign of contrast across the edge. To cope with 
the enormous number of false matches, a coarse-to-fine strategy may be adopted (e.g., 
Mart and Poggio, 1979; Grimson, 1981). In some instances, additional limits can be im- 
posed, such as a limit on the rate at which disparity is allowed to change across the 
image (Mayhew, 1983; Pollard et al., 1985). Although not always true, assuming that 
corresponding edges must obey a left-to-right ordering in both images can also be used 
to restrict the number of possible matches and lends itself to efficient dynamic program- 
ming methods (Baker and Binford, 1982). With any edge-based approach, however, the 
resulting depth information is sparse, available only at edge locations. Thus a further 
step is needed to interpolate depth across surfaces in the scene. 

A third approach is based on the idea of first convolving the left and right images with 
a bank of linear filters tuned to a number of different orientations and scales (e.g., Kass, 
1983). The responses of these filters at a given point constitute a vector that characterizes 
the local structure of the image patch. The correspondence problem can be solved by 
seeking points in the other view where this vector is maximally similar. 

Our contribution in this paper is to develop this filter-based framework. We present 
techniques that exploit the constraints arising from viewing geometry and the assumption 
that the scene is composed of piecewise smooth surfaces. A general viewing geometry is 
assumed, with the optical axes converged at a fixation point, instead of the simpler 
case of parallel optical axes frequently assumed in machine vision. Exploiting piecewise 
smoothness raises a number of issues - -  the correct treatment of depth discontinuities, 
and associated occlusions, where unpaired points lie in regions seen only in one view. 
We develop an iterative framework (Fig. 1) which exploits all these constraints to obtain 
a dense disparity map. Our algorithm maintains a current best estimate of the viewing 
parameters (to constrain vertical disparity to be consistent with epipolar geometry), a 
visibility map (to record whether a point is binocularly visible or occluded), and a scale 
map (to record the largest scale of filter not straddling a depth discontinuity). 

stereo pair 0/imagel 

I "----. 
~ geome~ 7 ocdu~ r~ionm depth boundarieJ 

(vlewlng param~erl) (viJ~lity map) (scale map) 

Fig. 1. Iteratively refining estimates of stereo disparity. 



397 

This paper is organized as follows. Section 2 gives an introduction to the use of 
filtering as a first stage of visual processing. A technique based on using the pseudo-inverse 
is presented for characterizing the information present in a vector of filter responses. 
Section 3 demonstrates the performance of a simple-minded matching strategy based 
on just comparing filter responses. This helps to motivate the need for exploiting the 
additional constraints imposed by the viewing geometry and piecewise smoothness. These 
constraints are developed further in Section 4. In section 5 the complete algorithm is 
presented. Section 6 concludes with experimental results. 

2 L o c a l  A n a l y s i s  o f  I m a g e  P a t c h e s  b y  F i l t e r i n g  

In order to solve the correspondence problem, stereo algorithms attempt to match features 
in one image with corresponding features in the other. Central to the design of these 
algorithms are two choices: What are the image features to be matched? How are these 
features compared to determine corresponding pairs. 

It is important to recall that stereo is just one of many aspects of early visual pro- 
cessing: stereo, motion, color, form, texture, etc. It would be impractical for each of 
these to have its own specialized representation different from the others. The choice of 
a "feature" to be used as the basis for stereopsis must thus be be constrained as a choice 
of the input representation for many early visual processing tasks, not just stereo. For 
the human visual system, a simple feature such as a "pixel" is not even available in the 
visual signals carried out of the eye. Already the pattern of light projected on the retina 
has been sampled and spatially filtered. At the level of visual inputs to the cortex, vi- 
sual receptive fields are well approximated as linear spatial filters, with impulse response 
functions that are the Laplacian of a two-dimensional Gaussian, or simply a difference of 
Gaussians. Very early in cortical visual processing, receptive fields become oriented and 
are well approximated by linear spatial filters, with impulse response functions that are 
similar to partial derivatives of a Gaussian (Young, 1985). 

Since "edges" are derived from spatial filter outputs, the detection and localization of 
edges may be regarded as an unnecessary step in solving the correspondence problem. A 
representation based on edges actually discards information useful in finding unambigu- 
ous matches between image features in a stereo pair. An alternative approach, explored 
here, is to treat the the spatial filter responses at each image location, collectively called 
the filter response vector, as the feature to be used for computing stereo correspondence. 

Although this approach is loosely inspired by the current understanding of processing 
in the early stages of the primate visual system (for a recent survey, DeValois and DeVal- 
ois, 1988), the use of spatial filters may also be viewed analytically. The filter response 
vector characterizes a local image region by a set of values at a point. This is similar to 
characterizing an analytic function by its derivatives at a point. From such a representa- 
tion, one can use a Taylor series approximation to determine the values of the function 
at neighboring points. Because of the commutativity of differentiation and convolution, 
the spatial filters used are in fact computing "blurred derivatives" at each point. The 
advantages of such a representation have been described in some detail (Koenderink and 
van Doom, 1987; Koenderink, 1988). Such a representation provides an efficient basis 
for various aspects of early visual processing, making available at each location of the 
computational lattice, information about a whole neighborhood around the point. 

The primary goal in using a large number of spatial filters, at various orientations, 
phases, and scales is to obtain rich and highly specific image features suitable for stereo 
matching, with little chance of encountering false matches. At this point, one might be 
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tempted to formulate more precise, mathematical  criteria and to a t tempt  to determine 
an optimal set of filters. The alternative viewpoint taken here is that  a variety of filter 
sets would each be adequate and any good stereo algorithm should not depend critically 
upon the precise form of the spatial filters chosen. 

2.1 The Filter Set  

The implementation and testing of these ideas requires some particular set of filters to 
be chosen, though at various times, alternative filters to those described below have been 
used, always giving more or less similar results. The set of filters used consisted of rotated 
copies of filters with impulse responses F(x ,  y) = Gn(a:) • G0(y), where n = 1, 2, 3 and 
G,, is the n ~h derivative of a Gaussian. The scale, or, was chosen to be the same in both 
the x and y directions. Filters at seven scales were used, with the area of the filters 
increasing by a factor of two at each scale. In terms of pixels, the filters are w • w, with 
w E {3, 5, 7, 10, 14, 20, 28}, and w = [8~r]. The filters at the largest scale are shown in 
Fig. 2. Smaller versions of the same filters are used at finer scales. Nine filters at seven 
scales would give 63 filters, except at the finest scale the higher derivatives are useless 
because of quantization errors, and so were discarded. 

2.2 Singular Value Decomposition 

Regardless of why a particular set of filters may be chosen, it is useful to know that  there 
is an automatic  procedure that  can be used to evaluate the degree to which the chosen 
filters are independent. Any filter that  can be expressed as the weighted sum of others 
in the set is redundant. Even filters for which this is not strictly true, but almost true 
may be a poor choice, especially where this may lead to numerical instability in some 
computat ions involving filter responses. The singular value decomposition provides just 
this information. 

Any m x n matrix A, may be expressed as the product of an m • m matrix U, an 
m • n diagonal matrix 22, and an n x n matrix V T, where the columns of U and V are 
orthonormal,  and the entries in 22 are positive or zero. This decomposition is known as 
the singular value decomposition. The diagonal entries of the matrix 22 are called singular 
values and satisfy al  > as > . . .  > crk >_ 0. More details may be found in a standard 
linear algebra or numerical analysis text (e.g., Golub and Van Loan, 1983). 

A spatial filter with finite impulse response may be represented as an n x 1 column 
vector, F/, by writing out its entries row by row. Here n is the number of pixels in the 
support of the filter. If an image patch (of the same size and shape as the support of 
the filter) is also represented as an n • 1 column vector, then the result of convolving 
the image patch by the filter is simply the inner product  of these two vectors. Taken 
together, a set of spatial filters forms a matrix F .  This is a convenient representation 
of the linear transformation that  maps image patches to a vector of filter responses. For 
an image patch represented as a vector I ,  the filter response vector is simply v = F T I .  
Applying the singular value decomposition yields F 7" = U ~ V  T 

The number of non-zero entries in 22 is the rank, r, or the dimension of the vector 
space spanned by the filters. The first r columns of V form an orthonormal basis set for 
this vector space, ranked in order of the visual patterns to which this particular set of 
filters is most sensitive. The corresponding singular values indicate how sensitive. The 
remaining columns form an orthonormal basis for the null space of F - -  those spatial 
patterns to which F is entirely insensitive. The matrix U may be thought of as an 
orthonormal basis set for the space of possible filter responses vectors, or merely as a 
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change of basis matrix. As an example of this decomposition, the orthonormal basis for 
the set of filters in Fig. 2A is shown in Fig. 2B. 

Fig. 2. A. Linear spatial filter set. B. Orthonormal basis set for vector sp~ce spanned by filters 
in A. 

One telltale sign of a poorly chosen set of filters is the presence of singular values that 
are zero, or very close to zero. Consider, for example, a filter set consisting of the first 
derivative of a Gaussian at four different orientations, 0. 

G~,o(z,y)=Gl(u)• ; u = x c o s 0 - y s i n 0 ,  v = z s i n t ~ + y c o s  

The vector space spanned by these four filters is only two dimensional. Only two filters 
are needed, since the other two may be expressed as the weighted sum of these, and 
thus carry no additional information. If one did not already know this analytically, this 
procedure quickly makes it apparent. Such filters for which responses at a small number 
of orientations allow the easy computation of filter responses for other orientations have 
been termed steerable fillers (Koenderink, 1988; Freeman and Adelson, 1991; Perona, 
1991). For Gaussian derivatives in particular, it turns out that n + 1 different orientations 
are required for the n th Gaussian derivative. 

As a further example, the reader who notes the absence of unoriented filters in Fig. 2A 
and is tempted to enrich the filter set by adding a V2G, Laplacian of Gaussian filter, 
should think twice. This filter is already contained in the filter set in the sense that it may 
be expressed as the weighted sum of the oriented filters G#2,o(z, y). Similar filters, such 
as a difference of Gaussians, may not be entirely redundant, but they result in singular 
values close to zero, indicating that they add little to the filter set. 

At the coarsest scales, filter responses vary quite smoothly as one moves across an 
image. For this reason, the filter response at one position in the image can quite accurately 
be computed from filter responses at neighboring locations. This means it is not strictly 
necessary to have an equal number of filters at the coarser scales, and any practical 
implementation of this approach would take advantage of this by using progressively 
lower resolution sampling for the larger filter scales. Regardless of such an implementation 
decision, it may be assumed that the output of every filter in the set is available at every 
location in the image, whether it is in fact available directly or may be easily computed 
from the outputs of a lower resolution set of filters. 
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2.3 I m a g e  E n c o d i n g  a n d  R e c o n s t r u c t i o n  

What  information is actually carried by the filter response vector at any given position 
in an image? This important question is surprisingly easy to answer. The singular value 
decomposition described earlier provides all that  is necessary for the best least-squares 
reconstruction of an image patch from its filter response vector. Since v = F T I ,  and 
F T = U ~ V  T, the reconstructed image patch can be computed using the generalized 
inverse (or the Moore-Penrose pseudo-inverse) of the matrix F T. 

I' = V 1/2Y U T v 

The matrix 1 / ~  is a diagonal matrix obtained from ~ by replacing each non-zero diagonal 
entry at by its reciprocal, 1/ai. 

An example of such a reconstruction is given in Fig. 3. The finest detail is preserved 
in the center of the patch where the smallest filters are used. The reconstruction is pro- 
gressively less accurate as one moves away from from the center. Because there are fewer 
filters than pixels in the image patch to be reconstructed, the reconstruction is necessar- 
ily incomplete. The high quality of the the reconstructed image, however, confirms the 
fact that most of the visually salient features have been preserved. The reduction in the 
number of values needed to represent an image patch means this is an efficient encoding 
- -  not just for stereo, but for other aspects of early visual processing in general. Since 
this same encoding is used throughout the image, this notion of efficiency should be used 
with caution. In terms of merely representing the input images, storing a number of filter 
responses for each position in the image is clearly less efficient than simply storing the 
individual pixels. In terms of carrying out computations on the image, however, there 
is a considerable savings for even simple operations such as comparing image patches. 
Encoded simply as pixels, comparing 30 • 30 image regions requires 900 comparisons. 
Encoded as 60 filter responses, the same computation requires one-fifteenth as much 
effort. 

Fig. 3. Image reconstruction. Two example image patches (leJt), were reconstructed (right) 
from spatial filter responses at their center. Original image patches masked by a Gaussian 
(middle) are shown for comparison. 
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3 U s i n g  F i l t e r  O u t p u t s  f o r  M a t c h i n g  

How should filter response vectors be compared? Although corresponding filter response 
vectors in the two views should be very similar, differences in foreshortening and shading 
mean that they will rarely be identical. A variety of measures can be used to compare 
two vectors, including the angle between them, or some norm of their vector difference. 
These and similar measures are zero when the filter response vectors are identical and 
otherwise their magnitude is proportional to some aspect of the difference between po- 
tentially corresponding image patches. It turns out that any number of such measures 
do indistinguishably well at identifying corresponding points in a pair of stereo images, 
except at depth discontinuities. Near depth discontinuities, the larger spatial filters lie 
across an image patch containing the projection of more than one surface. Because these 
surfaces lie at different depths and thus have different horizontal disparities, the filter 
responses can differ considerably in the two views, even when they are centered on points 
that correspond. While the correct treatment of this situation requires the notion of an 
adaptive scale map (developed in the next section), it is helpful to use a measure such 
as the L1 norm, the sum of absolute differences of corresponding filter responses, which 
is less sensitive to the effect of such outliers than the L2 norm. 

e,n = ~ [F~, * I r ( i , j )  - Fk * I l( i  + h r , j  + v~)[ 
k 

This matching error er~ is computed for a set of candidate choices of (hr, vr) in a win- 
dow determined by a priori estimates of the range of horizontal and vertical disparities. 
The (hr, v~) value that minimizes this expression is taken as the best initial estimate 
of positional disparity at pixel ( i , j )  in the right view. This procedure is repeated for 
each pixel in both images, providing disparity maps for both the left and right views. 
Though these initial disparity estimates can be quite accurate, they can be substantially 
improved using several techniques described in the next section. 

An implementation of this approach using the outputs of a number of spatial filters 
at a variety of orientations and scales as the basis for establishing correspondence has 
proven to give quite good results, for random-dot stereograms, as well as natural and 
artificial grey-level images. Some typical examples are presented here. 

The recovered disparity map for a ]ulesz random-dot stereogram is presented in 
Fig.4A. The central square standing out in depth is clearly detected. Disparity values 
at each image location are presented as grey for zero horizontal disparity, and brighter 
or darker shades for positive or negative disparities. Because these are offsets in terms 
of image coordinates, the disparity values for corresponding points in the left and right 
images should have equal magnitudes, but opposite signs. Whenever the support of the 
filter set lies almost entirely on a single surface, the disparity estimates are  correct. 
Even close to depth discontinuities, the recovered disparity is quite accurate, despite the 
responses from some of the larger filters being contaminated by lying across surfaces at 
different depths. 

In each view, there is a narrow region of the background just to one side of the near 
central square that is visible only in one eye. In this region, there is no corresponding 
point in the other view and the recovered disparity estimates appear as noise. Methods 
for coping with these initial difficulties are discussed in later sections. In the lower panels 
of the same figure, the measure of dissimilarity, e,n, between corresponding filter response 
vectors is shown, with darker shades indicating larger differences. Larger differences are 
clearly associated with depth discontinuities. 
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Fig. 4. Initial disparity estimates: random-dot stereogram and fruit. For the stereo pairs shown 
(top), the recovered disparity map (middle) and dissimilarity or error map (bottom) are shown. 
(fruit images courtesy Prof. N. Ahuja, Univ. Illinois) 

When approached as a problem of determining which black dot in one view cor- 
responds with which black dot in the other, the correspondence problem seems quite 
difficult. In fact, Julesz random-dot stereograms are among the richest stimuli - -  con- 
taining information at all orientations and scales. When the present approach based on 
spatial filters is used, the filter response vector at each point proves to be quite distinctive, 
making stereo-matching quite straightforward and unambiguous. 

As an example of a natural grey-level image, a stereo pair of fruit lying on a table 
cloth is shown in Fig. 4B. The recovered disparity values clearly match the shapes of 
the familiar fruit quite well. Once again, some inaccuracies are present right at object 
boundaries. The measure of dissimilarity, or error shown at the bot tom of the figure 
provides a blurry outline of the fruit in the scene. A mark on the film, present in one 
view and not the other (on the canteloupe) is also clearly identified in this error image. 

As a final example, a ray-traced image of various geometric shapes in a three-sided 
room is depicted in Fig. 5. For this stereo pair, the optical axes are not parallel, but 
converged to fall on a focal point in the scene. This introduces vertical disparities between 
corresponding points. Estimated values for both the horizontal and vertical disparities 
are shown. Within surfaces, recovered disparities values are quite accurate and there are 
some inaccuracies right at object boundaries. Just to the right of the polyhedron in this 
scene is a region of the background visible only in one view. The recovered disparity 
values are nonsense, since even though there is no correct disparity, this method will 
always choose one candidate as the "best". Another region in this scene where there 
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are some significant errors is along the room's steeply slanted left wall. In this case, the 
large differences in foreshortening between the two views poses a problem, since the filter 
responses at corresponding points on this wall will be considerably different. A method 
for handling slanted surfaces such as this has been discussed in detail elsewhere (Jones, 
1991; Jones and Malik, 1992). 

Fig. 5. Initial disparity estimates: a simple raytraced room. For the stereo pair (top), the 
recovered estimates of the horizontal (middle) and vertical (bottom) components of positional 
disparity are shown. 

4 A d d i t i o n a l  c o n s t r a i n t s  f o r  s o l v i n g  c o r r e s p o n d e n c e  

4.1 Ep ipo l a r  G e o m e t r y  

By virtue of the basic geometry involved in a pair of eyes (or cameras) viewing a three- 
dimensional scene, corresponding points must always lie along epipolar lines in the im- 
ages. These lines correspond to the intersections of an epipolar plane (the plane through 
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a point in the scene and the nodal points of the two cameras) with the left and right 
image planes. Exploiting this epipolar constraint reduces an initially two-dimensional 
search to a one-dimensional one. Obviously determination of the epipolar lines requires 
a knowledge of the viewing geometry. 

The core ideas behind the algorithms to determine viewing geometry date back to 
work in the photogrammetry community in the beginning of this century (for some histor- 
ical references, Faugeras and Maybank, 1990) and have been rediscovered and developed 
in the work on structure from motion in the computational vision community. Given a 
sufficient number of corresponding pairs of points in two frames (at least five), one can 
recover the rigid body transformation that relates the two camera positions except for 
some degenerate configurations. In the context of stereopsis, Mayhew (1982) and Gillam 
and Lawergren (1983) were the first to point out that the viewing geometry could be 
recovered purely from information present in the two images obtained from binocular 
viewing. 

Details of our algorithm for estimating viewing parameters may be found in (Jones 
and Malik, 1991). We derive an expression for vertical disparity, vr, in terms of image 
coordinates, ( i t , j r ) ,  horizontal disparity, hr, and viewing parameters. This condition 
must hold at all positions in the image, allowing a heavily over-constrained determination 
of certain viewing parameters. With the viewing geometry known, the image coordinates 
and horizontal disparity determine the vertical disparity, thus reducing an initially two- 
dimensional search for corresponding points to a one-dimensional search. 

4.2 P iecewise  smoo thnes s  

Since the scene is assumed to consist of piecewise smooth surfaces, the disparity map is 
piecewise smooth. Exploiting this constraint requires some subtlety. Some previous work 
in this area has been done by Hoff and Ahuja (1989). In addition to making sure that we 
do not smooth away the disparity discontinuities associated with surface boundaries in 
the scene, we must also deal correctly with regions which are only monocularly visible. 

Whenever there is a surface depth discontinuity which is not purely horizontal, distant 
surfaces are occluded to different extents in the two eyes, leading to the existence of 
unpaired image points which are seen in one eye only. The realization of this goes back 
to Leonardo Da Vinci (translation in, Kemp, 1989). This situation is depicted in Fig. 6. 

Recent psychophysical work has convincingly established that the human visual sys- 
tem can exploit this cue for depth in a manner consistent with the geometry of the 
situation (Nakayama and Shimojo, 1990). 

Any computational scheme which blindly assigns a disparity value to each pixel is 
bound to come up with nonsense estimates in these regions. Examples of this can be 
found by inspecting the occluded regions in Fig. 5. At the very minimum, the matching 
algorithm should permit the labeling of some features as 'unmatched'. This is possible 
in some dynamic programming algorithms for stereo matching along epipolar lines (e.g., 
Arnold and Binford, 1980) where vertical and horizontal segments in the path through 
the transition matrix correspond to skipping features in either the left or right view. 

In an iterative framework, a natural strategy is to try and identify at each stage the 
regions which are only monocularly visible. The hope is that while initially this classifi- 
cation will not be perfect (some pixels which are binocularly visible will be mislabeled 
as monocularly visible and vice versa), the combined operation of the different stereopsis 
constraints would lead to progressively better classification in subsequent iterations. Our 
empirical results bear this out. 
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Fig.  6. Occlusion. In this view from above, it is cleat that at depth discontinuities there are 
often regions visible to one eye, but not the other. To the right of each near surface is a region 
r that is visible only to the right eye, R. Similarly, to the left of a near surface is monocular 
region, I, visible only to the left eye, L: 

The problem of detect ing and localizing occluded regions in a pair  of stereo images is 
made  much easier when one recalls tha t  there are indeed a pair of images. The  occluded 
regions in one image include exactly those points  for which there is no corresponding 
point  in the other image. This  suggests tha t  the best cue for finding occluded regions in 
one image lies in the dispar i ty  est imates for the other image! 

Fig .  7. Visibility map. The white areas in the lower panels mark the regions determined to be 
visible only from one of the two viewpoints. 

Define a binocular  visibility map, B(i , j ) ,  for one view as being 1 at  each image 
posi t ion tha t  is visible in the other view, and 0 otherwise (i.e., an occluded region). The  
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horizontal and vertical disparity values for each point in, say, the left image are signed 
offsets that give the coordinates of the corresponding point in the right image. If the 
visibility map for the right image is initially all zero, it can be filled in systematically as 
follows. For each position in the left image, set the corresponding position in the right 
visibility map to 1. Those positions that remain zero had no corresponding point in the 
other view and are quite likely occluded. An example of a visibility map computed in 
this manner is shown in Fig. 7. 

Having established a means for finding regions visible only from a one viewpoint, 
what has been achieved? If the disparity values are accurate, then the visibility map, 
besides simply identifying binocularly visible points, also explicitly delimits occluding 
contours. After the final iteration, occluded regions can be assigned the same disparity 
as the more distant neighboring visible surface. 

4.3 D e p t h  Discon t inu i t i e s  a n d  A d a p t i v e  Scale  Se lec t ion  

The output of a set of spatial filters at a range of orientations and scales provides a 
rich description of an image patch. For corresponding image patches in a stereo pair of 
images, it is expected that these filter outputs should be quite similar. This expectation 
is reasonable when all of the spatial filters are applied to image patches which are the 
projections of single surfaces. When larger spatial filters straddle depth discontinuities, 
possibly including occluded regions, the response of filters centered on corresponding 
image points may differ quite significantly. This situation is depicted in Fig. 8. Whenever 
a substantial area of a filter is applied to a region of significant depth variation, this 
difficulty occurs (e.g, in Fig. 5). 

far 

@ 

Fig. 8. Scale selection. Schematic diagram depicting a three-sided room similar to the one 
in Fig. 5. When attempting to determining correspondence for a point on a near surface, larger 
filters that cross depth boundaries can result in errors. If depth discontinuities could be detected, 
such large scale filters could be selectively ignored in these situations. 

From an initial disparity map, it is possible to estimate where such inappropriately 
large scale filters are being used by applying the following procedure. At each position in 
the image, the median disparity is determined over a neighborhood equal to the support 
of the largest spatial filter used for stereo matching. Over this same neighborhood, the 
difference between each disparity estimate and this median disparity is determined. These 
differences are weighted by a Gaussian at the same scale as the filter, since the center of 
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the image patch has a greater effect on the filter response. The sum of these weighted 
disparity differences provides a measure of the amount of depth variation across the image 
patch affecting the response of this spatial filter. When this sum exceeds an appropriately 
chosen threshold, it may be concluded that the filter is too large for its response to be 
useful in computing correspondence. Otherwise, continuing to make use of the outputs 
of large spatial filters provides stability in the presence of noise. 

To record the results of applying the previous procedure, the notion of a scale map is 
introduced (Fig. 9). At each position in an image, the scale map, S(i, j), records the scale 
of the largest filter to be used in computing stereo correspondence. For the computation 
of initial disparity estimates, all the scales of spatial filters are used. From initial disparity 
estimates, the scale map is modified using the above criterion. At each position, if it is 
determined that an inappropriately large scale filter was used, then the scale value at that 
position is decremented. Otherwise, the test is redone at the next larger scale, if there is 
one, to see if the scale can be incremented. It is important that this process of adjusting 
the scale map is done in small steps, with the disparity values being recalculated between 
each step. This prevents an initially noisy disparity map, which seems to have a great 
deal of depth variation, from causing the largest scale filters to be incorrectly ignored. 

Fig. 9. Scale map. The darker areas in the lower panels mark the regions where larger scale 
filters are being discarded because they lie across depth discontinuities. 

5 T h e  C o m p l e t e  A l g o r i t h m  

Once initial estimates of horizontal and vertical disparity have been made, additional 
information becomes available which can be used to improve the quality of the disparity 
estimates. This additional information includes estimates of the viewing parameters, the 
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location of occluded regions, and the appropriate scale of filters to be used for matching. 
Our algorithm can be summarized as follows: 

1. For each pixel P with coordinates (i, j )  in the left image, and for each candidate dis- 
parity value h, ~ in the allowable disparity range compute the error measure eij(h, ~). 

2. Declare h(i, j) and v(i, j) to be the values of h, ~ that minimize eij. 
3. Use the refined values of h(i, j) and v(i, j) to compute the new visibility map B(i, j) 

and scale map S(i, j). 
4. Perform steps 1-3 for disparity, visibility, and scale maps but this time with respect 

to the right image. 
5. Goto step 1 or else stop at convergence. 

The error function e(h, f~) is the sum of the following terms 

e(h, =  raera(h, + +  oeo(h, + 

Each term enforces one of the constraints discussed: similarity, viewing geometry, consis- 
tency, and smoothness. The )~ parameters control the weight of each of these constraints, 
and their specific values are not particularly critical. The terms are: 

�9 era(h, ~) is the matching error due to dissimilarity of putative corresponding points. 
It is 0 if B(i , j )  = 0 (i.e., the point is occluded in the other view), otherwise it is 
~ IFk * Ir( i , j )  - Fk * Ii(i + hr , j  + vr)l where k ranges from the smallest scale to 
the scale specified by S(i, j). 

�9 ev (h, ~) is the vertical disparity error [~3 - v* [ where v* is the vertical disparity consis- 
tent with the recovered viewing parameters. This term enforces the epipolar geometry 
constraint. 

�9 ec(h, r is the consistency error between the disparity maps for the left and right 
images. Recall that in our algorithm the left and right disparity maps are computed 
independently. This term provides the coupling - -  positional disparity values for 
corresponding points should have equal magnitudes, but opposite signs. If h I, v I is 
the disparity assigned to the corresponding point P' = (i + h , j  + ~) in the other 
image, then h I = - h  and v ~ = -~3 at binocularly visible points. If only one of P and 
P~ is labelled as monocularly visible, then this is consistent only if the horizontal 
disparities place this point further than the binocularly visible point. In this case, 
e~ = O, otherwise, e~ = Ih+ h' I + I~ + v'l. 

�9 e,(h, ~) = [h - hi + [fi - ~[ is the smoothness error used to penalize candidate dispar- 
ity values that deviate significantly from h, %, the 'average' values of horizontal and 
vertical disparity in the neighborhood of P.  These are computed either by a local 
median filter, within binocularly visible regions, or by a local smoothing operation 
within monocularly visible regions. These operations preserve boundaries of binocu- 
larly visible surfaces while providing stable depth estimates near occluded regions. 

The computational complexity of this algorithm has two significant terms. The first 
is the cost of the initial linear spatial filtering at multiple scales and orientations. Imple- 
mentations can be made quite efficient by using separable kernels and pyramid strategies. 
The second term corresponds to the cost of computing the disparity map. This cost is 
proportional to the number of iterations (typically 10 or so in our examples). The cost in 
each iteration is dominated by the search for the pixel in the other view with minimum e. 
This is O(n2WhWv) for images of size n x n and horizontal and vertical disparity ranges, 
Wh and wv. After the first iteration, when the viewing parameters have been estimated, 
the approximate vertical disparity is known at each pixel. This enables wv to be restricted 
to be 3 pixels which is adequate to handle quantization errors of 4-1 pixel. 
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6 E x p e r i m e n t a l  R e s u l t s  

The algorithm describcd in the previous section has been implemented and tested on 
a variety of natural and artificial images. In practice, this process converges (i.e., stops 
producing significant changes) in under ten iterations. Disparity maps obtained using 
this algorithm are shown in Fig. 10. The reader may wish to compare these with Figures 
4 and 5 which show the disparity map after a single iteration when the correspondence is 
based solely on the similarity of the filter responses. The additional constraints of epipolar 
geometry and piecewise smoothness have clearly helped, particularly in the neighborhood 
of depth discontinuities. Also note that the visibility map for the random dot stereogram 
as well as the room image (bottom of Fig. 7) are as expected. From these representations, 
the detection and localization of depth discontinuities is straightforward. 

Fig. 10. Refined disparity estimates. For the stereo pairs (top), the recovered horizontal dis- 
parities are shown in the middle panel. For the random dot stereogram, the lower panel shows 
the visibility map. For the room image, the bottom panel shows the recovered vertical disparity. 

We have demonstrated in this paper that convolution of the image with a bank of 
linear spatial filters at multiple scales and orientations provides an excellent substrate on 
which to base an algorithm for stereopsis, just as it has proved for texture and motion 
analysis. Starting out with a much richer description than edges was extremely useful for 
solving the correspondence problem. We have developed this framework further to enable 
the utilization of the other constraints of epipolar geometry and piecewise smoothness as 
well. 
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