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A b s t r a c t .  In this work, we look at mean field annealing (MFA) from two 
different perspectives: information theory and statistical mechanics. An iterative, 
deterministic algorithm is developed to obtain the mean field solution for disparity 
calculation in stereo images. 

1 In troduc t ion  

Recently, a deterministic version of the simulated annealing (SA) algorithm, called mean field 
approximation (MFA) [1], was utilized to approximate the SA algorithm efficiently and success- 
fully in a variety of applications in early vision modules, such as image restoration [8], image 
segmentation [3], stereo [12], motion [11] surface reconstruction [4] etc. 

In this paper, we apply the approximation in the stereo matching problem. We show that 
the optimal Bayes estimate of disparity is, in fact, equivalent to the mean field solution which 
minimizes the relative entropy between an approximated distribution and the given posterior 
distribution, if (i) the approximated distribution h a  a Gibbs form and (ii) the mass of dis- 
tribution is concentrated near the mean as the temperature goes to zero. The approximated 
distribution can be appropriately tuned to behave as close to the posterior distribution as pos- 
sible. Alternatively, from the angle of statistical mechanics, the system defined by the states 
of disparity variables can be viewed as isomorphic to that in magnetic materials, where the 
system energy is specified by the binary states of magnetic spins. According to the MRF model, 
the distribution of a specific disparity variable is determined by two factors: one due to the 
observed image data (external fidd) and the other due to its dependence (internal field) upon 
the neighboring disparity variables. We follow the mean field theory in the usual Ising model of 
magnetic spins [7] to modify Gibbs sampler [5] into an iterative, deterministic version. 

2 A n  I n f o r m a t i o n  Theore t i c  Analys i s  of  M F A  

The optimal Bayes estimate of the disparity values at uniformly spaced grid points, given a pair 
of images, is the maximum a posteriori (MAP) estimate when a uniform cost function is assumed. 
To impose the prior constraints (e.g., surface smoothness etc.), we can add energy terms in the 
objective energy (performance) functional and/or introduce an approximated distribution. The 
posterior energy functional of disparity map d given the stereo images, fL and fr, can usually be 
formulated in the form [2]: 

M M 

UP(d[fl'fr)=a(T) EJgl(xl)-gr[xi +(dx"O)]J2 + E E (dx'-dxj)2 (1) 
i ~ l  i=1  XjENXI 

where gt and gr represent the vectors of matching primitives extracted from intensity images; 
Nxi is the neighborhood of x~ in the image plane /2 and is defined through a neighborhood 

structure with radius r, Rr = {Nx,x E /2}, Nx =~ {Y, lY - x J  2 < r}; M = 1121 is the number 

of pixels in the discretized image plane; and the disparity map is defined as d zx {dx, x E 
12}. The first term represents the photometric constraint and the second term describes the 
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surface smoothness. If the disparity is modelled as an MRF given the image data, the posterior 
distribution of disparity is given as 

P(d, f , , f . )  = 1 [ UP(d~"fr) l ~ p  exp (2) 

where Zp and T axe the normalization and temperature constants respectively. The MAP 
estimate of disparity map is the minimizer of the corresponding posterior energy functional 
Up(d]f~,fr). It is desirable to describe the above equation by a simpler parametric form. If the 
approximated distribution is Pa, which is dependent on adjustable parameters represented by 
vector a ---- {dx,x  E D} and has the Gibbs form: 

1 
Uo(dld) ~"~(dx, - dx,) 2 (31 P . ( d l d )  = ~- exp . , = 

where Z .  is the partition function and U.(d[d) is the associated energy functional. For the 
specific Uo, the approximated distribution is Ganssian. In information theory, relative entropy 
is an effective measure of how well one distribution is approximated by another [9]. Alternative 
names in common use for this quantity are discrimination, Kunback-Liebler number, direct 
divergence and Cross entropy. The relative entropy of a measurement d with distribution P~ 
relative to the distribution P is defined as 

P , (d ld)  
S , (a )  -~ P,(d[d)  log p ( d [ f ,  f , )  dd (4) 

where P(dlfl ,  fr) is referred to as reference distribution. Kullback's principle of minimum relative 
entropy [9] states that, of the approximated distributions P~ with the given Gibbs form, one 
should choose the one with the least relative entropy. If d is chosen as the mean of the disparity 
field d, the optimal mean field solution is apparently the minimizer of relative entropy measure. 
After some algebraic manipulations, we can get 

---- T ( F .  - Fp + E(Up) - E (U, ) )  (5) S , (a )  

where the expectations, E(.), axe defined with respect to the approximated distribution P,. F ,  

- T l o g  Za, Fp ~ - T I o g  Zp axe called free energy. In statistical mechanics [10], the difference 
between the average energy and the free energy scaled by temperature is equal to entropy, 
o r  F = E - TS .  From the divergence inequality in information theory, the relative entropy is 
always non-negative [6] S t (a)  _> 0, with the equality holding if and only if P~ - P.  And since 
temperature is positive, 

F~ < Fo + E(V~) - E(Vo) ( 6 )  

which is known as Perieris's inequality [1]. The MFA solution, realized as the minimizer of 
relative entropy, can be alternatively represented as the parameter a yielding the tightest bound 
in (6). In other words, we have 

min S~(d) = [Fo E(Up) m~n + - E ( V ' . ) ]  ( 7 )  
d 

since Fp in (5) is not a functional of the parameter a at all. The choice of U~ relies on a prior 
knowledge of the distribution of the solution. Gibbs measure provides us with the flexibility in 
defining the approximated distribution P~ as it depends solely on the energy function Us, which 
in turn can be expressed as the sum of clique potentials [5]. Next we discuss an example of U, 
which is both useful and interesting. For the energy function given in (3), the corresponding 
approximated distribution is Ganssian and the adjustable parameters are, in fact, the mean 
values of disparity field. As the temperature (variance) approaches zero, it will be conformed 
t o  the mean value with probability one. Since the disparity values at lattice points axe assumed 
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to be independent Gaussian random variables, both the free energy and expected approximate 
energy can be obtained as: 

M 

F.  = - T l o g  Z.  = - ~ l o g ( r T ) ,  E(U,,)= EE(dx, - d x , )  2 
MT 

= 2 (s) 
i----1 

The mean posterior energy can be written as: 

M M 

E[(dX,--dX,)2I (9) 
i----1 i=l X j E N x i  

The second term in the right hand side (RHS) can be rewritten as: 

M M 

E E E[(dx'-dxi)2l = E  E [ Y - I ' ( d x ' - d x J ) 2 ]  (10) 
iffil X j 6 N X i  i=1 XjENxl 

On the other hand, if the first term at RHS of (9) can be approximated by (the validity of 
approximation will be discussed later) 

M M 

~,(r) ~ E (Ig,(x,)- g..[x, + (dx,, o)]1 ~) -- o~(r) ~ Ig,(x,)- gdx, + (,ix,, o)]l ~ (11) 
i=1  i-~.1 

then, by combining (10) and (11), the upper bound in Peierls's inequality becomes 

M M 

F~ + E(Up) - E(Uo) vr a(T)E [g,(x,) - g~[x, + (dx,,0)][ 2 + E E (dx, - dxj)  2 (12) 
i-~l iffil X iENxi 

It is interesting to note that the format of the above functional of mean disparity function, 
d, is identical to that of the posterior energy functional, Up(difl,f~ ) up to a constant. Hence, 
it is inferred that the MAP estimate of disparity function is, in fact, equivalent to the mean 
field solution minimizing the relative entropy between the posterior and approximated Gaussian 
distributions. Regarding the approximation in (11), as the temperature T ---, 0, all the mass of 
P . (d ld )  will be concentrated at mean vector d = d and (11) holds exactly. At least, in the low 
temperature conditions, the MFA solution coincides with the MAP solution. 

3 M F A  B a s e d  o n  S t a t i s t i c a l  M e c h a n i c s  

When it system possesses a large interaction degree of freedom, the equilibrium can be attained 
through the mean field [10]. It serves as a general model to preview a complicated physical 
system. In our case, each pixel is updated by the expected (mean) value given the mean values 
of its neighbors [7]. 

With Gibbs sampler [2], we visit each site xi and update the associated site variable dx~ 
with a sample from the local characteristics 

P(dx~idy,Vy~xi,f,,fr)= 1 [ -  TUi(dxi)]  (13) exp 

where the marginal energy function Ui(dx,) is derived from (1) and (2). If the system is fury 
specified by the interactions of site (disparity) variables and the given data, the uncertainty of 
each variable is, in fact, defined by the local characteristics. In a magnetic material, each of 
the spins is influenced by the magnetic field at its location. This magnetic field consists of any 
external field imposed by the experimenter, plus an internal field due to other spins. During the 
annealing process, the mean contribution of each spin to the internal field is considered. The 
first term in (1) can be interpreted as the external field due to the given image data and the 
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second term as internal field contributed by other disparity variables. SA with Gibbs sampler 
simulate the system with the samples obtained from the embedded stochastic rules, while MFA 
tries to depict the system with the mean of each system variable. 

In summary, the MFA version of Gibbs sampler can then be stated as: 

1. Start with any initial mean disparity do and a relative high initial temperature. 
2. Visit a site xl and calculate the marginal energy function contributed by given image data 

and the mean disparity in the neighborhood Nxi as 

0/(dx,) = a IgL(x/) -g , [x~ + (dx, ,  0)][ 2 + (dx, - dy) 2 (14) 
YENX~ 

3. Calculate the mean disparity dxl as 

exp [ -O i (dx l ) /T ]  (15) 
dxi = E dx iP (dx i ]dy ,Vy  ~ xl ,f , , f , )  = E dx, 

Z~ 
dx i EItD dx i ERz) 

4. Update in accordance with steps 2 and 3 until a steady state is reached at the current 
temperature, T. 

5. Lower the temperature according to a schedule and repeat the steps 2, 3 and 4 until there 
axe few changes. 

Consequently, MFA consists of a sequence of iterative, deterministic relaxations in approximating 
the SR. It converts a hard optimization problems into a sequence of easier ones. 

4 E x p e r i m e n t a l  R e s u l t s  

We have used a wide range of image examples to demonstrate that SR can be closely approxi- 
mated by MFA. Due to the space limitation, we only provide azt image example: Pentagon (256 x 

256). The matching primitives used in the experiments are intensity, directional intensity gra- 
dients (along horizontal and vertical directions), i.e., gs(z, y) --- (f ,(z,  y),-~=, ~ ) ,  V(z, y) E 
~ ,  s = l, r. We try to minimize the functional Up(c]]fz, f~) by deterministic relaxation at each 
temperature and use the result at current temperature as the initial state for the relaxation at 
the next lower temperature. The initial temperature is set as 5.0 and the annealing schedule used 
is where the temperature is reduced 50% relative to the previous one. The neighborhood system 
•2 is used in describing surface smoothness. The computer simulation results are shown in Fig 
1. One could compare the result with those obtained by SA algorithm using Gibbs sampler. 

In MFA version of SA with Gibbs sampler, we follow the algorithm presented in Section 3. 
The initial temperature and the annealing schedule are identical to those in above. The results 
axe also shown in Fig 1. When they are compared with the previous results, we can see that the 
MFA from both approaches yield roughly the same mean field solution and they approximate 
the MAP solution closely. 

5 C o n c l u s i o n  

In this paper, we have discussed, for stereo matching problem, two general approaches of MFA 
which provide good approximation to the optimal disparity estimate. The underlying models can 
be easily modified and applied to the other computer vision problems, such as image restoration, 
surface reconstruction and optical flow computation etc. As the Gaussian distribution is the most 
natural distribution of an unknown variable given both mean and variance [9], it is nice to see 
that the meaa values of these independent variables that minimize the relative entropy between 
the assumed Ganssian and the posterior distribution is equivalent to the optimal Bayes estimate 
in MAP sense. 
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Fig.  1. Upper row (left to right): the left and right images of Pentagon stereo pa~r, the mean 
field result based on information theoretic approach, and the result using SA. Bottom row 
(left to right): the result using deterministic Gibbs sampler, the three dimensionaJ (3-D) surface 
corresponding to information theoretic MFA, and the 3-D surface corresponding to deterministic 
Gibbs sampler. 
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