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A b s t r a c t .  This paper proposes a method for tracking an arbitrary object 
contour in a sequence of images. In the contour tracking, energy-minimizing 
elastic contour models are utilized, which is newly presented in this paper. 
The proposed method makes it possible to establish object tracking even 
when complex texture and occluding edges exist in or near the target ob- 
ject. We also newly present an algorithm which efficiently solves energy 
minimization problems within dynamic programming framework. The algo- 
rithm enables us to obtain optimal solution even when the variables to be 
optimized are not ordered. 

1 Introduct ion 

Detecting and tracking moving objects is one of the most fundamental and important 
problems in motion analysis. When the actual shapes of moving objects are important,  
higher level features like object contours, instead of points, should be used for the track- 
ing. Furthermore, since these higher level features make it possible to reduce ambiguity 
in feature correspondences, the correspondence problem is simplified. 

However, in general, the higher the level of the features, the more difficult the ex- 
traction of the features becomes. This results in a tradeoff, which is essentially insolvable 
as long as a two-stage processing is employed. Therefore, in order to establish high level 
tracking, object models which embody a priori knowledge about the object shapes are 
utilized[I][2]. 

On the other hand, Kass et ai.[3] have recently proposed active contour models(Snakes) 
for the contour extraction. Once the snake is interactively initialized on an object contour 
in the first frame, it will automatically track the contour from frame to frame. That  is, 
contour tracking by snakes can be achieved. It is a very elegant and attractive approach 
because it makes it possible to simultaneously solve both the extraction and tracking 
problems. That  is, the above tradeoff is completely eliminated. 

However, this approach is restricted to the case that the movement and deformation 
of an object are very small between frames. As also pointed out in Ref.[2], this is mainly 
due to the excessive flexibility of the spline composing the snake model. 

In this paper, we propose a robust contour tracking method which can solve the 
above problem while preserving the advantages of snakes. In the proposed method, since 
the contour model itself is defined by elastics with moderate "stiffness" which does not 
permit local major deformations, the influence of texture and occluding edges in or near 
the target contour is minimal. Hence, the proposed method becomes more robust than 
the original snake models in that it is applicable to more general tracking problems. 

In this paper, we also present a new algorithm for solving energy minimization prob- 
lems using dynamic programming technique. Amini et al.[4] have already proposed a 
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dynamic programming(DP) algorithm which is superior to variational approach with re- 
gard to optimality and numerical stability. In order to use DP, however, the original 
decision process should be Markovian. From this point of view, with Amini's formula- 
tion, optimality of the solution is ensured only in the case of open contours. That is, 
for closed contours, reformulation is necessary. In this paper, we clarify the problem of 
Amini's formulation, and furthermore, within the same DP framework, we present a new 
formulation which guarantees global optimality even for closed contours. 

2 F o r m u l a t i n g  t h e  c o n t o u r  t r a c k i n g  p r o b l e m  

2.1 Elast ic  c o n t o u r  m o d e l s  

A model contour is defined as a polygon with n discrete vertices. That  is, the polygonally 
approximated contour model is represented by an ordered list of its vertices: C = {vi = 
(zi, Yi)}, 1 < i < n. A contour model is constrained by two kinds of "springs" so that 
it has a moderate "stiffness" which preserves the form of the tracked object contour in 
the previous frame as much as possible. That  is, each side of the polygon is composed of 
a spring with a restoring force proportional to its expansion and contraction, while the 
adjacent sides are constrained by another spring with a restoring force proportional to 
the change of the interior angle. Assume that these springs are original length when the 
contour model is at the initial contour position 0 ,, {vi }i=1 in the current frame. Therefore, 
at that time, for the springs no force is at work. Clearly, the initial position in the current 
frame corresponds to the tracking result in the previous frame. 

2.2 E n e r g y  m i n i m i z a t i o n  f r a m e w o r k  

Let 0 n {vi }i=1 denote a tracked contour in the preceding frame. Then our goal is to move 
and deform the contour model from 0 n �9 n {vi }i=1 to the best position {v i }i=a in the current 
frame such that the following total energy functional is minimized: 

gt 

i----1 

Here, Eelastie is elastic energy functional derived from the deformation of the contour 
model and can be defined as: 

1 0 
Ee,a:tir = ~ (pl(IVi+l - vii - Ivi+l - v~ 2 

-Fp2(ang(vl, v,+,, v,+2) - ang(v ~ vO+I, vO_I_2)) 2) (2) 

where ang(vi,vi+l,Vi+2) means the angle made by sides Vi+lVi and vi+zvi+2. (see 
Fig.lb.) Pl and P2 are non-negative constants. In Eq.(2), the first energy term corre- 
sponds to the deformation due to the expansion and contraction of each side of the 
polygonally approximated contour model, while the second energy term corresponds to 
the deformation due to the change of interior angle between the two adjacent sides. 

Eli~td is the potential energy functional which gives rise to edge potential field forces 
newly defined in this paper. The potential field is derived from the edges in the current 
frame including target contour. The potential field used here, since it is obtained with 
distance transformation[5], unlike that used in the original snakes, smoothly extends over 
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a long distance. Therefore, it can influence the contour model even ff the contour model 
is remote from the target contour. 

Assuming that  z(vi) denotes the height or potential value at vi on the potential field, 
then the potential energy, Elietd, can easily be defined by the classical gravitational 
potential energy equation. That  is, 

EIield(Vi) = m~z(vi) = p3z(vi). (3) 

where m is the constant mass of the vi, ~ is the magnitude of the gravitational acceler- 
ation. Pa is a negative constant. 

It can be intuitively interpreted that  Eq.(1) becomes minimum when the contour 
model is localized on the contour whose shape most nearly resemples the contour tracked 
in the previous frame. Accordingly, even if the contour model is not remote from the 
target contour, the model can move to the target contour while preserving its shape as 
much as possible. As a result, a tracking desired contour can be achieved. 

3 Optimization algorithm 

From Eqs.(2) and (3), the total energy functional shown in Eq.(1) can be formally brought 
to the general form: 

n 

Eto,at(Vl,V2,... ,vn) = E { f i ( v i )  + gi(vi,Vi+l) + hi(vi,Vi+l,Vi+2)}, (4) 
i=1 

Note that  the general form of Eq.(4) is the same as that  of snakes. 
The minimization of Eq.(4), like snakes, returns us to the problem of finding the 

opt imum values {v*}in=l which give the local minimum, starting from the initial values 
{vi}i~=t. One way to find the minimum is by employing exhaustive enumeration. However, 
with this approach, combinatorial explosion is inevitable. Therefore, we must devise a 
more efficient algorithm. 

Recently, Amini et al.[4] proposed a dynamic programming approach to energy min- 
imization of the snakes. In the dynamic programming approach, the minimization of 
Eq.(4) is viewed as a discrete multistage decision process, with vi corresponding to the 
state variable in the i-th decision stage. However, this DP formulation is for open con- 
tours which preserve the ordering of the variables {vi}i~l. In other words, v l  and vn 
are not connected and constrained. Consequently, reformulation of DP equation for the 
closed contours is necessary. 

Let V be a set of v l , v ~ , . . . , v , .  Being focused on vl  in Eq.(4), vl  is included by 
I, (v,), h . _ , ( . . _ , ,  . . ,  v,), g. and Thus, 
for convenience, we here use S for the sum of these functions. Tha t  is, 

S : / 1  (Vl)-[-gl (v 1, v2)-[-hi (Vl, v2, ~)3)+hn-,(vn-1, v , ,  t ' l)-{-g, (vn, Vl)+hn(vn, Vl, v2). 
(5) 

Then, the minimization of E, otal can be written as: 

rain Etota, = min min Etota, 
v v-{v~} vt 

= m i ~  - s )  + 
v-{vt}~ 

(6) 

Hence, the first step of the optimization procedure is to perform the minimization with 
respect to vl  in Eq.(6). Clearly, from Eq.(5), one can see that  the minimization is a 
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function of v2, v3, vn-1, and vn. Therefore, this minimization is made and stored for all 
possible assignments of v~, v3, vn-1,  and vn. Formally, the minimization can be written 
as-  

r  v3, = (7) 

Note that in the minimization in Eq.(7), exhaustive enumeration is employed. 
Then, the problem remaining after the minimization with respect to vl ,  

-- min minEtot,,, v_{v , }{ (E to t , , -S )+r  (8) 

is of the same form as the original problem, and the function r va, vn-1, vn) can be 
regarded as a component of the new objective function. 

Applying the same minimization procedure for the rest of the variables, v2, v3 , . . ,  in 
this order, we can derive the following DP equations. That  is, for 2 < i < n - 4, 

~)i(Vi+ l , Vi+ 2, Vn-  l , Vn ) --~ ~ y  { r l (Vi, Vn-- l ,Vn)  e l+l ,  

"]-fi(vi) "[- gi(vi ,  VI+I )  "{- hi (v i ,  Vi+l, VI+2)}, (9) 
where, for i = n - 3,n - 2, n - 1, the corresponding DP equations can be obtained 
respectively. 

The time complexity of the proposed DP algorithm then becomes O(nm 5) because, in 
Eq.(9), the optimum decision is done over m 4 combinations. However, since, in general, 
each optimum decision stage in DP can be independently achieved, computation time 
can be drastically reduced with parallel processing. 

4 E x p e r i m e n t s  

The proposed contour tracking method has been tested experimentally on several syn- 
thetic and real scenes. Figure 1 compares the snake model(Fig.la) with our model(Fig.lb) 
when occluding edges exist. The scene in Fig.1 is an actual indoor scene and corresponds 
to one frame from a sequence of a moving bookend on a turntable over a static grid. 
Since the snake model is influenced by occluding edges, the model was not able to track 
the target contour. On the other hand, the proposed model successfully tracked it with- 
out being influenced by the occluding edges. We also obtained successful results for the 
trackings of moving car, deforming ball, and so on. 

In this approach, since the contour model itself moves toward the target contour, 
point correspondences are established between frames. That  is, correspondence based 
optical flows are also obtained. Therefore, feature point trajectories over several frames 
can easily be obtained by the proposed method. 

5 Conc lus ions  

We have presented here an energy-minimizing elastic contour model as a new approach 
to moving contour tracking in a sequence of images. Compared to the original snake 
model, the proposed method is more robust and general because it is applicable even 
when movements and deformation of the object between frames are large and there exist 
occluding edges. Moreover, we have newly devised an optimization algorithm with a 
dynamic programming framework, which is efficient and mathematically complete. 
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I = 0  I = 4 I = 12(Result) 
(a)Tracking by the snake model 

I = 0  I = 2 I = 7(Result) 
(b)Tracking by the proposed model 

F ig .1 .  Comparison of the results of tracking contour with occluding edges. I denotes the 
number of iterations. 
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