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Abstrac t .  Model-based recognition methods generally search for geo- 
metrically consistent pairs of model and image features. The quality of an 
hypothesis is then measured using some function of the number of model 
features that are paired with image features. The most common approach 
is to simply count the number of pairs of consistent model and image fea- 
tures. However, this may yield a large number of feature pairs, due to a 
single model feature being consistent with several image features and vice 
versa. A better quality measure is provided by the size of a maximal bi- 
partite matching, which eliminates the multiple counting of a given feature. 
Computing such a matching is computationally expensive, but under cer- 
tain conditions it is well approximated by the number of distinct features 
consistent with a given hypothesis. 

1 Introduction 

A number of different model-based techniques have been used to hypothesize instances 
of a given model in an image, including searching for possible correspondences of model 
and image features (e.g., [4]), the generalized Hough transform (e.g., [1]), alignment of a 
model with an (e.g., [5]), and analysis of the space of model transformation parameters 
[2]. While these methods differ substantially, they all measure the quality of a given 
hypothesis as a function of the number of geometric features of the model that are 
consistent with geometric features extracted from the image. The larger the consistent 
set of model and image features, the better an hypothesis is judged to be. 

In this paper we analyze some of the most common methods for assessing the quality 
of an hypothesis in model-based recognition. We focus on the case in which objects 
are modeled as a collection of 'atomic'  features (such as points). In other words, each 
individual model feature is either paired with an image feature or not (there is no partial 
matching of individual features). The three quality measures that we investigate are: (i) 
the number of pairs of model and image features that are consistent with an hypothesis, 
(it) the maximum bipartite matching of such features, and (iii) the number of distinct such 
features. We find that the first measure, although widely used, often greatly overestimates 
the quality of a match. The second method is more expensive to compute, but is also 
much more conservative. In practice we find that the third scoring method is the best. 
This final method also turns out to be closely related to some recent theoretical work 
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on using Hansdorff distances for recognition [6]. Finally, we show that if restrictions are 
placed on the spacing of the model features, then the third measure becomes equivalent 
to the size of the maximal matching. This provides a more precise meaning to the riotion 
that matching is more difficult when the features of a model are too close together. 

Our results have two important implications for model-based recognition systems: 

1. For atomic features (such as points), the quality of an hypothesis should be measured 
based on the number of distinct model and image features that are geometrically 
consistent with a given hypothesis, not on the number of consistent model and image 
feature pairs. 

2. Object models should be constructed such that no two features are close together, 
where closeness is a function of the degree of sensory uncertainty. 

Existing model-based recognition systems, where appropriate, can be modified with min- 
imal effort to take advantage of these results. Using the number of distinct features as a 
quality measure simply requires keeping track of which features are accounted for by a 
given set of feature pairs. Constructing the object models requires that the sensor error 
estimates used by the recognition method be available when the models are made. 

2 G e o m e t r i c a l l y  C o n s i s t e n t  S e t s  o f  F e a t u r e s  

We assume that a model consists of a set of features M = { m l } i = l  . . . . .  rn measured in some 
coordinate system A~t, and the image data consist of a set of features S = {sj}j=l ..... n 
measured in some coordinate system Z. A pair of model and image features, (mi,sj) 
defines a set of possible transformations from J~4 to 2:. This set of transformations can 
be viewed as a volume in a d-dimensional transformation parameter space, where each 
dimension of the space corresponds to one of the parameters of the transformation, 
T : J~4 ~ 2:. We denote the set, or volume, of transformations consistent with a pair of 
features (mi, sj) as V(mi,  sj) C T.  This is the set of all transformations on ml that map 
it into 2:, such that mi is within some uncertainty region around sj. We limit the present 
discussion to the case of point features, where the uncertainty region is modeled using a 
disk of radius e. These results can be generalized to more complex models of uncertainty, 
including non-circular positional uncertainty and angular uncertainty (cf. [2, 3]). 

As an example of a transformation space volume, consider a model and an image 
that both consist of a set of points in the plane, and a three-dimensional transformation 
space, T with axes u, v and 0 (corresponding respectively to the two translations and 
one rotation in the plane). If there is no sensory uncertainty in the image measurements 
(e = 0), then the set V(mi,  sj) is the helical arc ~ in T defined as a function of 0 by 
sj - Romi where R0 is a rotation matrix, and sj and mi are the positions of image and 
model feature points, respectively. Thus the translation is constrained exactly by a given 
rotation, but any rotation is possible. If the location of the image point is uncertain up 
to a circle of radius e, then V(mi,  sj) is a helical tube of circular cross section of radius 
e about the curve g. 

We define a consistent set of feature pairs, C, to be a set of model and image feature 
pairs that specify mutually overlapping sets of transformations. Thus formally C C_ M x S 
is a consistent set when the intersection of all the volumes specified by the pairs in C is 
nonempty, 

N V(m, ,  s~) r O, (I) 
(mi,s~)eC 
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The sets of 'geometrically consistent features' computed by most recognition sys- 
tems are a slight overestimate of the volumes specified in equation (1). For example, 
the interpretation tree approach (e.g., [4]) only ensures pairwise consistency between 
model and image feature pairs. That is, a path through the interpretation tree specifies 
a set of feature pairs J C_ M • S, such that for each pair (mi,sj) E J and (ink,st) E J, 
V(mi, sj)N Y(mk, st) ~ 0. The tree search does.not guarantee that the set J (correspond- 
ing to a path in the tree) is a consistent set by the definition in equation (1), because 
only pairs of volumes are required to intersect. Similarly, generalized Hough transform 
methods (e.g., [1]) overestimate the consistent feature sets, because the transformation 
space is tessellated into discrete buckets. These buckets are in general larger than the 
true transformation space volumes (if they were smaller then a match could be missed 
altogether). 

We further note that the size of C, from equation (1) is itself generally an overestimate 
of the quality of an hypothesis. The key problem is that a given set of consistent feature 
pairs may contain many pairs that involve a given model feature mi or a given image 
feature sj. Each of these pairs is counted separately, even though it involves the same 
model or image feature. For atomic features, where there is no partial matching of a 
single feature, it does not make much sense to count the same feature multiple times. A 
set of sensor features T C S will all be paired with the same model feature, ml E M, 
in the same consistent set if (7. ,-v V(mi, sj) # 0. This happens for any set of sensor 
features T in which all the fea't~u~res are 'close' together, where close means that the 
corresponding transformation space volumes intersect (i.e., closeness is a function of the 
sensor uncertainty). Similarly, a set of model features can all be paired with a given 
image feature. 
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Fig. 1. The number of consistent feature pairs overestimates the quality of a match: a) a super- 
imposed set of model and image features, b) the corresponding bipartite graph. 

Thus whenever a group of model features or a group of image features are close 
together, the size of a consistent set will count the same model or image feature multiple 
times. For example, Figure la  shows an alignment of a five point model with an image 
for which the corresponding consistent set contains eight feature pairs. The model points 
are shown as crosses and the image points are shown as dots. Any model point mi that  
lies within e of an image point sj defines a pair of features (mi, sj) that are consistent 
with this position of the model in the image. On the other hand, only three of the five 
model features are paired with distinct image features. In this case the difference in the 
size of the consistent set (eight) and the number of model features accounted for (three) 
occurs because a single image feature is paired with more than one model feature and 
vice versa. Such situations are not merely of theoretical interest, as they occur frequently 
for reasonable ranges of sensory uncertainty and images containing just tens of features. 
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3 B i p a r t i t e  M a t c h i n g  

Maximal bipartite matching can be used to rule out the 'multiple counting' that occurred 
in the above example, by requiring that each model feature only be paired with a single 
image feature and vice versa. A consistent set of feature pairs, C, defines a bipartite graph 
G = (U, V, E) where for each feature pair (m~, sj) E C there is a vertex u~ E U corre- 
sponding to the model feature m/, a vertex vi E V corresponding to the image feature sj, 
and an edge eij E E connecting ui to vj. Each edge is incident on one vertex of U and one 
vertex of V, so the graph is bipartite. For example, the set of consistent feature pairs corre- 
sponding to Figure la  is {(A, 1), (B, 1), (C, 2), (C, 3), (C, 4), (D, 5), (D, 6), (D, 7)} (where 
model features are denoted by letters and image features by numbers). This set defines 
the bipartite graph shown in Figure lb. 

A matching in a bipartite graph, G, is a subset of the edges, F C_ E, such that each 
vertex of G has at most one edge incident on it. The size of F is the number of edges 
that it contains, IFI. For instance, a trivial matching is a single edge of a bipartite graph. 
A maximal matching is one such that there are no larger matchings in the graph. For 
our problem, a maximal matching corresponds to the largest set of consistent model 
and image feature pairs that can be formed without using any model or image feature 
more than once. For the graph in Figure lb the set {(A, 1), (C, 2), (D, 5)} is a maximal 
matching. Note that in general there can be more than one maximal matching. 

Methods for finding a maximal matching in a bipartite graph require O(IV[ x/2. IEI) 
time, or O(n ~~) where n = IVI. Methods that are straightforward to implement require 
time O(min([VI, [U[)-IEI) time [7]. In contrast, simply counting the number of pairs in 
a consistent set (i.e., the number of edges in E) only requires time O(IED. As model 
based recognition methods already require substantial amounts of running time, we are 
concerned with how to estimate the size of the maximal matching, IFI, in O(IE D time. 

From the bipartite graph representation of a geometrically consistent set ,  we can 
identify several possible measures of the quality of the corresponding hypothesis: 

1. The number of feature pairs in the consistent set (i.e., ICI = lED. 
2. The number of distinct features accounted for by the consistent set (e.g., [U[, IVI, or 

their minimum, maximum, or sum). 
3. The size of a maximal matching in the bipartite graph defined by I (i.e., IFI where 

F C_ E is a maximal matching). 

Given the way we have constructed a bipartite graph from C, the first of these three 
quantities is the largest, and the last is the smallest, that is, IEI _ min(lUI, IVI) > IFI- 
Clearly the first inequality holds because the number of edges in the graph must be at 
least as large as the number of vertices of each type. The second inequality holds because 
in a matching each vertex has at most one edge incident on it. 

Whereas most recognition systems use the first of these measures, the last is the most 
conservative measure. Some recognition systems do use bipartite matchings, but these 
are quite expensive to compute compared with counting the number of consistent feature 
pairs. Thus we propose using the number of distinct pairs of model and image features, 
as measured by the quantity min(JU], IV[). This is cheap to compute, and measures the 
minimum number of distinct model or image features accounted for. 

The measure min(lUI, IVI) only overestimates the size of a maximal matching, IFI, 
when there is branching on both sides of the bipartite graph. This corresponds to a 
situation in which there are several neighboring model features that match a single image 
feature, and vice versa. If a bipartite graph is guaranteed to only have branching at the 
vertices on one side of the graph, then situations such as this cannot occur. In that case, 
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it is trivial to compute the size of a maximal matching - simply count the number of 
vertices on the side of the graph where the branching occurs. For example if the branching 
occurs only for vertices in U, then each edge e E E is incident on a unique vertex v E V 
(otherwise there would be branching for some vertex in V). Thus the number of vertices 
in U determines the size of a maximal matching. 

While we cannot in general control the spacing of features in an image, we can do so 
for the features in a model. More formally, in order for no two model features to match 
a given image feature, it must be that for each pair of model features, mi, mk E M, 
the volumes produced by intersection with the same sensor feature sj are disjoint, that 
is, Vrn,,rnkEMV(mi, Sj)N W(mk, sj) = 0. Another way to view this is that no two model 
features can be close enough together that when mapped into the image coordinate 
frame they overlap the uncertainty region around the same image feature. For a rigid- 
body transformation this can be accomplished by surrounding each model feature with 
a 'buffer area' based on the positional uncertainty value e. As long as no two buffer areas 
overlap, no pair of model features can match the same image feature. 

As an example, consider the case of points in the plane, where the sensory uncertainty 
region is a circle of radius e. If each model point is surrounded by a circle of radius e, and 
the model points are placed such that no two circle intersect, then no two model points 
can match the same image point. Having done this, the number of distinct features is 
equal to the size of the maximal bipartite matching, but is much cheaper to compute. In 
practice, we have found this method to be much better than simply counting the number 
of feature pairs. 

In summary, a good estimate of the size of the size of the maximal bipartite matching 
is provided by the number of distinct model and image features that are consistent with 
a given hypothesis. Moreover, if models are constructed such that no two model features 
are close together (as a function of the degree of sensory uncertainty) then the number of 
distinct features is the same as the size of the maximal bipartite matching. This provides 
a formal meaning to the intuition that matching is harder when the model features are 
'too close together to be resolved by the sensor'. 
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