
Negation in Conclog

J.-M. Jacquet
Center for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Abstract
This paper presents a new constructive form of the negation-as-failure rule
dedicated to concurrent executions and, based on it, a parallel execution
model of general Horn clauses. Referring to the completion understanding of
the programs, this model has been proved sound and as complete as possible
when the resolution rule and the negation-as-failure rule are used.
Furthermore, it does not suffer from the floundering problem : in contrast,
negative literals can be used to produce computed answers as the positive
literals can.

This new form of negation is based on an equational framework. It
introduces generalizations of substitutions, terms and related concepts of
instantiation and unification. A theory of such concepts is also presented in
the paper.

Keywords : constructive negation, parallel logic programming, parallel
language, theory of substitutions and terms.

1 Introduction

Although it is theoretically not necessary ([Tarnlund, 1977]), negation is one of the very
desirable features of any logic programming language. Theoretically, it can take three places : in
the head of clauses, in the body of clauses and in queries. Negation in the head of clauses
provides the full power of first order logic and, consequently, needs a much more expensive
form of resolution than the SLD one. One attractive feature of Horn clauses with SLD-
resolution is precisely that it can be implemented very efficiently. Hence, the only places where
n o t predicates are usually allowed to take place are in queries and in body of clauses. As a
result, there is no means left to derive negative information so that the following trick is

290

generally added to SLD-resolution. It consists of solving not(p) by first solving p and then
inverting the answers, thus stating the provability of not(p) if p is found unprovable and vice-
versa. This is known as negation as failure. Its great advantage is the possibility to implement it
with essentially no extra-cost to the resolution system. Its main drawback is that it is not real
negation. More specifically, variables have to be carefully manipulated, the result generally
depending of the clause and the goal selection strategies. For instance, with Prolog depth first
search strategy and with regards to the one clause program

p(a).
the reduction of not(p(X)) fail_~ whereas t_~at of not(p(b)) succeeds. In fact, with Prolog depth
first__~earc_~, the goal not(p(X)), with X the variables o~curring in p, is interpreted as
~(3 X p(X)) whereas the expected interpretation is 3X (~p(X)). These two interpretations are,
of course, not always the same. To force the equality, it is of current and safe practice to reduce
negative literals only when they are ground. They can thus be used only as tests and not to
produce answers, as the reduction of positive literals does. Furthermore, one problem - known
as the floundering problem - occurs when the reduction has to select one subgoal in a
conjunction composed only of non-ground negative literals.

Recently, a new form of the negation-as-failure rule, called constructive negation ([Chan,
1988], [Chan, 1989]), has been proposed to remedy this situation. An alternative form
dedicated to concurrent executions is presented in this paper. It is also constructive and,
consequently, avoids the floundering problem. It issues from the design of a concurrent logic
programming language, named Conclog, but is not dedicated to it. It rests on an equational
perception of the computation and has induced the generalization of several basic concepts. All
of these generalized forms have been extensively studied in [Jacquet, 1989]. They are used here
only as a basis for the paper and are just sketched. Their reason for existence may be motivated
as follows. Interpreting the executions in equational terms, it is not difficult to imagine that
handling negation leads to negate some equations and, therefore, to solve systems composed of
equations and inequations. In general, the set of solutions of these systems cannot be
represented by a finite number of substitutions. Our remedy to this situation is to introduce
negative information in the substitutions. This produces constructs of the form (0,not to) where
0 is a substitution and t~ is a set of bindings presented in a normal form with respect to 0. Such
constructs are caUed n-substitutions. In a symmetric way, negative information has also been
introduced in terms. This results in so-called extended terms, of the form (t,~) where f i is a set
of"not co" constructs, just introduced but normalized here with respect to t. Related concepts of
unification and instantiation have then been extended to these new terms and substitutions.

Given these extended concepts, our constructive approach to negation basically consists
of the following. Let, for any n-substitution v=({Xl/tl Xp/tp},not{Yl/ul Yq/uq}), eq(v)
be

Xl~tl ^ ... ^ Xp=tp ^ Yl~ul ^ ... ^ Yq~uq.

Assume the reduction of G has vl Vm as computed n-substitutions. Then return as
computed answer n-substitutions to not(G) the n-substitutions gl gn such that the negation
of eq(vl) v ... v eq(vm) is equivalent to eq(gl) v ... v eq(gn). Of course, this basic scheme
is slightly adapted to cope correctly with the quantification of the variables.

291

A parallel execution model of general Horn clauses based on the above features is also
presented in the paper. Referring to the completion understanding of the programs, it has been
proved sound and as complete as possible when the resolution principle and the negation-as-
failure rule are employed. As a snapshot, it essentially rests on and-parallelism, or-parallelism
and on the constructive negation introduced above. Reconciliation of n-substitutions is
introduced as a means of combining n-substitutions issued from conjoined subgoals in order to
produce n-substitutions for the whole goal. Negative information and extended unification are
furthermore used to constrain the reduction process. Any computation under the model can thus
be basically seen as the construction of the and/or/not search tree associated with the query and
the program under consideration. However, this tree is not constructed in its pure form but slice
by slice. At the end of the construction of each slice, branches that are detected useless are killed
and some n-substitutions are published in order to avoid, in a "a priori" way, the production of
such useless branches. The creation of the branches is, of course, made concurrent and
independent so that n-substitutions ~night be delivered as answers to queries whereas others are
still under computation. This parallel execution model corresponds to the second phase of the
design of a concurrent logic programming language, named Conclog, where extra-logical
features such as sequentialization, commit operators, guarded constructs are introduced in a
third step to ensure efficiency and practicability.

The main originalities of our work are best presented by comparing it with related
negations and execution models. Negation by complex solutions ([Khabaza, 1984]) also tackles
negation in a parallel context by means of a reconciliation calculus. It does not use n-
substitutions but more complex constructs, called complex solutions, of the form
{P,~NI ~Nm} where P and the Ni's are sets of bindings. Although the negated sets ~Ni can
be viewed as negative pieces of information associated with the positive one P, no negative
information has been coupled with the terms and the notions of instantiation and unification
have not been extended to cope with it. As a result, some derivations that are removed in our
model of execution are performed in Khabaza's model. Another major difference is that
negation by complex solutions does not take into account sets of variables, intended to represent
variables differently quantified, whereas we will do. The consequence is that the Conclog
model is sound and is complete in some situations whereas the model of [Khabaza, 1984] is
neither sound nor complete.

Negation by constraints ([Wallace, 1987]) uses directly the completed definition of the
procedures to reduce the negative literals. This results in handling first order formulae which are
far more complex than our extended terms. As another difference, negation by constraints take
place in a sequential context and thus does not provide any counterpart for reconciliation and
binding publication. Finally, negative information plays also a role in the deduction by means of
so-called constraint sets but those are structured in a way that suits well the sequential
executions but does not fit the parallel ones.

The SLD-CNF rule ([Chan, 1988], [Chan, 1989]) is another constructive form of the
negation as failure rule. It consists of an extension of the SLD-resolution rule whose main
feature is to reduce any negative literal, say not(Q),

(i) by reducing Q to an normalized conjunctive formula F involving equalities,
inequalities and unreduced subgoals

292

(ii) and by negating F in a backtracking spirit.

This rule has first been presented in a sequential framework and has then been extended in
[Chan, 1989] in an incremental version of constructive negation applied to co-routining.

A first difference with our work is that, although equations and inequations take a great
place and although normalized formulas are introduced, there is, in [Chan, 1988] and [Chan,
1989], no counterpart for our theory of n-substitutions and extended terms, unification and
instantiation. As a symptom, negative information plays no role during the reductions whereas
it does in ours. Also, inequalities are treated in a more uniform way in our model : there is, in
our work, no need to look for satisfiability or validity. Finally, no concurrent model is treated in
[Chan, 1988] and the model presented in [Chan, 1989] does not tackle and-parallelism and or-
parallelism. There is thus no concept of reconciliation and of communication of bindings
between subtrees. It is here furthermore worth noting that incremental constructive negation can
also be achieved in our Conclog model by means of the construction slice by slice of the
and/or/not search tree and that co-routining can also be simulated in the same way by fixing the
depth of the slices to 1.

The SLSC-resolution rule ([Przymusinski, 1989]) is a theoretical adaptation of the SLD-
CNF resolution rule associating infinite derivation with failed derivation and making reference
to the perfect model semantics instead of the completion interpretation of the programs. These
two latter points make already two differences with the Conclog model. Other comparison
points result from the above comparison with the SLD-CNF-resolution.

Negation by failure substitutions ([Maluszynski and N~islund, 1989]) is an extension of
the negation-as-failure principle based on the idea that if T is a substitution such that the query
6--Cr/has a finitely failed SLD-tree then, by soundness of the negation as failure rule, V~GT is
a logical consequence of the completion of the program under consideration. Reducing negative
literals can thus be achieved by finding all such substitutions y, called failed substitutions. Only
the maximal substitutions need, of course, to be found. This is indeed performed in
[Maluszynski and Naslund, 1989]. Concepts of constrained substitutions and constrained
terms, adding inequalities of terms to substitutions and terms, respectively, are introduced for
this purpose. Our n-substitutions and extended terms share some similarities with them. The
major differences is that n-substitutions and extended terms are always presented in a
normalized form and that n-substitutions may have the empty substitution as positive part 0.
Furthermore, our theory of n-substitutions and extended terms is more elaborated than that of
[Maluszynski and Niislund, 1989], where the concept of composition of substitutions is just
extended.

Another difference with our work is that negation by failed substitutions only tackles the
sequential compositions. It does not provide any counterpart for our concept of reconciliation of
n-substitutions, our parallel form of negation or our concept of publication of n-substitutions.

Another way of handling negation consists of deriving from a Horn clause program P, a
new set of predicates computing the negation of the predicates of P. This approach has been
first proposed in [Sato and Tamaki, 1984] and has been improved in [Barbuti et al., 1987] and
[Barbuti et al., 1990]. One attractive feature of those pieces of work is certainly that negation is
tackled without extending the terms and the substitutions with negative information while
negative literals can compute substitutions as the positive literals do. Another advantadge is that

293

the resulting negation is complete. The drawbacks are that the derived procedures may be quite
verbose and that the computed substitutions may suffer from conciseness problems.
Furthermore, the treatment of negation requires both a new form of negation introduced by the
synthesized predicates and the negation as failure rule, used to compute s-goals of the form VY
r(X,Y).

The ENF deduction procedure ([Lugiez, 1989]) is a deduction procedure for first order
programs which subsumes SLDNF-resolution and which improves the handling of the latter
goals. It presents several similarities with our work in that negative information is also
combined with the positive one to sum up solutions. In fact, the employed substitutions are
quite close to our n-substitutions. However, no theory of such substitutions is proposed and
negative information is not employed to constrain the reduction process. Moreover, as parallel
executions are not tackled, there is also no counterpart for our reconciliation concept. Another
major departure with our work is that first order formulae are handled by the ENF procedure. It
is thus computationally more expensive than the Conclog one. Finally, the verbosity and
conciseness problems of the above transformational approach to negation have not been solved
in [Lugiez, 1989].

The Conclog execution model can be seen as an extension to incorporate negation of
parallel execution models of Horn clauses ([Pollard, 1981], [Conery, 1983], ILl and Martin,
1986], [Kalt, 1987]). Besides the introduction of negation, the last three pieces of work take
another approach to and-parallelism. Given a conjunction of subgoals that share variables, they
do not allow those subgoals to be reduced concurrently but avoid the generation of conflicting
bindings by designating a producer process for each shared variable. Unfortunately, the
designation of the right producer is undecidable. Moreover, we strongly believe that it is
impossible to find a sufficiently general class of programs for which it would be decidable. The
practical consequence is that any algorithm computing this determination does not work
properly on some goals. In view of this, we prefer to tackle the determination of dataflows at a
programming level by means of annotations. Another difference with the Conclog model is that
the models of [Conery, 1983] and [Li and Martin, 1986] are not complete whereas the Conclog
model is when it is restricted to Horn clauses. Finally, all the three models suffer from the
rigidity of the dataflow they determine : the unproductive derivations of the producer processes
cannot be removed in view of the consumer ones and back communication cannot be
performed. In contrast, this is possible in Conclog.

The Conclog model share the reconciliation approach with that of [Pollard, 1981] but
differs in the way it manages the computed and/or search trees. In Conclog, every aspect is
treated in a simpler and more uniform framework based on equation manipulation whereas a lot
of concepts and principles are introduced in Pollard's approach. Moreover, this approach does
not publish bindings, which prevents the Conclog model from developing useless branches.

As a final comparative remark, it is worth noting that, although systems of equations and
inequations have already been studied and although extended substitutions have already been
proposed (see e.g. [Khabaza, 1984], [Maluszynski and N~slund, 1989], [Turi, 1991]), no
work has elaborated, to our extent, a theory generalizing, to a negative constructive framework,
that of the basic notions of logic programming, namely terms and substitutions.

294

The remainder of this paper is organized in 5 Sections. Section 2 sketches our theory of
n-substitutions, extended terms, extended instantiation and extended unification and introduces
the basic mechanisms of our constructive negation. Section 3 presents the Conclog execution
model of general Horn clauses including our constructive negation and sketches its main
properties. Section 4 gives our conclusions. Finally, Sections 5 and 6 present our
acknowledgments and references.

Lack of space prevents us to give proofs of the claimed results. All of them have however
been established in [Jacquet, 1989], to which we refer the reader for more information. He is
also assumed to be familiar with logic programming. We shall essentially use the conventional
Edinburgh syntax (see e.g. [Clocksin and Mellish, 1981]) and the conventional logic
programming terminology (see e.g. [Lloyd, 1987] and [Apt, 1990]). Our only particular
notation is to denote the identity substitution by {}. We shall furthermore use the abbreviation
s-goal to denote any subgoal (either positive or negative literal) of a conjunction and the
qualification ps-goal and ns-goal to denote the positive and the negative s-goals, respectively.
Finally, from now on, we assume that the language under consideration has an infinite number
of variables, constants and function symbols and define the Herbrand universe with respect to
the language rather than the programs under consideration.

2 Towards a theory of n-substitutions and extended
terms

2.1 Intuition

In order to provide the reader with an intuitive support, it is worth presenting the
underlying ideas having lead to our subsequent theory of n-substitutions and extended terms.

The ideal of concurrent logic programming is to use both or-parallelism and and-
parallelism. In this ideal world, the sequential reduction of subgoals of goals is thus replaced by
the concurrent reduction of the subgoals, even if they do share variables. It follows that the
traditional composition of substitutions returned by the successive reductions of subgoals needs
to be replaced by a concurrent composition of substitutions, devoted to combining the (possibly
conflicting) substitutions issued from the concurrent reductions of the subgoals. It has been
provided, independently, in [Jacquet, 1989] and [Palamidessi, 1990] under the name of
reconciliation of substitutions and parallel composition of substitutions, respectively. In both
cases, the basic idea is to interpret substitutions equationaUy and to combine them by solving
the system of equations associated with the substitutions. This equational interpretation has
been shown, in both references, to be quite intuitive and very simple. Nevertheless, it induces
one restriction : unifiers and mgus should be taken as idempotent. Curiously, however, this
restriction turns out to simplify the theory rather than to complicate it. It is furthermore worth
noting that the restriction to idempotent substitutions is not of importance both from a theoretical
and a practical point of view. Indeed, on the one hand, any pair of unifiable terms have an
idempotent mgu. On the other hand, most unification algorithms report an idempotent mgu.
Finally, the classical objection that the composition of two idempotent substitutions is not

295

necessarily an idempotent substitution cannot be retained in our parallel context : reconciliation
of idempotent substitutions delivers an idempotent substitution and the only compositions that
are needed may be proved to deliver idempotent substitutions.

The equational interpretation of substitutions has another merit of suggesting a very
simple way of dealing with negation. Let, for any substitution 0--{Xz/h Xm/tm}, eq(0) be
the formula

Xl=t I ^ . . . A Xm=t m
Let not(G) be the negative literal under consideration and 01 0p be all the substitutions
returned by the reduction of G. Then, the substitutions to be returned by the reduction of not(G)
could be the substitutions lxl lXq such that the formula ~(eq(01)v ... v eq(0p)) is equivalent
to the formula eq(~tl) v ... v eq(l.tq). This basic idea needs however to be refined in two ways.

I ~ First, substitutions are, in general, not sufficient to ensure the above equivalence. In
fact, keeping some negative information is necessary. This fact has lead us to
generalize substitutions in so-called n-substitutions. As an additional consequence,
reconciliation has to be extended to n-substitutions, or, restated in other terms, systems
of equations and inequations have to be manipulated instead of just systems of
equations.

2 ~ Second, care must be taken to the quantification of the variables. This has lead us to
introduce the concept of consistency of n-substitutions.

These notions have suggested us to extend other classical notions (such as composition,
idempotence) to n-substitutions. In particular, a natural notion to generalize is that of the
instantiation of a term by an n-substitution. The concepts of extended term, and related ones of
extended unification and instantiation, have followed.

All these extensions have been conflated in a theory of n-substitutions and extended
terms. We will only describe here the part necessary to make the paper as self-contained as
possible. The interested reader is referred to [Jacquet, 1989] for more details.

The remainder of this section is organized in three subsections. The first one discusses the
systems of equations and inequations, introduces the concepts of unifier, mgu for such systems
and the related notion of n-substitution. The second subsection generalizes, to n-substitutions,
the classical concepts of composition, reconciliation, restriction of substitutions and the partial
order _< on substitutions. It also introduces the concepts of negation and consistency of n-
substitutions. Finally, the third subsection discusses the extended terms, extended unification
and extended instantiation.

2.2 Systems of equations and inequations
For the ease of discussion, let us first adopt the following terminology.

Defini t ion 2.1 We subsequently call h-system any system of equations and
inequations over terms of the Herbrand universe. Given an h-system S, the system of the
equations (resp. of the inequations) of S is subsequently denoted by S § (resp. S-). A solution
of S is a grounding substitution cz verifying the three following properties :

(i) its domain, dom(cz), consists of the variables of S,
(ii) for any equation t=u of S +, tO and u0 are syntacticaUy identical

296

(iii) for any inequation v~w of S', v0 and w0 are syntactically distinct.
The set of solutions of S is denoted by Sol(S). The h-system S is said to be solvable iff the set
Sol(S) is not e m p t y . .

Domain restriction of solutions makes a solution of a system not necessarily a solution of
an intuitively equivalent system. For instance, the solution {X/a,Y/b} of the h-system

Y=Y

X~b

iS not a solution of the h-system composed of the only inequation
X4=b.

It is however desirable to define, as equivalent, h-systems that are intuitively equivalent. This is
achieved through the notion of solution-weaker systems.

Definition 2.2 The h-system S is solution-weaker than the h-system T i f f for any
solution a of S, for any grounding substitution 7 for the variables of var(T)\var(S), the
restriction of (~7 to the variables of T is a solution of T. This denoted by T ~sol S. The h-
systems S and T are equivalent iff any of them is solution-weaker than the other. This is
denoted by S--T. �9

Notat ion 2.3 It will be convenient to extend the operand of the ~sol and = relations to
"disjunctions" of h-systems. We write

(T1 v ... v 'In) Dsol (S1 v ... v Sin)
to denote the following property : for any ie {1 m}, for any solution o of Si, there is a
j~ { 1 n} such that for any grounding substitution (x for the variables of var(Si)\var(Tj), the
restriction of o(x to the variables of Tj is a solution of Tj. The notation

(TI v ... V'In) = (Sl v ... v Sm)
is then employed to sum up the two inclusions

(T1 v ... v 'In) ~sol (S1 v ... v Srn)
(S1 v ... v Sin) Dsol (T1 v ... v Tn). *

We are now in position to substantiate our need for explicitly coupling negative
information to substitutions and, consequently, to generalize substitutions to n-substitutions.
The following proposition, due to [Lassez et al., 1988], proves that, in general, one
substitution and even a finite number of them are not sufficient to represent the set of solutions
of a h-system. The above need results therefrom.

Proposi t ion 2.4 ([Lassez et al., 1988]) Let S be a solvable h-system. Suppose S" is
not redundant with S + that is S + = S does not hold. Then, there is no finite set of substitutions
{01 0m}, such that for any solution (x of S, one has 0i<(x for some i~ {1 m}.

Substitutions are generalized to n-substitutions as follows.

Definition 2.5 An n-substitution v is a pair of the form

({Xl/tl Xrn/tm},not{Y1/Ul Yn/un})
where {X1/t 1 Xm/tm} is a substitution and {Yl/Ul Yn/un} is a set of bindings such that

(i) var({tl tm}) ~ {X1 Xm}n{Y1 Yn},
(ii) var({tl tm}) ~ { X 1 Xm} n var({ul Un}),
(iii) ui E {X 1 Xm}, for all iE {1 n}.

The two components are called the positive part and the negative part of v, respectively. They
are denoted by v + and v -, respectively. An n-substitution whose positive part is empty is

297

called an en-substitution. It is subsequently represented by its negative part, namely as

not{Y1/u 1 Yn/un}. *

The interpretation of the n-substitutions is as follows : X1 Xm have tl tm as
respective values with the constraint that each Yi must differ from ui (l<i_<n). Conditions (i),
(ii) and (iii) further force the n-substitutions to be presented in a normal form. Basically,
conditions (i) and (ii) express the fact that the inequations cannot directly constrain the Xi's but
must do this indirectly through their bindings. This has the interesting consequence that no Xi
occurs in the negative part of n-substitutions whose positive part is idempotent. Condition (iii)
states a weaker property in the general case: the ui's cannot be used to negate the Xi's.

Given the equational interpretation of n-substitutions, it will be useful to associate a h-
system to any n-substitution. This is achieved as follows.

Definition 2.6 Let v = ({X1/q Xrn/tm},not{Y1/ul Yn/un}) be a n-substitution.
The h-system associated with v, denoted by hsyst(v), is the h-system composed of the
following equations and inequations : X1 -- tl Xm = tin, Y1 ~ Ul Yn ~ Un. The h-
system associated with the n-substitutions Vl Vm is the h-system composed of the
equations and inequations of the h-systems hsyst(vl) hsyst(Vm). It is denoted by
hsyst(vl vm). �9

The concepts of unifier and mgu are extended to h-systems by means of solutions. It is
here worth noting that one n-substitution is, in general, not sufficient to sum up all the solutions
of a h-system, as proved by the following h-system

X = f (Y , Z)

X r f (a , b)

However, solving the positive part S +, injecting the values in the negative part S- and
simplifying the resulting inequations make possible to represent the solutions of any h-system S
by a finite number of n-substitutions. As a consequence, n-mgu's are not defined subsequently
as n-substitutions but instead as finite sets of n-substitutions

Def in i t ion 2.7 An n-unifier of a h-system is an n-substitution v that verifies
S Dsol hsyst(v) . An n-mgu of S is a set of n-substitutions {vl Vm} that verifies
S = hsyst(vl) v . . . v hsyst(Vm). �9

Definition 2.8 Some n-mgu's have the property that their n-substitutions share the
same positive part. They are called elementary n-mgu or en-mgu, for short. They are denoted as
0~{r O~m} where 0 is the common positive part and COl 0~m are the negative parts of
the n-substitutions. Sets of this form are, more generally, called elementary sets of n-
substitutions or es-nsubst, for short. r

2.3 The space of n-substitutions

A. T h e p a r t i a l o r d e r _<

We now show how the theory of substitutions can be extended to n-substitutions. As a first
extension, the partial ordering < on substitutions is extended by means of their associated
system.

298

Defini t ion 2.9
1) The n-substitution v is more general than the n-substitution ~t iff the inclusion

hsyst(v) Dsol hsyst(~t) holds. This is denoted by v < ~. Similarly, the set of n-
substitutions M={Vl Vm} is more general than the set of n-substitutions
N={~I l.tn} iff hsyst(vl) v ... v hsyst(Vm) Dsol hsyst(~l) v ... v hsyst(gn)
holds. This is denoted by M~',I, too.

2) The n-substitutions v and p. are variants iff they verify the inequalities v<p. and ~t.~v.
Similarly, the sets of n-substitutions M={vl Vm} and N={gl P-n} are variants
iff they verify the inequalities M<N and N<_M.,

Note that, as a direct consequence of this definition, n-mgus of h-systems are still variants from
one another.

B. Composition of n - s u b s t i t u t i o n s

N-substitutions are composed in the following way.

Definition 2.10 The composition of the n-substitution
vffi({Xl/tl Xm/t m},not{Yl/ul Yn/un})

by the n-substitution
gffi({Zl/v 1 Zp/vp},not{T1/w 1 Tq/wq})

is the set of n-mgu's of the h-system obtained from the equalities and inequalitites

X 1 = t l~ + X m ffi tml.L+ , Yl[t + ~ Ulg + Yn~t + ~: unll +,
Z 1 ffi v 1 Zp = Vp, T 1 ~ w 1 Tq # Wq

by removing any equality 7-4 ffi vi for which 7-4e {XI Xm}. It is subsequently referred to as
Ncomp(v,g) . The notation v b g is furthermore used to refer to an arbitrary n-mgu of
Ncomp(v,g) . ,

C. I d e m p o t e n c e

The notion of the composition of n-substitutions provides us with the possibility of in~oducing
the notion of idempotent n-substitution.

Definition 2.11 An n-substitution v is idempotent iff it verifies {v}~ N c o m p (v , v) . .

The following proposition gives a worth noting characterization of idempotent n-
substitutions in terms of their positive part.

Proposit ion 2.12 ([Jacquet, 1989]) An n-substitution is idempotent iff its positive part
is idempotent . ,

Given a set of n-substitutions, we subsequently call it idempotent if all its n-substitutions
are idempotent. The algorithm sketched for introducing n-mgus (see Definition 2.7) allows us
to claim that any solvable h-system has an idcmpotent en-mgu. Thanks to this property, all
subsequent notions defined from n-mgu's of h-systems have an idempotent instance. For
example, n-substitutions admit an idempotent n-reconciliation when they are n-reconcilable;
extended terms admit an idempotent n-mgu if they are unifiable in an extended sense.

299

D. Reconc i l ia t ion o f n-subst i tut ions

Following our equational interpretation, reconciliation is generalized to n-substitutions as

follows.

Definition 2.13 The n-substitutions Vl Vm are n-reconcilable iff the h-system
hsys t (v l Vm) is solvable. In this case, any n-mgu of this h-system is called an n-
reconciliation of Vl Vm. It is called an en-reconciliation if it is of the es-nsubst form.

Reconciliation is extended to sets of n-substitutions as follows.

Definition 2.14 The sets of n-substitutions Offi{01 0m}, W={VI ,Vn} ,
s162 COp} are n-reconcilable iff at least one of the h-systems

hsyst(0i,Vj (ok) (l<i<m, l<j_<n 1 <l~p)

is solvable. In this case, let S be the set of tuples (0,~, o~) of n-reconcilable n-substitutions

of Ox'Px . . .x~. An n-reconciliation of O, ~ ~ consists of one union

t..) pN(0,W co)

(0,W m)E S

where, for any (0,V r S, pN(0,~ co) denotes an n-reconciliation of 0, ~ co.

E . C o n s i s t e n c y

Reconciliation of n-substitutions is quite intuitive but is still too weak to handle negation
correctly, as shown by the following example.

Example 2.1 Consider the query <---not(p(X)).q(X) and the program
p(f(Y)).
q(f(3)).

Reduce the s-goals not(p(X)) and q(X) independently. The n-substitutions ({},not{X/f(Y)}) and
({X/f(a)},not{}) are produced respectively. They n-reconcile - with n-reconciliation
{ ({X/f(a)},not{Y/a}) } - although the query is manifesdy not satisfiable! .

In fact, simple resolution of h-systems does not take into account the way in which
variables are implicitly quantified. In the above example, the n-substitution ({},not{X/f(Y)})
reports the fact that X must be different from the term I(Y) whatever Y stands for. However, the
reconciliation with ({X/f(a)},not{}) only tests whether there is some value of Y such that X=f(3)
and X~I(Y). Safe introduction of negation thus requires to fix some way of quantifying variables
in n-substitutions. We adopt the following one.

Definition 2.15 Let v=({X1/t 1 Xm/tm},not{Y1/ul Yn/un}) be a n-substitution.
Let furthermore Svars be a set of variables. The notation

Form(v;Svars)
denotes the formula

3ZI. . .3Zp W l . . . W q : (Xl=t 1 ̂ ... ^ Xm=t m ^ YI~Ul ^ ... ^ Yn~un)
where

�9 Z1 Zp are the variables occurring in v + and not in Svars
�9 V1 Vq are the variables occurring in v- but neither in v + nor in Svars.

In particular, it is reduced to the empty conjunction (interpreted as true) if v is ({},not{}). �9

300

The set of variables Svars is used to further postpone the quantification of some variables.
This allows the Form interpretation to be used with different quantifications of those variables.
For instance, assuming v is the only n-substitution computed by p(• the question

Is there X such that ,-p(X) ?
can be answered by answering the equivalent question using the interpretation Form(v;{X}):

Is there X such that Ax= 1 = 3X Form(v;{• holds
where Ax= denotes the usual axioms of equality. Moreover, the request

Find all X such that p(X)
can be equivalently treated by handling the query

Find all terms t for X such that Ax= I = V(Form(v;{X}){X/t}). 1

Safety of the quantification of variables in n-substitutions is handled through the notion of
consistency.

Definit ion 2.16 An n-substitution v is consistent with respect to (wrt) a set o f

variables Svars iff any binding Y/u of v" verifies the following properties :
(i) Y is a variable of Svars or of v+;
(ii) if u is a variable then u is a variable of Svars or of v +. *

The following theorem relates the consistency notion and the Form interpretation.

Proposition 2.17 ([Jacquet, 1989]) Let Svars be a set of variables and v be an
i dempo te n t n-subs t i tu t ion . Then v is consistent wrt Svars i f f the relation
A x . I = 3Svars(Form(v;Svars)) holds. *

One desired property is that consistency is simultaneously achieved by variant n-
substitutions. This is indeed the case for idempotent n-substitutions.

Proposition 2.18 ([Jacquet, 1989]) Let Svars be a set of variables. All variant
idempotent n-substitutions are simultaneously consistent wrt Svars.

As n-reconciliation manipulate sets of n-substitutions, it is interesting to extend the above
Form interpretation and consistency notions to sets of n-substitutions. This is achieved as
follows.

Definition 2.19 A set of n-substitutions {Vl Vm} is consistent wrt a set o f variables
Svars iff, at least, one vi is consistent wrt S v a r s . .

Proposition 2.20 ([Jacquet, 1989]) Let Svars be a set of variables and
0E~{COl tom} be an idempotent es-nsubst. Then 0E~{r corn} is consistent wrt Svars iff
the relation

Ax= I = 3Svars [Form((0,c01);Svars) v ... v Form((0,C0m);Svars]

holds. *

P r o p o s i t i o n 2.21 ([Jacquet, 1989]) Let Svars be a set of variables. All variants
idempotent en-subst's are simultaneously consistent wrt S v a r s . .

The notation 3Set (F) (resp. VSet (F)) is used as a shorthand to denote the formula (3Xl...3Xm) (F) (resp.
(VXI...VXm) (F)), where X1 Xm are the variables of Set. The notation 3(F) (resp. V(F)) is used to
denote the existential (resp. universal) closure of the formula E

301

F. Quantified reconciliation

Example 2.1 shows that quantification of the variables must be introduced in the reconciliation
process. This is achieved as follows.

Definition 2.22 Let Svars be a set of variables. The n-substitutions Vl Vm are qn-
reconcilable wrt Sears iff

(i) they are n-reconcilable
(ii) any idempotent en-reconciliation is consistent wrt Svars.

In this case, any such en-reconciliation, simplified from the n-substitutions that are not
consistent with respect to Sears, is called a qn-reconcUiation of Vl Vm wrt Sears. Qn-
reconcilation is extended to sets of n-substitutions by analogy to the n-reconciliation of
Definition 2.14 �9

It is worth noting that Proposition 2.21 ensures that all idempotent en-reconciliations
simultaneously verify condition (ii) if one of them does. The consistency test can thus only be
performed on one of them.

Example 2.2 Returning to the Example 2.1, it is worth noting that the n-substitutions
({},not{X/flY)}) and ({X/f(3)},not{}) are not qn-reconcilahle wrt {X}. �9

G. Negation of n-substitutions

Reducing negative literals constructively requires to negate n-substitutions in some way. This is
performed according to their equational interpretation.

Definition 2.23 The negation of the n-substitution
v=({X1/t 1 Xm/tm},not{Y1/u 1 Yn/un})

is the set of n-substitutions obtained by associating
- the n-substitution ({},not{Xi/ti}) with each binding Xi/ti, l<i<m,
- the n-substitution ({X1/t I Xm/tm}o{Yj/uj},not{}) with each binding Yj/uj, l_<j<n.

It is denoted by neg(v). *

Appealing to our equational interpretation of n-substitutions, it might seem quite natural to
define the negation of the n-substitution ({X1/t 1 Xm/tm},not{Y1/u 1 Yn/un}) as the set of
n-substitutions

{ ({},not{X1/tl}) ({},not{Xm/tm}), ({Y1/ul},not{}) ({Yn/un},not{}) }.
Once again, this does completely ignore the quantification of variables. Consider, for instance,
the n-substitution v=({X/qV)},not{V/3}) of the first query ~p(X) of Example 2.1. Its
associated Form(v;{X}) interpretation is

3Y : X=f(Y) ^ Y~3.

Negat ing this n-subst i tut ion as above wou ld lead to the two n-subst i tut ions ({ } ,no t {X/ f (Y) })

and ({Y/3},not{ }) with the interpretation
VY : X~f(Y),
3Y : Y=3,

respectively. Assigning the value f(2) to X would thus verify the negation of
-= (3Y : X=f(Y) ^ Y~3) !

302

The problem is that the variable V has lost its relation with X in the second n-substitution. This is
circumvented by composing the positive part with each binding of the negative part (as achieved
in Definition 2.23).

Following this remark, it may then be strange to find out that the variables Xl Xm
receive no special treatment. This is not necessary for our purposes since we can manage (and
we do in fact) so that the quantification of the Xi's is always out of the scope of the considered
n-substitutions.

Ns-goals will generally have to negate sets of n-substitutions rather than single n-
substitutions. Negation should thus be extended to sets of n-substitutions. This is achieved by
considering n-substitutions of sets as as many alternatives. Any set of n-substitutions is then
negated by negating each n-substitution separately and by combining the resulting n-
substitutions. The last operation implies reconciliation. This induces two possible acceptations
according as quantification is taken into account or not. We could then have defined two
negations, one involving quantification and the other not. The latter is however useless for our
purposes. We will thus only describe the former.

Def ini t ion 2.24 A set of n-substitutions {v 1 Vm} is negatable wrt the set of
variables Svars iff one of the two following conditions holds :

the set is empty
the set is not empty and the sets of n-substitutions neg(vl) neg(vra) are qn-
reconcilable wrt Svars.

In the first case, the n-substitution ({},not{}) is called the negation of the empty set. In the last
case, any qn-reconciliation is called a negation of{v1 Vra] wrt Svars. *

H. Restrict ions of n - s u b s t i t u t i o n s

Restriction of substitutions is finally extended to the n-substitutions. This is achieved
subsequently in two ways. A first restriction, called equational restriction, rests on our
equational interpretation of n-substitutions. It is however too strong to subsume the usual
restriction of substitutions. To that end, another restriction, named functional restriction, is
proposed. It rests on a functional perception of the substitutions (from which the usual
restriction of substitutions issues).

Definition 2.25 Let v=({Xl/t 1 Xm/tm},not{Y1/u 1 Yn/un}) be an n-substitution
and Svars be a set of variables.

1) The equational restriction v]eSvars of v to Svars is the n-substitution Ix

whose positive part ~t + is obtained from {Xl/t I Xm/tm}
1. by removing any binding Xi/ti such that Xi~ Svars,
2. by removing any binding Xi/ti such that Xi~ Svars and ti is a variable not

in Svars,
3. by replacing any occurrence of any ti pointed out in 2 by one of the Xj

such that Xj/ti is of the form pointed out in 2.

303

whose negative part It" is obtained from the version of {Y1/Ul Yn/un},
updated as indicated in 3. above, by removing any binding Yi/ui that verifies one
of the two following conditions 1:

(i) Yi~ Svars, Yi~ varcod(ix +)
(ii) ui is a variable, ui~ Svars, ui~ varcod(lx+).

2) The functional restriction v[iavars of v to Svars is the n-substitution IX
- whose positive part Ix + is obtained from {X1/t 1 Xm/tm} by removing any

binding Xi/ti such that Xi~ Svars;
whose negative part Ix- is obtained from {Y1/u 1 Yn/un} by removing any
binding Yi/ui that verifies one of the two following conditions :

(i) Yiet Svars, Yi~t varcod(Ix +)
(ii) ui is a variable, uie Svars, uie varcod0x+). *

Example 2.3 The strength of the equational restriction over the functional one can be
illustrated by the following example. Let v be

({X1/f(Z), X2/YI, X3/g(Y1),X4/h(Y2)},not{Y1/1,Y2/2})
and Svars be {X2,X3,X4,Z}. The equational restriction V[eSvars is

({X3/g(X2),X4/h(Y2) },not{X2/1,Y2/2}).
whereas the functional restriction vllSvars is

({X2/Y1,X3/g(Y1),X4/h(Y2)},not{Y1/1,Y2/2}).
The former results manifestly from a stronger restriction than the latter. Discarding the negative
part, this example also shows that the equational restriction is too strong to be a generalization
of the usual restriction of substitution. The functional restriction corresponds in fact to that
restriction. #

Definition 2.25 is extended to sets of n-substitutions in a straightforward manner.

Defini t ion 2.26 The equational (resp. functional) restriction of the set of n-
substitutions | to the set of variables Svars is the set of the equational (resp. functional)
restriction of the n-substitutions of | to S v a r s . .

2.4 Extending terms, unification and instantiation
The instantiation of a term by a n-substitution could be defined in two ways :

- by ignoring the negative part of the n-substitution and by calling instantiation of the
term its usual instantiation by the positive part of the n-substitution;

- by keeping the negative part and by calling instantiation of the term the above
instantiation coupled with the negative part of the n-substitution.

The second solution is adopted hereafter in order to conserve as much information as possible.
It will be useful, in the execution model, in order to detect useless reductions as early as
possible. It has two consequences :

- any expression must be coupled with negative information;
- unification and instantiation must be extended to such a generalized expression.

1 Given a substitution O, the notation varcod(0) is used to denote the set of the variables of the codomain of
0.

304

Definition 2.27 On a point of terminology, the association (E,~) of an expression E
with a set of en-substitutions X'l verifying the following property P is called an extended
expression :

P : any Y/u of any en-substitution of f~ verifies the following conditions
i) Y occurs in E,
ii) if u is a variable then it should appear in E ,

The intuition behind extended expressions (E,{tol tOm}) is to constrain E to at least
one tOi, with the variables of tOi not in E universally quantified. For instance,
(h(X.V),{not{X/f(V)},not(X/g(Z)}) represents the term h(X,Y) restricted by one of the following
constraints :

i) X differs from t(Y) (i.e. X~l(V))
ii) • differs from a 1-ary term which functor is f (i.e. X~i(Z), VZ)

It is furthermore worth noting that, as for n-substitutions, the condition P is used to force the
extended expressions to be presented in a normalized form.

Unification is generalized to extended expression by means of the classical unification and
the qn-reconciliation.

Definition 2.28 Two extended expressions (E,| and (F,W) are said to be unifiable iff
the two following conditions hold :

E and F are unifiable, say with the idempotent mgu 0,
the sets of n-substitutions {(0,not{})}, O and 't ' are qn-reconciliable wrt the variables
of E and F.

Any resulting qn-reconciliation, if any, is called an n-mgu of (E,| and (F,W). As @ and W are
composed of en-substitutions, one of them can be expressed in the form 0~B~ where ~2 is a
finite set of en-substitutions. Let f~r be the functional restriction of ~2 to the variables of E0.
The term (E0,~r) is defined as the most general common instance of (E,O) and (F,W) wrt the
n-mgu 0~BfL Finally, this unification is called extended unification. The extended unifiability
character can be proved independent from the choice of the idempotent mgu 0 . ,

Finally, the instantiation concept is defined for extended expressions and n-substitutions
by means of qn-reconciliation. Some auxiliary set of variables is here taken into account in the
aim of allowing some variables to be considered as existentially quantified. Note that, in
contrast with the usual instantiation, the extended instantiation does not always succeed. Note
also that the result, when it exists, is an extended expression. There is thus no need to introduce
new expressions generalizing, in their turn, the extended expressions, and, consequently, there
is no need to generalize once more the extended instantiation and unification.

Definition 2.29 An extended expression (E,f~) is said to be instantiable by an n-
substitution v wrt a set of variables Svars iff the sets ~ and {v} are qn-reconcilable wrt the
variables of E and Svars. In this case, any resulting qn-reconciliation is called an instantiation n-
substitution. Let Xg~BLt ' be one of them and let Wr be the set of the following restriction tor of the
en-substitution to of W : for any tOe Lp, the corresponding restriction tOr is defined from tO by
removing any binding Y/u that verifies one of the following properties :

i) Y is not a variable of Exg
ii) Y is a variable of E~, u contains one variable of Svars not occurring in E~.

305

Then, the extended expression (E~,tt 'r) is defined as the instance of (E,s by v wrt the
instantiation n.substitution ~@~F and the set of variables Svars. Given, some set 't ' of en-
substitutions, some (non-extended) expression E and some set of variables Svars, the set 't'r
determined as above, but by taking E instead of E~/, is called the term restriction of vd to E wrt
to Svars.

3 A parallel execution model with constructive
negation

We are now in a position to show how the concepts of Section 2 can be used to design a parallel
execution model of general Horn clauses. This model has, in its turn, been employed in the
design of a concurrent logic programming language, named Conclog ([Jacquet, 1989]). To
understand our motivations and the resulting model, it is worth spending a few words on it.

The Conclog language has been created with the aim of expressing concurrent executions
in the conventional logic programming framework while standing as close as possible to the
ideal .of logic programming. Soundness and completeness properties have been ensured as
much as possible. Multi-directional and multi-solution procedures are also supported.
Nevertheless, efficient procedures can be coded thanks to the introduction of control
annotations. To get such properties, the Conclog language has been designed in three steps. A
parallel execution model of Horn clauses has first been conceived. It is sound and complete.
Negation has then been integrated so as to preserve these properties as much as possible.
Finally, annotations and built-in primitives have been introduced for purposes of optimization
and practicability, respectively. We report hereafter the result of the second design phase. For
the sake of space, the conceptual features are only presented. The reader is referred to [Jacquet,
1989] for more implementation details as well as for more information about the language.

3.1 Overview

As a snapshot, the main characteristics of the Conclog model are as follows. It uses both or-
parallelism and and-parallelism in essentially an unrestricted way. Hence, all the clauses
unifiable with a ps-goal are used simultaneously to reduce the ps-goal. Furthermore, conjoined
s-goals are evaluated in parallel even if they do share variables. Quantified reconciliation is then
employed to combine the produced n-substitutions.

The reconciliation calculus is also used intermittently to restore consistency in the
deductions as well as to propagate bindings from subtrees to others. In operational terms, this
means that the generation induced by the or- and and-parallelism is stopped after some amount
of reduction steps and resumed on a purified version of these reductions. The purpose of this
operation is to prevent the computation from useless reductions as soon as possible.

Negation is introduced by means of the not(.) predicate. Its argument is defined as a goal
in order to conserve the alternation of goals and s-goals in the reductions. Its evaluation is
performed according to Definition 2.24 and with respect to the variables of the ns-goal under
consideration and the set of n-substitutions returned by the reduction of the associated goal.

306

As a final major characteristic, extended literals, extended unification and extended
instantiation are used to avoid useless computations as early as possible.

The Conclog execution model of general Horn clauses is most easily further explained by
using two complementary views, called the tree view and the process view. They are
complementary in the sense that the former depicts the computation from a global perspective in
terms of trees whereas the latter gives a more detailed and more dynamic view of the
computation in terms of the behavior of processes.

3.2 The tree view

In the tree view, any computation is seen as the progressive construction, slice by slice, of the
and/or/not search tree induced by the query and the program under consideration. This is
achieved by means of a sequence of cycles, each one composed of one generation phase
followed by one reconciliation phase. The aim of the generation phase is to extend the already
constructed part from one slice. The aim of the reconciliation phase is twofold :

to produce newly constructed solutions (i.e. n-substitutions corresponding to
successful derivations of the general model, newly ended),
to prevent the execution from useless computations by

- cutting off branches that are detected to participate to no solution subtree (i.e.
subtrees corresponding to the successful derivation of the general model),

- communicating bindings (including negative ones) from one subtree to another.
The last operation is called binding publication.

The computation then consists of starting this sequence of cycles with the and/or/not
search tree reduced to its query-node and of ending it when the and/or/not search tree is
completely constructed.

The depth of the slices constitutes a parameter of the model. Precisely, it indicates the
number of reduction steps that the reduction of any node of the slice can engender. (In this
number, the reduction of an ns-goal to its positive goal is counted as one derivation step). A
family of execution models is thus in fact defined. All of them have been proved sound and as
complete as possible ([Jacquet, 1989]).

3.3 The process view

The real computation is far more dynamic. It is captured more closely by the process perception
of the computations. According to it, the computation is described in terms of the behavior of
processes, associated with nodes of the and/or/not search tree in a one-to-one mapping. The life
of a process basically consists of creating its children as concurrent processes, of waiting for
them to report sets of n-substitutions 1, of performing some reconciliation procedure (based on
the qn-reconciliation) and of sending incrementally the set of the resulting substitutions to its
father process or, for the process associated with the query, delivering them as computed
answer substitutions.

1 By abuse o f language, we also say that the processes send n-substitutions instead o f sets o f n-substitutions.

307

Processes associated with the tips of one slice or of the whole tree make exception. They
do not create children but directly report the following result :

i) processes associated with the last step of a failed derivation report failure by sending
the empty set of n-substitutions;

ii) processes associated with other tip nodes report (the set composed of) the restriction,
to the variables of their father, of their associated en-mgu.

Tip processes associated with non completed reductions axe re-activated to resume their process
creation once the process associated with the query has completely performed its reconciliation
procedure.

To complete the scheme, let us briefly comment on process creation, process
reconciliation, process killing and binding publication. As a point of terminology, we will, from
now on, call ps-goal-processes, ns-goal-processes, s-goal-processes, goal-processes and
query-process the processes associated with ps-goals, ns-goals, s-goals, goals and the query,
respectively.

A. P r o c e s s c r e a t i o n

Process creation is performed in order to achieve and-parallelism, or-parallelism and the
constructive form of negation. It reflects rules (El) to (C2) above. Any goal-process thus
creates a process for each of its subgoals, as restricted by rule (C1). All of them axe launched as
concurrent processes. Ps-goal-processes search for unifiable clauses (in the extended sense)
and create, for each of them, a process for the induced instance of the body. All these processes
behave also concurrently. Furthermore, they register the associated en-mgu and the variables
introduced at this point in the execution. Finally, any ns-goal-process, say associated with the
ns-goal not(G), creates a goal-process for its argument G.

B. T h e r e c o n c i l i a t i o n p r o c e d u r e

The reconciliation procedure of tip processes is performed according to points i) and ii) above.
The reconciliation procedure of non-tip processes is as follows. It essentially rephrase rules
(El) to (C2) but deviates in making the restriction and composition in a slightly different way,
of ordering the killing of some process and of publishing some bindings. N-substitutions are
furthermore not transmitted alone but in so-called R-triplets. Such a R-triplet consist of a triplet
composed of an n-substitution, of a label of value either "completed" or "incompleted", stating
that the n-substitution is associated with a completed or incompleted derivation, and of a set of
the tip-processes associated with the derivation. The label and set of processes information
associated with n-substitutions issued from tip-processes is determined straightforwardly from
this characterization. With respect to other processes, it is determined as indicated below.

1) Reconciliation procedure of ps-goal-processes

The reconciliation procedure of a ps-goal-process is performed with the intuition that its
children represent alternative ways of reducing its associated ps-goal. It thus simply transmit the
R-Ixiplet sent by those children.

308

2) Reconciliation procedure of ns-goal-processes

The reconciliation procedure of an ns-goal is performed according to its intuitive
understanding of negator. Any ns-goal-process first collects all the n-substitutions sent by its
goal-process child and then negate the set of those corresponding to completely constructed
subtrees (the negation is performed wrt the variables of its associated ns-goal). Two particular
cases are worth noting :

1) if one of the reported n-substitutions is ({),not{}) then the empty set of n-
substitutions is reported. In this case, failure is thus reported by the ns-goal-
process.

2) if no n-substitution is reported (i.e. if the child goal-process fails) then the only
({},not{}) n-substitution is reported. In this case, the ns-goal-process succeeds.

N-substitutions are also sent in R-triplets. The auxiliary information attached to the ~ti's is as
follows :

- the set of process identifiers part reduces to the ns-goal-process under consideration,
say Proc.
the label part is "completed" if the subtree engendered by Proc is completely
constructed. It is "incompleted" otherwise.

Note that the set of n-substitutions sent by the ns-goal cannot be incrementally constructed
as the n-substitutions are received from its goal-process child. Those latter n-substitutions are
thus in fact collected by the ns-goal-process before being negated. However, in case the
({},not{}) n-substitution is received together with the complete label, failure can be reported
directly without waiting for other n-substitutions. This is indeed achieved as an optimization in
Conclog. Finally, partial information cannot be taken into account and is eliminated from the
negation process. As a convincing argument of this rejection, consider a derivation with partial
result ({},not{}) for one prefix that fails in a subsequent prefix.

3) Reconciliation procedure of a goal-process not associated with the query

Goal-processes not associated with the query form (incrementally) the cartesian product
of the sets of n-substitutions sent by their children and for each tuple try to qn-reconcile them
wrt to the variables of the goal. For any successful qn-reconciliation, the following n-
substitution is sent. Let T be the considered tuple, v be the substitution resulting from the
reconciliation, 0@| be the en-mgu associated with the txeated goal-process and Vars be the set
of variables of the s-goal associated with the father process 1. Then the equational restriction of
the composidon 0 ~ v to the variables of Vars is sent. The label and set of nodes
accompanying it are as follows. The label is "completed" if the n-substitution of T are
associated with a "completed" label; it is "incompleted", otherwise. The set of nodes is just the
union of the set of nodes appearing in T.

For the ease of the discussion, the n-substitutions v resulting from the reconciliation of
tuples are subsequently called n-reconciliation-substitutions.

This set can be detormincd thanks to the set of variables associated with the goal-processes or more simply
by the a suitable naming of variables.

309

N-reconciliation of distinct tuples may deliver the same results. Repetitions are avoided by
eliminating those duplicates as follows : any goal-process records the R-triplets sent by its
children. R-triplets are registered only if they do not correspond to an already sent R-triplet.

Finally, when all n-substitutions sent by all children have been registered, the goal-
process order the killing of the children processes that are registered in one received R-triplet
but participate to no sent R-triplet. It also orders the publication of the n-substitution

- whose positive part collects the bindings Xi/ti that verify the following properties :
they are common to the positive part of all the n-reconciliation-substitutions
their LHS variable Xi is a variable introduced in the reduction at the goal-process
or afterwards

- their RHS term ti is a non-variable term.
whose negative part collects the bindings Yj/uj that verify the following properties :

- they or their inversion uj/Yj are common to the negative part of the n-
reconciliation -substitutions
their LHS variable Yj is a variable introduced in the reduction at the goal-process
or afterwards
they are not registered with their inversion i.e. there are no bindings Yp/Up and
Yq/uq such that Yp=uq and up=Yq.

For the correctness of subsequent instantiation, the published n-substitution is sent together
with the set of variables of the goal under consideration. The binding publication order is
progressively transmitted from father processes to their children processes. What this induced is
made precise in a moment.

4) Reconciliation procedure of the query-process

The query-process reconciles the n-substitutions from their children in the same way but
delivers n-substitutions in a slightly different way. N-reconciliation-substitutions whose
associated label are all "completed" only engender answer n-substitutions. They consist of their
equational restriction to the variables of the query. Duplicates due to reconciliation are here
avoided directly by memorizing the corresponding R-triplets and by discarding newly computed
R-triplets already registered.

Binding publication and process killing are furthermore ordered in the same way as goal-
processes by the query-process once it has completely treated all the R-triplets sent by its
children. Finally, tip-processes corresponding to unreduced goals are woken up for a new
generation phase.

C . B i n d i n g p u b l i c a t i o n

Binding publication consists essentially of transmitting, in a given subtree, bindings (even
negated ones) that are known to be verified by any answer n-substitution issued from the
subtree. It acts in two ways : by constraining subsequent reductions that are incompatible with
the published bindings and by killing some reduction whose prefix is incompatible with the
published bindings. This incompatibility may have two sources :

the extended instantiation of the goal or s-goal by the published n-substitution does not
succeed;

310

- the published n-substitution is not consistent with the associated en-mgu.

Precisely, binding publication is operated as follows. Let v be the n-substitution made
public, Svars be its associated set of variables and P be the process receiving the publication
message.

- If P is a(n) (extended) goal-process then the two following tests are operated. Let G be
the goal associated with P.

The n-substitution v is tested for qn-reconciliation with the en-mgu of P wrt to
the variables of G and of Svars,
Each s-goal of G is tested for instantiability with v with respect to the variables
of Svars.

Two different behaviors arise from the issues of the tests.
In case the two tests succeeds then G is replaced by the induced instantiation.
The publication is passed thereafter to the child processes of P.
In case one of the tests fails, then a failure message is reported to the father
process of P. Process P then orders the killing of its child processes and
commits suicide.

- If P is a(n) (extended) s-goal-process then instantiation of its (extended) s-goal with v
is ensured by the previous instantiation of its father process. The s-goal is then
replaced by the corresponding instantiation and the instantiation message is transmitted
to the child processes of P.

D . H a n d l i n g p r o c e s s k i l l i n g a n d f a i l u r e m e s s a g e s

Lack of space prevents us from describing the handling of failure messages and of process
killing in all details. However the following rough description should be sufficient. Roughly
speaking, process killing implies the real killing of the process as well as the following actions.
There are, in fact, two types of killing. One involves the descendants and ancestors of the
process to kill; the other involves the descendants only. The former is called all_.killing (or
a_killing, for short) and the other is called desc_killing (or d_killing, for short). Killing,
ordered as a consequence of reconciliation (see point 3 above), is of the first kind whereas
killing induced by failure messages or binding publication is of the second kind.

All_killing is handled as follows :
the query-process reports failure of the computation if one of its children is killed and
d kills other children,
when it is told of the killing of one of its children, any other goal-process commits
suicide, d_kills its other children and reports its killing to its father,
any ps-goal-process collects the killing reports of its children; when all children have
been killed, it commits suicide and reports this killing to its father,
report of a killing message has not to be defined for ns-goal-processes since it can be
proved that, thanks to their reconciliation procedure, ns-goal-processes never receive
them.

Desc_killing is handled as follows : when it is ordered to dk i l l , the process just commits
suicide and orders its children to d_kill. Finally, failure messages are treated as follows :

any ns-goal-process treats failure report by reporting definite success,

311

the query-process reports failure of the computation as a report of the failure of one
child,
any other goal-process reports failure in answer to the report of failure and d_kills all
child processes,
any ps-goal-process collects the failure reports and just reports failure when all its
children did,
any ns-goal-process treats failure report by reporting definite success.

To conclude, it is worth pointing out that because of process killing, some subtree may
move from the incompletely constructed state to the completely constructed ones. Transmission
of special messages are provided in Conclog for that purpose. Lack of space prevents us from
detailing that point here. We refer the interested reader to [Jacquet, 1989] for more information.

3.4 Properties
The Conclog parallel execution model just presented has been proved sound with respect to the
completion understanding of the programs in [Jacquet, 1989]. Assuming that all the derivations
issued from the involved negative literals are finite, it has also been proved complete there. As
this hypothesis on the negative literals is the more general situation where the negation as failure
rule can be proved complete, the Conclog model can thus be said as complete as possible when
the negation as failure rule and the resolution rule are used. Retricted to Horn clause programs,
it has also been proved sound and complete (with respect to the classical first order models of
the program).

Constructiveness of the negation is another major characteristic. In the Conclog model,
the negative literals compute n-substitutions and thus act symmetrically to the positive literals.
Consequently, the floundering problem is of no concern in Conclog.

It is also worth pointing out that, although they have been introduced for theoretical
purposes (see Proposition 2.4), n-substitutions turn out to be very elegant and very intuitive.
As an illustration, let us consider the efface procedure ([Deville, 1990]) :

efface(X,[XlL], L).
efface(X,[HIL],[HIL_eff]) <--- not(X=H), efface(X,L,L_eff).

The relation it computes is defined as follows : efface(X,L,L._eff) holds iff X occurs in L and
L_eff is L where the first occurrence of X has been removed. Consider the query
efface(X,L,[f,2]). Intuitively, the answers are

L=[X,I,2],
L=[1,X,2] with X~I,
L=[1,2,X] with X;~l, X;~2.

They are indeed found through the n-substitutions :
({L/[X.l,21},not{}),
({ LIt 1 ,X,2]} ,not { X/1 }),
({ L/[1,2,X]},not{X/1 ,X/2}).

Note that, in contrast, Prolog systems have a very poor behavior for such a query. They indeed
only produce the first answer. Most of them - Prolog, in particular - fails in evaluating the
negative literal not(X=H) because X is a variable. Then, the reduction of X=H succeeds and

312

implies the failure of not(X=H). Other dialects such that Nu-Prolog ([Naish, 1985]) or Prolog II
([Giannessini et al., 1986]) suspends infinitely that reduction until X becomes non-variable.

The interest of the slice by slice construction of the and/or/not search tree and its
parameterization in the Conclog model should finally be stressed. Fixing this parameter to 1
allows to simulate co-routining. Fixing it to a finite value allows to make an incremental form of
constructive negation. Fixing it to the infinite value delivers a model where no intermittent
restoring of consistency take place. Besides this modelling quality, the essential advantage of
the slice by slice construction is to lighten the execution from the computation of useless
branches. Its drawback is however to add some extra computation, issued from the
reconciliation phases. An interpreter has been made for the Conclog model which allows to
perform some tests. However, the optimal value of the depth parameter remains to be
determined.

4 Conclusion and future work

A new constructive form of the negation-failure-rule related to concurrent logic programming
has been presented. Based on it, a parallel execution model of general Horn clauses has also
been exposed. It is sound wrt the completion understanding of the programs and as complete as
possible when the resolution rule and the negation-as-failure rule are used. Restricted to Horn
clauses, it is both sound and complete. Thanks to its constructiveness character, negative literals
are reduced even if they are not ground. Furthermore, their reduction computes bindings for
variables as the reduction of positive literals does. Hence, computations cannot flounder.

This new form of negation and this execution model take profit of a reconciliation-
approach to concurrency and are based on an equational interpretation of substitutions. A
generalization of substitutions, called n-substitutions, has resulted from the natural requirement
of representing solutions of systems of equations and inequations in finite terms. They consist
of coupling negative information with the substitutions. Despite their theoretical introduction,
they have been argued to be quite intuitive and to provide a quite elegant representation of
answers to queries. A generalization of the tlaeory of substitutions to n-substitutions has been
sketched in this paper.

In a symmetric way, negative information has been coupled with terms. The related
notions of unification and instantiation have then also been extended.

The work presented in this paper issued from the second step of the design of a
concurrent logic programming language, named Conclog. In addition to the language design
purpose, we believe that the execution model has also a theoretical interest arising from their
truly concurrent and constructive nature. Our future research will reflect these dual aspects of
practicability and theory. They will include further developments of the theory sketched above,
semantics of concurrent logic programming languages including this new constructive form of
negation and practical issues of implementation of the Conclog language, in particular of the
parallel execution model of general Horn clauses.

We refer the reader to the introductory Section 1 for a comparison of our work with
related one.

313

5 Acknowledgements

I wish to acknowledge A. van Lamsweerde for having initiated my research in concurrent logic
programming and for his valuable remarks on earlier versions of this work. I also thank the so
many people at the University of Namur and at the Centre for Mathematics and Computer
Science as well as the anonymous referees for their interest and comments on it. Finally, I like
also to thank the Belgian National Fund for Scientific Research and the Centre for Mathematics
and Computer Science for having supported this research.

6 References

[Apt, 1990]
APT K.P., Introduction to Logic Programming, in : J. van Leuwen (editor), Handbook
of Theoretical Computer Science, volume B : Formal Models and Semantics, Elsevier and
The MIT Press, 1990, pp. 493-574.

[Barbuti et al., 1987]
BARBUTI R., MANCARELLA P., PEDRESCHI D., TURINI F., lntensional Negation
in Logic Programs : Examples and Implementation Techniques, Proc. TAPSOFT '87,
LNCS 250, 1987, pp. 96-110.

[Barbuti et al., 1990]
BARBUTI R., MANCARELLA P., PEDRESCHI D., TURINI F., A Transformational
Approach to Negation in Logic Programming, Journal of Logic Programming 8, 1990,
pp. 201-228.

[Chan, 1988]
CHAN D., Constructive Negation Based on the Completed Database, Proc. 5 th Conf. on
Logic Programming, 1988, pp. 111-125.

[Chan, 1989]
CHAN D., An Extension of Constructive Negation and its Application in Coroutining,
Proc. of the North American Conference on Logic Programming, 1989, pp. 477-496.

[Clocksin and Mellish, 1981]
CLOCKSIN W.F., MELLISH C.S., Programming in Prolog, Springer Verlag, 1981.

[Conery, 1983]
CONERY J.S., The And~Or Process Model for Parallel Interpretation of Logic Programs,
Ph.D. thesis, University of California, 1983.

[Deville, 1990]
DEVILLE Y., Logic Programming : Systematic Program Development, Addison-Wesley,
1990.

[Eder, 1985]
EDER E., Properties of Substitutions and Unifications, Journal of Symbolic
Computation, 1, 1985, pp. 31-46.

[Giannesini et al., 1986]
GIANNESINI F., KANOUI H., PASSERO R., VAN CANEGHEM M., Prolog,
Intereditions, 1986.

314

[Jacquet, 1989]
JACQUET J.-M., Conclog : a Methodological Approach to Concurrent Logic
Programming, Ph.D. thesis, University of Namur, Belgium, November 1989, to appear
as Lecture Notes in Computer Science, Springer-Verlag.

[Kalt, 1987]
KALE L.V., Parallel Execution of Logic Programs : the REDUCE-OR Process Model,
Proc. 4 tla Int. Conf. on Logic Programming, May 1987, pp. 616-632.

[Khabaza, 1984]
KHABAZA T., Negation as Failure and Parallelism, Proc. Int. Conf. on Logic
Programming, 1984, pp. 70-75.

[Lassez et al., 1988]
LASSEZ J.L., MAHER M.J., MARRIOT K., Unification revisited, In Minker J.
(editor), Foundations of deductive databses and logic programming, Morgan Kaufmann,
Los Altos, 1988, pp. 587-626.

[Li and Martin, 1986]
LI P.P., MARTIN A.J., The Sync Model : A Parallel Execution Method for Logic
Programming, Proc. Symp. on Logic Programming, 1986, pp 223-235.

[Lloyd, 1987]
LLOYD J.W., Foundation of Logic Programming, Springer Verlag, 1987.

[-Lugiez, 1989]
LUGIEZ D., A Deduction Procedure for First Order Programs, Proc. 6 th Int. Conf. on
Logic Programming, 1989, pp. 585-599.

[Maluszynski and N~slund, 1989]
MALUSZINSKI J., NASLUND T., Fail Substitutions for Negation as Failure, Proc. of
the North American Conference on Logic Programming, 1989, pp. 461-476.

[Martelli and Montanari, 1982]
MARTELLI A., MONTANARI U., An Efficient Unification Algorithm, TOPLAS, vol.
4, No. 2, April 1982, pp. 258-282.

[Naish, 1985]
NAISH L., Negation and Control in Prolog, Ph.D. Thesis, University of Melbourne,
Australia, 1985.

[Palamidessi, 1990]
PALAMIDESSI C., Algebraic Properties ofldempotent Substitutions, Proc. of the 17 th
ICALP, 1990, pp. 386-399.

[Pollard, 1981]
POLLARD G.H., Parallel Execution of Horn Clause Programs, Ph.D. thesis, Dept. of
Computing, Imperial College, London, 1981.

[Przymusinski, 1989]
PRZYMUSINSKI T., On Constructive Negation in Logic Programming, Proc. of the
North American Conference on Logic Programming, 1989.

[Sato and Tamaki, 1984]
SATO T., TAMAKI H., Transformational Logic Program Synthesis, Proc. of FGCS,
1984, pp. 195-201.

315

[Tamlund, 1977]
TARNLUND S.A., Horn clause computability, BIT 17, pp. 215-226, 1977.

[Tud, 1991]
TURI D., Extending S-Models to Logic Programs with Negation, to appear in Proc. 8 th
Int. Conf. on Logic Programming, 1991.

[Wallace, 1987]
WALLACE M., Negation By Constraints : a Sound and Efficient Implementation of
Negation in Deductive Databases, Proc. Int. Symp. on Logic Programming, 1987, pp.
253-263.

