Skip to main content

Restricted orientation computational geometry

  • Geometric Algorithms
  • Chapter
  • First Online:
Book cover Data structures and efficient algorithms

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 594))

Abstract

In this paper we survey some results in restricted orientation computational geometry. The aim is to embed our own results into a more general context. We discuss methods for making object queries, computing shortest paths, and questions on restricted orientation convexity. Furthermore, we give an optimal algorithm for computing shortest paths when three arbitrary orientations are allowed for path links and obstacle edges.

This work was supported by the Deutsche Forschungsgemeinschaft under Grant No. Ot 64/5-4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Bern. Hidden surface removal for rectangles. In Proc. 29th ACM Symposium on Theory of Computing, pages 183–192, 1988.

    Google Scholar 

  2. M. Bern. Hidden surface removal for rectangles. Journal of Comp. Syst. Sciences, 40:49–60, 1990.

    Article  Google Scholar 

  3. B. K. Bhattachara and H. El Gindy. A new linear convex hull algorithm for simple polygons. IEEE Transactions on Information Theory, IT-30:85–88, 1984.

    Article  Google Scholar 

  4. J.F. Canny. The Complexity of Robot Motion Planning. PhD thesis, MIT, 1987. Published by MIT Press in the Series: ACM Doctoral Dissertation Awards, 1987.

    Google Scholar 

  5. K.L. Clarkson, S. Kapoor, and P.M. Vaidya. Rectilinear shortest paths through polygonal obstacles in O(n log 2 n) time. In Proc. 3rd ACM Symp. on Computational Geometry, pages 251–257, 1987.

    Google Scholar 

  6. J. Culberson and R. Reckhow. A Unified Approach to Orthogonal Polygon Covering Problems via Dent Diagrams, Technical Report TR 89-6, Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada, February 1989.

    Google Scholar 

  7. M. de Berg. On rectilinear link distance. Computational Geometry: Theory and Applications, 1(1): 13–34, 1991.

    Google Scholar 

  8. M. de Berg and M. H. Overmans. Hidden surface removal for axis-parallel polyhedra. In Proc. 31st IEEE Symp. on Foundations of Computer Science, pages 252–261, 1990.

    Google Scholar 

  9. M. de Berg, M. van Kreveld, B.J. Nilsson, and M. Overmars. Finding shortest paths in the presence of orthogonal obstacles using a combined L1 and link metric. In Proc. 2nd Scandinavian Workshop on Algorithm Theory, pages 213–224, Springer Verlag, Lecture Notes in Computer Science 447, 1990.

    Google Scholar 

  10. E. Degreef. Pasting and folding convexity spaces. Bulletin de la Societé Mathematique du Belgique, XXXI(Fasc. II-Ser. B):215–230, 1979.

    Google Scholar 

  11. E.W. Dijkstra. A note on two problems in connection with graphs. Numer. Math., 1:269–271, 1959.

    Article  Google Scholar 

  12. P.J. de Rezende, D.T. Lee, and Y.F. Wu. Rectilinear shortest paths with rectangular barriers. Journal of Discrete and Computational Geometry, 4:41–53, 1989.

    Google Scholar 

  13. H. Edelsbrunner, L.J. Guibas, and J. Stolfi. Optimal point location in a monotone subdivision. SIAM Journal of Computing, 15(2):317–340, 1986.

    Article  Google Scholar 

  14. H. ElGindy and P. Mitra. Orthogonal shortest route queries among axes parallel rectangular obstacles. 1991. Manuscript.

    Google Scholar 

  15. H. Edelsbrunner, M.H. Overmars, and R. Seidel. Some methods of computational geometry applied to computer graphics. Computer Vision, Graphics, and Image Processing, 28:92–108, 1984.

    Google Scholar 

  16. M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms. In Proc. 25th IEEE Symp. on Foundations of Computer Science, pages 338–346, 1984.

    Google Scholar 

  17. M. T. Goodrich, M. J. Atallah, and M. H. Overmars. An input-size/outputsize trade off in the time-complexity of hidden surface removal. In Proc. 17th International Colloquium on Automata, Languages, and Programming, LNCS 443, pages 689–702, 1990.

    Google Scholar 

  18. R. H. Güting and Th. Ottmann. New algorithms for special cases of the hidden line elimination problem. Computer Vision, Graphics, and Image Processing, 40:188–204, 1987.

    Google Scholar 

  19. R. H. Güting. Stabbing c-oriented polygons. Information Processing Letters, 16:35–40, 1983.

    Article  Google Scholar 

  20. R. H. Güting. Dynamic c-oriented polygonal intersection searching. Information und Control, 63:143–163, 1984.

    Article  Google Scholar 

  21. R. L. Graham and F. F. Yao. Finding the convex hull of a simple polygon. Journal of Algorithms, 4:324–331, 1983.

    Article  Google Scholar 

  22. C. Icking. Kürzeste Pfade mit Hindernissen bei festen Orienterungen. September 1988. Unpublished Manuscript, Presented at the Freie Universität Berlin.

    Google Scholar 

  23. R. E. Jamison-Waldner. A perspective on abstract convexity: classifying alignments by varieties. In D. C. Kay and M. Breen, editors, Convexity and Related Combinatorial Geometry, Proceedings of the 2 nd University of Oklahoma Conference, pages 113–150, Marcel Dekker, Inc., New York and Basel, 1982. Lecture Notes in Pure and Applied Mathematics 76.

    Google Scholar 

  24. D.B. Johnson. Efficient algorithms for shortest paths in sparse networks. Journal of the ACM, 1–13, 1977.

    Google Scholar 

  25. J. M. Keil. Minimally covering a horizontally convex polygon. In Proc. 2nd ACM Symp. on Computational Geometry, pages 43–51, 1986.

    Google Scholar 

  26. D.G. Kirkpatrick. Optimal search in planar subdivision. SIAM Journal of Computing, 12:28–35, 1983.

    Article  Google Scholar 

  27. D. C. Kay and E. W. Womble. Axiomatic convexity theory and the relationship between the Carathéodory, Helly and Radon numbers. Pacific Journal of Mathematics, 38:471–485, 1971.

    Google Scholar 

  28. D.T. Lee, T.H. Chen, and C.D. Yang. Shortest rectilinear paths among weighted obstacles. In Proc. 6th ACM Symp. on Computational Geometry, pages 301–310, 1990.

    Google Scholar 

  29. F. W. Levi. On Helly's theorem and the axioms of convexity. Journal of the Indian Mathematical Society, 15:65–76, 1951.

    Google Scholar 

  30. R.C. Larson and V.O. Li. Finding minimum rectilinear distance paths in the presence of barriers. Networks, 11:285–304, 1981.

    Google Scholar 

  31. D.T. Lee and F.P. Preparata, Euclidean shortest paths in the presence of rectilinear barriers. Networks, 14:393–410, 1984.

    Google Scholar 

  32. R.J. Lipton and R.E. Tarjan. A separator theorem for planar graphs. SIAM Journal of Numerical Analysis, 177–189, 1979.

    Google Scholar 

  33. D. Y. Montuno and A. Fournier. Finding the X-Y Convex Hull of A Set of X-Y Polygons. Technical Report CSRG-148, Univerity of Toronto, 1982.

    Google Scholar 

  34. K.M. McDonald and J.G. Peters. Smallest Paths in Simple Rectilinear Polygons. Technical Report TR 89-4, School of Computing Science, Simon Fraser University, 1989.

    Google Scholar 

  35. R. Motwani, A. Raghunathan, and H. Saran. Covering orthogonal polygons with star polygons: the perfect graph approach. In Proc. 4th ACM Symp. on Computational Geometry, pages 211–223, 1988.

    Google Scholar 

  36. R. Motwani, A. Raghunathan, and H. Saran. Perfect graphs and orthogonally convex covers. In Fourth Annual SIAM Conference on Discrete Mathematics, 1988.

    Google Scholar 

  37. T. M. Nicholl, D. T. Lee, Y. Z. Liao, and C. K. Wong. Constructing the x-y convex hull of a set of x-y polygons. BIT, 33:157–171, 1984.

    Google Scholar 

  38. M. H. Overmars and M. Sharir. Output-sensitive hidden surface removal. In Proc. 30th IEEE Symp. on Foundations of Computer Science, pages 19–28, 1989.

    Google Scholar 

  39. Th. Ottmann, E. Soisalon-Soininen, and D. Wood. On the definition and computation of rectilinear convex hulls. Information Sciences, 33, 1984.

    Google Scholar 

  40. F.P. Preparata and M.I. Shamos. Computational Geometry — an Introduction. Springer Verlag, 1985.

    Google Scholar 

  41. F. P. Preparata, J. S. Vitter, and M. Yvinec. Output-sensitive generation of the perspective view of isothetic parallelepipeds. In Proc. 2nd Scandinavian Workshop on Algorithm Theory, LNCS 447, pages 71–84, 1990.

    Google Scholar 

  42. G. Rawlins. Explorations in Restricted-Orientation Geometry. PhD thesis, University of Waterloo, 1987.

    Google Scholar 

  43. R. Reckhow and J. Culberson. Covering a simple orthogonal polygon with a minimum number of orthogonally convex polygons. In Proc. 3rd ACM Symp. on Computational Geometry, pages 268–277, 1987.

    Google Scholar 

  44. R. Reckhow. Covering Orthogonally Convex Polygons with Three Orientations of Dents. Technical Report TR87-17, University of Alberta, 1987.

    Google Scholar 

  45. G. Reich. Finitely-Oriented Shortest Paths in the Presence of Polygonal Obstacles. Technical Report “Bericht 39”, Institut für Informatik, Universität Freiburg, Germany, October 1991.

    Google Scholar 

  46. G. Rawlins and D. Wood. On the optimal computation of finitely-oriented convex hulls. Information and Computation, 72:150–166, 1987.

    Google Scholar 

  47. G. Rawlins and D. Wood. Ortho-convexity and its generalizations. In Godfried T. Toussaint, editor, Computational Morphology, pages 137–152, Elsevier Science Publishers B. V., (North-Holland), 1988.

    Google Scholar 

  48. G. Rawlins and D. Wood. A decomposition theorem for convexity spaces. Journal of Geometry, 36:143–159, 1989.

    Google Scholar 

  49. G. Rawlins and D. Wood. Restricted-Oriented Convex Sets. Research Report CS-89-01, University of Waterloo, 1989.

    Google Scholar 

  50. S. Schuierer. An optimal data structure for shortest rectilinear path queries in a simple polygon. 1991. Manuscript, Institut für Informatik, Universität Freiburg, Germany.

    Google Scholar 

  51. G. Sierksma. Relationships between Carathéodory, Helly, Radon and Exchange numbers of convexity spaces. Nieuw Archief voor Wiskunde, XXV:115–132, 1977.

    Google Scholar 

  52. S. Schuierer, G. Rawlins, and D. Wood. Visibility, Skulls, and Kernels in Convexity Spaces. Data Structuring Group Research Report CS-89-48, University of Waterloo, Ontario, Canada, October 1989.

    Google Scholar 

  53. S. Schuierer, G. Rawlins, and D. Wood. A generalization of staircase visibility. In H. Bieri, editor, Computational Geometry—Methods, Algorithms, and Applications, LNCS 553, pages 277-288, Springer-Verlag, 1991.

    Google Scholar 

  54. N. Sarnak and R.E. Tarjan. Planar point location using persistent search trees. Communications of the ACM, 29:669–679, 1986.

    Google Scholar 

  55. S. Schuierer and D. Wood. Restricted Orientation Visibility. Technical Report 40, Institut für Informatik, Universität Freiburg, 1991.

    Google Scholar 

  56. P. Widmayer. On Shortest Paths in VLSI design. Technical Report “Bericht 19”, Institut für Informatik, Universität Freiburg, Germany, March 1990. Also to appear in: Annals of Operations Research, 1991.

    Google Scholar 

  57. P. Widmayer, Y.F. Wu, and C.K. Wong. On some distance problems in fixed orientations. SIAM Journal of Computing, 16:728–746, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

B. Monien Th. Ottmann

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nilsson, B.J., Ottmann, T., Schuierer, S., Icking, C. (1992). Restricted orientation computational geometry. In: Monien, B., Ottmann, T. (eds) Data structures and efficient algorithms. Lecture Notes in Computer Science, vol 594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55488-2_26

Download citation

  • DOI: https://doi.org/10.1007/3-540-55488-2_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55488-2

  • Online ISBN: 978-3-540-47103-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics