Trade-offs in True Concurrency:
Pomsets and Mazurkiewicz Traces

Bard Bloom*
Marta Kwiatkowska**

TR 91-1223
August 1991

Department of Computer Science
Cornell University
lthaca, NY 14853-7501

*Supported by NSF grant (CCR-9003441). bard@cs.cornell.edu.

**Supported by SERC GR/F 93050. This paper was partly written when the second
author was Visiting Profeessor at CWI, Amesterdam, sponsored by the Netherlands
Organisation for Scientific Research (NWO). mzk@uk.ac.le






Trade-offs in True Concurrency:
Pomsets and Mazurkiewicz Traces

Bard Bloom* Marta Kwiatkowska'
Cornell University University of Leicester

August 5, 1991

Abstract

We compare finite pomsets and Mazurkiewicz traces, two models of
true concurrency which generalize strings. We show that Mazurkiewicz
traces are equivalent to a restricted class of pomsets. The restrictions
lead to extra structure, with results analogous to the differences be-
tween simply typed and untyped languages. For example, traces are
consistently complete in the prefix order, while pomsets are not; also,
traces can be distinguished by observing sequences of actions, in con-
trast to the elaborate scheme required for distinguishing pomsets. Fi-
nally, we discuss the operations of sequential and parallel composition
in the two models. This is part of an ongoing effort to relate models
of concurrency.

1 Introduction

In the last two decades, a variety of models of concurrency have been pro-
posed, covering a wide spectrum of powers of description, abstraction and
precision. There are probably models well-suited for most problems that
people encounter in practice. However, this theoretical wealth is in some
disarray. The relations between models are not well understood. Ideally,
there should be some grand catalog of models, complete with domains of
appropriate use and relations to other models. This paper starts one piece

*Supported by NSF grant (CCR-9003441). bard@cs.cornell.edu

tSupported by SERC GR/F 93050. This paper was partly written when the second
author was Visiting Professor at CWI, Amsterdam, sponsored by the Netherlands Organ-
isation for Scientific Research (NWO). mzkQuk.ac.le



of this catalog, by describing the relation between Pratt’s pomset model
(20) and Mazurkiewicz’s trace model (14). In brief, the relation between
pomsets and Mazurkiewicz traces is analogous to that between untyped and
simply-typed languages. Pomsets are more general and more powerful
descriptive tools; Mazurkiewicz traces have more algebraic and conceptual
structure.

Both pomsets and traces are based on the fundamental assumption that
it must be possible to distinguish concurrent occurrences of actions from
actions simply occurring in either order. The interleaving approach to se-
mantics for concurrency, e.g., CCS (17), does not consider this distinction
essential. As a consequence, the interleaving approaches give rise to more
abstract, elegant theories, whereas the true concurrency (also called non-
interleaving) approaches are more expressive, but generally less abstract
and more cumbersome to use. This paper is part of an ongoing search for
an adequate denotational framework for true concurrency semantics, and
is motivated by the evidence that the non-interleaving approach helps deal
with issues such as confusion and fairness (10,11).

Pomsets are quite general and powerful descriptive tools; traces resemble
pomsets with some restrictions on the form of concurrency. In Section 3, we
make this similarity precise by giving a translation from traces to pomsets.
We also describe the class of pomsets which are translations of traces in
order-theoretic terms, as those pomsets which are both irreflezive and admit
an independency. We also show that this translation is order-preserving.

Many models of concurrency (3,9,16,6,2,18) are described in terms of
observing processes. In such models, two processes are different precisely
if they can be distinguished in some experimental scenario. The scenarios
range from simply observing the process run in isolation to communicating
with it to duplicating it and beyond. Intuitively, the more complex and
peculiar the experiments necessary to describe a model of concurrency, the
less appropriate the model for simpler situations. Pratt and Plotkin (18) give
a rather tricky experimental scenario for distinguishing pomsets, involving
replacing individual actions by nondeterministic choices, and then having a
large number of different observers watch the resulting pomset. In Section 4
we give the corresponding scenario for distinguishing Mazurkiewicz traces,
which only requires watching the process run. This emphasizes how the
restrictions on traces make them conceptually simpler and more tractable
than pomsets.

In Section 5, we investigate the order-theoretic properties of traces and
pomsets. There are several choices for partial orders on pomsets; one of



the simplest and most useful, as well as the most suitable for comparison to
other models, is the prefix order. A prefix of a pomset or trace o is another
pomset or trace 7 which can be extended to give o; this corresponds to
a possible partial execution of the events described by . For example, a
consistent cut of a system execution (4,24) is simply a prefix of the system
execution described as a pomset or trace.

The set of pomsets is not consistently complete in the prefix order; that
is, there are two pomsets p; and p; which have a common upper bound, but
no least upper bound. By contrast, Mazurkiewicz traces are consistently
complete, and thus can be completed to a Scott domain (10,13). Because
of these factors, traces should form an adequate framework for the deno-
tational semantics of true concurrency. Denotational semantics is usually
based on cartesian-closed categories of domains, of which Scott domains are
an example. It remains to be seen if pomsets form such a category.

Finally, in Section 6, we discuss the algebras of pomsets and traces.
Pomsets are closed under the quite natural operations of parallel (p|| ¢) and
sequential (p; q) composition: any two pomsets may be sequenced or run
in parallel. This is algebraically pleasant, as well as useful in modeling and
programming.

In the Mazurkiewicz trace view of the world, neither parallel nor se-
quential composition make sense in general. For example, if a and b are the
action of a daisywheel printer printing the letters a and b, the trace a || b
does not make sense; the printer is incapable of printing two letters at the
same time. However, a ; b makes perfectly good sense. Similarly, if ¢ and
d are actions on processors at opposite ends of the galaxy, the trace c¢;d is
not realizable; it is impossible to eusure that first ¢, then d happens without
some communication between the two processors. However, ¢ || d is sensible.
Accordingly, Mazurkiewicz traces are not closed under either parallel or se-
quential composition. In particular, neither is a total operation on traces.
We give a simple typing scheme which describes when these operations can
be used, and show that trace concatenation in fact models both. Our trans-
lation of Mazurkiewicz traces into pomsets allows us to define phrases like
“. is used to express concurrency” formally.

In summary, pomsets and Mazurkiewicz traces are based on similar in-
tuitions, that it is important to distinguish between concurrent actions and
actions which may simply occur in either order. The pomset model is more
general, allowing arbitrary orderings and concurrencies between events. The
Mazurkiewicz model restricts the concurrencies possible, thereby gaining
mathematical structure and philosophical simplicity at the expense of ex-



pressive power.

2 Definitions

In this section we briefly sketch the basic mathematics of pomsets and
Mazurkiewicz traces. More complete presentations may be found in (19,20)
and (14,15).

2.1 Preliminaries

Let ¥ denote an alphabet of symbols (at most countable). I* will denote
the set of all finite strings ordered by the prefix order <. If s is a string, let
s[i] be the i’th symbol (e.g., abc[2] = b); s[i..j] is the substring from symbol
i to symbol j inclusive; and #4(s) be the number of preceding occurrences
of the symbol a in s.

It is often useful to make the symbols in a string unique. If ¥ is an
alphabet, let % be the alphabet ¥ x N. If s € £*, define uniquification
s% to be s with each symbol labelled by the number of occurrences of that
symbol:

s'li] = (sli], (#aga(s[1-4D) ) (1)

For example, abacb* = (a, 1)(b, 1){a,2)(c,1)(b,2). Conversely, if ¢ is a string
in $¥, define its agglomeration t9 by stripping off all the integer tags in t.
We extend both -¥ and -9 pointwise to sets of strings, and so forth.

Lemma 2.1 Let s,t be strings over . Then we have the following:
1. s<t & s* <t
2 s¥ =3

Proof: Easy. $

Unless otherwise stated, ¥ will remain fixed throughout this paper.

2.2 Pomsets

A pomset is a generalized string in which (occurrences of) symbols may be
unordered in an arbitrary way.

Definition 2.2 A Z-labelled partial order is a tuple (E, <,u), where E is
a (finite) set, < is a partial order on E, and p : E — X.



Elements of E are called events and considered to be things happening; ele-
ments of ¥ are actions, and are the things that happen. e; < e is intended
to mean that e; occurs before e; in time. If e; and e; are incomparable
(notation e; L e3), then they occur in indeterminate order or in parallel.
p(e) is the action that happened at event e. For example, e; < ez could
represent two successive presses of the a key on the keyboard, in which case
we would have u(e;) = p(ez) = a. However, given two keyboards, it would
be feasible for two presses of a keys to happen in parallel; we would then
have e; L ey with u(e;) = p(ez) = a.

Two labelled partial orders are equivalent if they differ only in the names
of events; that is, they must have the same alphabet of actions, and order-
and label-isomorphic sets of events. We identify equivalent labelled partial
orders:

Definition 2.8 A pomset [E, <, u] is the isomorphism class of the E-labelled
partial order (E, <, p).

We shall often take the liberty of confusing a pomset p with a convenient
representative (Ep, <p, lip)-

Strings are equivalent to pomsets in which < is a total order; multisets
are equivalent to pomsets in which < is equality.

There are a number of standard operations on pomsets, of which we will
be concerned with p|| ¢, which exhibits behavior p and ¢ concurrently, and
p; q, which acts first like p and then like g.

Definition 2.4 Letp = [E,<,u] and p’ = [E’', <', 1] such that EN E' = 0.
Define the pomsets p || p’ and p;p’ by:

Il

pllp = [EUE, (S0 <p),nup]
p;p = [EUE',(SPUS,,,U(ExE’)),uuu’]

Examples may be found in Figure 1. Note that || is only the most basic
form of concurrency, as there is no communication between the components.
Concurrency involving communication will be discussed elsewhere.

We now define prefix ordering on pomsets. If 7 and s are strings, r is a
prefix of s if we may add symbols after those in r to obtain s. By analogy,
p is a prefix of ¢ if we may add events after and independent to those of p
to obtain g¢.



A 0 A 0 A 0 A 0— A
I - ) _
I A S O X

40
) fA 1 | B 1—-B
B

Figure 1: Sequencing and Concurrency of Simple Pomsets

Definition 2.5 The pomset p is a prefix of ¢, written p < g, iff there is
an order-and-label-preserving injection of p into ¢ with a downward-closed
range; that is, if e < ey are events of q, and ez is in the range of the
injection, then so is e;.

It is easy to see that < is a partial order.

d

T
b b c b c b
T N / / AN T 1
a a a c a d
y41 Y p3 2

Figure 2: Examples of Prefix Order for Pomsets: p; < pa,p1 £ p3,p1 £ Ps-

Definition 2.6 A pomset q is a linearization of a pomset p if there erist
representatives (E,<,pu) and (E,<',u) of p and q respectively such that
< C <’ and <’ is a total order. The set of all linearizations of p will be
denoted lin(p).

Given a linearization ¢ = [E, <,p] of the pomset p, we can obtain a
string of symbols in ¥ inductively by concatenating the symbols in u(E)
in a manner consistent with the order <. If it is clear from the context, a
string thus obtained from a linearization ¢ of a pomset p will also be called
a linearization of p. This identification can be easily justified because each
string linearization determines a pomset linearization; just take as the set
of events the symbols in s* with the obvious order.



2.3 Mazurkiewicz Traces

Mazurkiewicz traces (called simply “traces” from now on) are also gener-
alizations of strings to allow the representation of non-sequential behavior.
Traces are equivalence classes of strings with respect to a congruence relation
that allows to commute certain pairs of consecutive symbols.

Definition 2.7 Let ¥ be a countable alphabet. An independency is a sym-
metric, irreflezive relation « C £ X E. Call an ordered pair (L,t) a con-
current alphabet if £ is an alphabet and « C T X ¥ is an independency
relation.

So, a ¢ b holds iff @ and b cannot be causally related, in which case
they may happen concurrently. For example, if a ¢+ b, then the strings
cabd and cbad are viewed as representing two sequential observations of
the same non-sequential behavior. Note that no action can be concurrent
with itself (independency is irreflexive) and concurrency is always mutual
(independency is symmetric). In typical use, actions on different ports or
processors are independent, while those in the same place are dependent.
Actions on a bus connecting two places will be dependent on actions local
to each place; this is why ¢ is not an equivalence relation.

More formally,

Definition 2.8 Let (T,t) be a concurrent alphabet and s,t be finite strings
of symbols from £. We say s and t are Mazurkiewicz equivalent, nota-
tion s =, t, iff s can be transformed to t by a finite number of exchanges
of adjacent, independent actions. A Mazurkiewicz trace o = [s], over the
concurrent alphabet (X,t) is the Mazurkiewicz equivalence class of a string.

Let & = {a,b,c} with a ¢ b and b ¢ ¢ (and symmetrically) as the only
independencies. Then we have:

[ab], = {ab,ba}
[aba), = {aba,baa,aab}
[abe], = {abe,bac,ach}
[abca), = {abca,baca,acba,acab}

The theory of traces has been developed in (14,21,1,10). We present only
a few facts:



1. Concurrent alphabets amount to types. Traces over the same concur-
rent alphabet are compatible; traces over different concurrent alpha-
bets are incompatible, and we should make no attempt to combine
them.

2. Catenation of traces with the same independency is well-defined by
[s], - [t], = [st],, and indeed traces over a given concurrent alphabet
form a cancellative monoid with [€], as the unit.

3. We may define prefix ordering as usual: ¢ C 7 iff 3y.7 = o - 7.
Prefixing is a partial order, but not a total order: [a], and [b], are both
prefixes of [ab],.

4. cCriff Ve eodyerz <L y.

3 Translations between Traces and Pomsets

Both pomsets and traces may be informally described as “generalizations of
strings which allow for some actions to happen concurrently.” Traces are
somewhat more constrained than pomsets: if a and b occur in parallel in
a trace, they cannot occur sequentially; pomsets have no such restriction.
In this section, we give two equivalent translations from traces to pomsets
(Theorems 3.10 and 3.17). There are pomsets which do not correspond to
any trace; we give necessary and sufficient conditions under which pomsets
correspond to traces (Theorem 3.19).

3.1 Traces as Pomsets

The partial order of prefixes of [abab], (where a ¢ b) is presented in Figure 3.
We shall extract a pomset (in this case, aa || bb) in two equivalent ways (see
Figure 4). Notice that the set of linearizations of aa || bb is equal to the set
[abab],. The theorems in this section generalize this observation.

We present two ways of converting a trace to a pomset, and show that
they are equivalent. The first is fairly direct, turning the symbols of o into
events. It essentially uses a theorem of Szpilrajn (23), that a partial order
is equal to the intersection of its linearizations. A similar construction was
also used in (15).

If (£,:) is a concurrent alphabet, let (X%, %) be the concurrent alphabet

with o = {((a,1),(b,5))la 1 b}.



Lemma 3.1 Let s be a string over . Then [s¥],. = ([s],)".

Proof: Easy. é
Definition 8.2 Given a trace o = [s],, we define pom*(c) to be the pomset
with
o E,, the set of symbols (a,1) in s*.
o (a,k) <ou (b,1) if, for every t € o, (a, k) precedes or equals (b,1) in t*.
o loi({a,k)) = a.

For example, the trace [abab), in Figure 3 gives E[gpap) = {(a, 1), (a,2), (b, 1), (b, 2)}
with (a,1) < (a,2) and (b,1) < (b,2) as the only strict orderings.

The second conversion requires somewhat more machinery, but has been
more useful in proofs.

Definition 8.3 A point of a trace [s], is a non-empty trace prefic [r], of [s],
such that all representatives ' € [r], end in the same symbol. The action at
a point [r],, act([r],), is the common final symbol of all the representatives.

The points of [abab], are [a],, [aa],, [b],, and [bD],, with actions a, a, b,
b respectively. [aab], is not a point, as it contains both aab and aba. The
points! of a trace are suitable events for the corresponding pomset:

Definition 3.4 Given a trace o = [s),, we define pom(c) to be the pomset
with

o E, the set of points of o;
o <, the restriction of the trace prefiz order to E,;

® L, the map act.

We now prove that the two constructions of pomsets from traces coincide.
We shall require the following lemmas.

Lemma 3.5 The points of [s*],. are precisely the uniquifications of the
points of [s],, and -* is an order-isomorphism between them.

! Points of a trace are also primes (21).



[aal,
[a], [aab),

7 N SN
NN
N\

[bb]L

Figure 3: Partial order of prefixes of [abab],

[aa]l,

[bb],
Figure 4: Sub-partial order of points of [abab],

Proof: It is easy to see that [pa], is a point of [s], iff [pa¥],. is a point of

[s%],u-
For order-isomorphism, we reason thus:
[pa], € [gb], <<=
Vz € [pa),,qy € [gb], 2 <y <=
Vz* € [pa],¥,3y € [¢b)," .2 < y* <=
[pa),” € [¢b]."

.

Lemma 3.6 Let t be a uniquely-labelled string (that is, one in which no
symbol appears twice), and suppose that —(a ¢t b), and a precedes b in t.
Then a precedes b in every representative t' of [t],.

10



Proof: Suppose there exists ¢/ € [t], such that b precedes a in t’. Then
there must exist a finite sequence of exchanges of consecutive independent
symbols of ¢ which gives t. Thus, the order of a and b would have to be

changed, but =(a ¢ b) and we have reached a contradiction. $

Lemma 3.7 Let[ra), and [sb], be points of some trace[t],, such that =(a ¢ b).
Then [ra], and [sb], are comparable.

Proof: Suppose [ra],* and [sb]," are distinct points of [t*],. (the result
follows trivially if they are equal). Let n, = #4(ra) and np = #s(sb).
Suppose without loss of generality that (a,n,) precedes (b, np) in t*. Then
by Lemma 3.6, {a,n,) precedes (b,np) in every element of [t*],.. Thus
[ra],* C [sb],“. By the order-isomorphism (Lemma 3.5), we know that

[ra], C [sb], as desired.

Lemma 3.8 Let 7 = [t], be a trace. Suppose that n < #4(t). Then

1. There is a unique point point(t,a,n) = p T 7 such that #4.(p) = n
and act(p) = a.

2. If o C 7 and #4(0) > n then point(t,a,n) C 0.
Proof: For existence, let r be any minimum-length element of
R={r |3 er.(r <t'A#a(r) =n)}

R is nonempty because #4(t) > n. Let p = [r],. Clearly any 7’ € p ends in
a; if it did not, we could find a shorter element of R by removing the non-a
tail. Thus p is a point as desired.

For uniqueness, suppose that p’ were another such point. By Lemma 3.7,
we know that p and p’ are comparable. As r is minimum-length, we must
have p C p/, and hence po = p’ for some 0. o cannot contain any a’s, as
#a4(p) = n = #4(p’"). However, o cannot contain any symbols other than a
either, or else p’ would not be a point ending in a. Hence o is empty and so
p=p.

For the second part, suppose that #4,(c) > n. Let p’ = point(o,a,n).
Then p’ C o C 7. By uniqueness of point(7,a,n), we have p = p’.

Corollary 3.9 If7 is a point of T with act(7) = a, then ™ = point(T, a, #4(T)).

11



Proof: From uniqueness in Lemma 3.8 part 1. {l}

Finally, we can show the main result of this section.
Theorem 3.10 For any trace T = [t],, pom(T) = pom*(7).

Proof: To prove that two pomsets are equal, we must exhibit an order—
and label-preserving isomorphism between them. Define f : E, — E., by:

f([pa]) = (a, #a(pa))

This is well-defined and 1-1 because, by Lemma 3.8, if [pa], and [ga], are
points with the same number of occurrences of a, then [pa], = [ga],.

1. (Onto) If #4(t) > n, then point(7, a, n) exists. By definition, f(point(7,a,n)) =
(a,n).

2. (Order-preserving =) We must prove [pa], T [¢b], = f([pal],) <rs
#(igb),). Suppose [pal, T [gb],, f(lpal) = (a,na), and f([pbl) =
(b, np). Suppose also that (a,nq) -« (b, np); then there must be some
element z(b, np)y(a, ng)z of [t],".

As (b, .)’s do not commute, we have #4(29b) = ny, and so by Lemma 3.8
we have [gb], T [z9b],. So, #a(gb) < #a(29) < ng. But n, =
#a(pa) < #a(gb) < ng, which is impossible. Thus f([pa],) <,.
f([qb]b)'

3. (Order-preserving <) We must prove f([pa],) <. f([gb],) implies
[pa], C [gb],. Suppose that (a,ns) <r. (b, np). Without loss of gener-
ality suppose (a,ng) # (b, np) (the implication follows trivially if they
are equal). Then every prefix of [t], with at least ny occurrences of b
also has at least n, occurrences of a.

In particular, [gb], has exactly np b’s, hence it has at least n, a’s. By
Lemma 3.8 part 2, we know that point(r,a,n,) E [¢b],. By Corol-
lary 3.9, we know that [pa], = point(r,a,ns). So [pa], T [gb], as
desired.

4. (Label-preserving) Clear.

e

12



AN /
b a a
T
a
Dirr Dindep

Figure 5: Irreflexive and Independence Examples

3.2 Pomsets as Traces

A trace is, first of all, a set of strings. We may attempt to convert a pomset
p into a trace by finding the set of strings which correspond to it, viz. its
set of linearizations lin(p). If this is to be a trace, it must respect some
independency ¢. The obvious choice is ¢p:

Definition 3.11 If p is a pomset, then the natural independency of p, ¢p,
18:

atpb iff Jea,ep € Ep.(u(ea) =aAp(ey) =bAes Ley) (2)

In this section, we give conditions under which this is an independency and
p truly respects it; in particular, under which lin(pom(o)) = o.

It is not always possible to translate a pomset into a trace over the same
alphabet. There are two canonical counterexamples, p;rr and Pindep, given
in Figure 5. p;, cannot be a trace, as the first a causes b and the second
is independent of it: the independence relation in a trace must be obeyed
consistently over the entire trace. The relation ¢, is an independency,
but lin(p;;») does not obey it. pingep cannot be a trace, as two a’s occur
concurrently in pindep and all occurrences of the same action in a trace
must be causally related; ¢,,,,, is not irreflexive and hence not even an
independency. We now show that these are the only ways that pomsets can
fail to be equivalent to traces.

Definition 3.12 A pomset is irreflexive? iff, whenever e; and ey are distinct
events with p(e;) = p(ez2) = a, then either ey < ey or €1 > €.

2 A related notion is that of a semiword (8,22).

13



An irreflexive pomset corresponds to a trace if the independence relation
tp teally behaves like an independence; that is, if whenever a ¢, b, then a
should not cause b. We detect causality by tmmediate precedence. Formally,

Definition 3.13 If < is a partial order, then a immediately precedes b,
written a <' b, iff a < b and there is no ¢ with a < ¢ < b.

Definition 3.14 A pomset p is independent iff there are no events e,, €,
ey, and e, such that
p(ea) = ples) =a ea <' e
ule) = ple}) =b ¢, L ¢
For example, p;,, is irreflexive but not independent; pindep is independent
but not irreflexive.
A pomset does not uniquely determine an independency relation. This
is why we shall need the following notion.

Definition 3.15 POM(:), the set of all pomsets compatible with the inde-
pendency i, is the set of irreflexive pomsets such that:

o Whenever e L €', then u(e) ¢ u(e'), and
o Whenever e <' ¢/, then =(u(e) ¢ u(e')).

It is clear that all elements of POM(¢) are irreflexive, independent pomsets.
For example, a || b € POM(:) if ¢ = {(a,b),(b,a),(b,c),(c,b)}. Since c
does not occur in a || b, there is no evidence of the fact that b ¢ c. Note that
a||b € POM(), where the independency ¢’ = {(a,b),(b,a)}.
Theorem 3.17 precisely characterizes the translation from traces to pom-
sets. We shall require the following lemma.

Lemma 3.16 Ifa . b and [ra], C [sb], are points, then there is a point [pc],
with [ra], C [pc], C [sb],.

Proof: Note that [ra],[zd], = [sb],. There must be some element c of z (let ¢
be the first if there are several, and let n. be the number of this occurrence
of ¢) such that =(c¢a). (If not, then [sb], = [razb], = [rzab], = [rzba],
is not a point). Let [pc], = point([sd],,c,n.) be the shortest prefix of [sb],
containing that c. The last a in [ra], must also occur in [p],, because it
cannot commute with ¢. Everything before it, i.e. 7, must also occur in p
because none of these symbols can commute with a. So, [ra], C [pc],. As

[pc], C [raz], C [sb],, we know that [pc], is the desired point.

We can now prove one of the main theorems of this section.

14



Theorem

3.17 For any string s and independency relation t,

1. pom([s],) € POM(¢), and

2. lin(pom([s],)) = [s],

Proof:

1. We need to show that pom([s],) is an irreflexive pomset which is com-
patible with ¢. Irreflexivity follows from Lemma 3.7; note that ~(a ¢ a).
For compatibility with ¢, consider two points [pa], and [gb],.

If [pa], L [gb], then a ¢ b by Lemma 3.7.

If [pa], C' [gb], then we must show =(a ¢ b). Suppose the converse:
a ¢ b. Since [pa], C [gb], and a ¢ b, then by Lemma 3.16 there
is a point [rc], with [pa], C [rec], C [gb],. But this violates the
assumption that [pa], C' [gb],.

2. We have shown in the first part of this proof that pom([s],) € POM(¢).
Let P = pom([s],). We must show that (a) lin(P) is closed under
exchanges of adjacent, independent symbols, (b) all strings in lin(P)
are Mazurkiewicz equivalent with respect to the independency ¢, and

() lin(pom([s],)) = [s].-

(2)

(b)

(Closure under exchanges of adjacent independent symbols) Let
eq, €» be events with u(es) = a,u(ep) = b and a ¢ b, and let
z € lin(P) such that ¢ = z’abz”. Since P is in POM(¢), then
—(eq <' €p). Thus, either e, L ep, or €4 < €. < € for some e..
The latter case is impossible because a and b are adjacent. Hence,
es L ey, 50 a and b can be interchanged: z’baz” € lin(P).

(Equivalence of strings in lin(P)) It suffices to show that, if zaby
is in lin(P) and —(a ¢ b) and a # b, then zbay is not in lin( P).
Since the pomset P is irreflexive, the events labelled with a are
totally ordered, so we can assign occurrence numbers k. Suppose
zaby comes from the linearization @, where the a and b come
from e, and ep. Since —(a ¢ b), then e, and ey are comparable in
P, and, since e, comes first in the linearization, then e, <p ep.
Suppose that zbay came from some other linearization @’. There
are k occurrences of a in zab, and hence k occurrences of a in zba.
So the event that determines a is e;. There are [ occurrences of
b in zab, and hence in zba. So the event that determines b is e;.
Thus, e <o/ €4 and e, <p €. This is impossible.

15



(c) (lin(pom([s],)) = [s],) We have shown that lin(P) € POM(¢), for
P = pom[s], is a trace over ¢. Clearly, s is a linearization of
pom([s],), and the desired result follows.

7

Corollary 8.18 If o is a trace, then pom(o) is an irreflerive, independent
pomset.

Proof: Since pom(c) € POM(:) by Theorem 3.17, then by definition it
must be irreflexive and independent.

The following precisely characterizes the translation from irreflexive, in-
dependent pomsets to traces.

Theorem 3.19 The following are equivalent:
1. p is an irreflezive, independent pomset;
2. p € POM(sp);
3. lin(p) is a trace with some independency, and p = pom(lin(p));
4. lin(p) is a trace with independency tp, and p = pom(lin(p)).
Proof:

1. (1 = 2) Suppose p is an irreflexive and independent pomset. If a ¢p b,
then by independence /B(ea <! eb) 4(eq) = a A p(ep) = b; sop €
POM(¢p).

2. (2 = 3) Suppose p € POM(tp). Then lin(p) is a trace with indepen-
dency ¢, by Theorem 3.17. Also note that lin(p) is a trace with any
independency ¢« C £ X T containing ¢p.

We show that p = pom(lin(p)) by constructing an order- and label-
preserving isomorphism between them. Choose e € E,. Let a = u(e)
and define:

f(e) = u(lin(le))

where |e = {e’ € Ep | ¢’ <, e}. (That is, take the set of all lineariza-
tions of the set of events below €, and convert them to strings over X).
The following are easy observations:

16



le is an irreflexive, independent pomset;

lin(le) is a trace prefix of lin(p) (to see this, consider the lineariza-
tion in which events in |e appear first);

Every linearization of |e ends with a;

Thus f(e) is a point with action a.
It remains to show that f is an order-isomorphism.

e (1-1) Suppose that f(e) = f(e’) for distinct e,e’. Then e < ¢’
is impossible by length arguments (and, symmetrically, ¢’ < e
is also impossible). Suppose e L e’. Then u(e) = p(e’), which
violates irreflexivity, and we have reached a contradiction.

e (Onto) If there are n events in p, then there are also n points in
lin(p), and each point is in the range of f.

o (Order-preserving =) If e < ¢/, then |e C |e’. Hence also f(e) <
f(€).

o (Order-preserving <) Suppose f(e) < f(e’), but e £ €’. Let
a = p(e), b = p(e’), then either e > e’ ore L €'

— (Case e > €') This would imply f(e) > f(e’) by the (1-1) and
(Order-preserving =) parts of this proof, which contradicts
the assumption f(e) < f(e').

— (Casee L €') Thena tp b. Let k be the number of occurrences
of a in f(e), ! the number of occurrences of b in f(e’). Let:

D = lenlé
F = le\l€
F' = €'\ le

Then D < FUF’, and F 1L F’. Consider a linearization of
p in which all events of D precede F, and all events of F
precede F'. There are fewer than k occurrences of a in D
(since there are k in D U F and at least 1 in F). There are
no occurences of a in F’ (since F’ L e, and the pomset p is
irreflexive). Similarly, there are no occurrences of b in F. So,
there is a prefix (a linearization of D followed by F’) which
contains ! occurrences of b and fewer than k occurrences of
a. This contradicts f(e) < f(e').

17



3. (3 = 4) Clear.

4. (4 = 1) By Theorem 3.17.

7

It is worth stressing that the set of linearizations of a given independent
and irreflexive pomset does not uniquely determine an independency rela-
tion. For example, the pomset a ;b ; ¢ admits abc as the only linearization.
The set {abc} is a valid trace not only for empty independency, but also for
one in which a ¢ c.

The translations pom and lin are well-behaved on their domains. We
show that they preserve order.

Lemma 3.20 If [s], C [t], then pom([s],) is the restriction of pom([t],) to
the set Ef,) of events of pom([s],).

Proof: Suppose [s], C [t],, and let [pa], T [s],. Then [pa], C [t], and
all representatives of [pa), end in a. Hence, [pa), is a point of [t],, and thus

Ep), C E[t]‘. The remainder is clear.

Theorem 3.21
1. For all traces o, 7: 0 C 7 = pom(o) < pom(T).

2. For all pomsets p,q € POM(¢): p < ¢ = lin(p) C lin(g).

Proof:

1. Let [s], C [t],. To show pom([s],) < pom([t],) we need to construct an
order- and label-preserving injection with a downward-closed range.
Let e be an event of pom([s],) and define:

fle) = e
u(f(e)) = nle)

It is easy to see by Lemma 3.20 that f is the desired injection.

2. Without loss of generality, suppose p,q € POM(¢) such that E, C E,
and p < ¢, in which case E, is a downward-closed subset of E,. Let
F, = E,\ Ep. Then d € F, implies either d L E, or E, < d.

18



We now construct a linearization of ¢ as follows. Choose any lin-
earization /; of E, (hence of p), and any linearization I of F,. The
‘concatenation’ /1l; is a linearization of E,F,, and hence also of ¢. It
now follows that u(l3l2) € lin(g), u(l1) € lin(p), from which we have by
Theorem 3.19:

lin(p) = [p(l)], E [u(hl2)], = lin(g)

as desired.

e

We have identified the traces as those pomsets which are both irreflexive
and independent. There are two obvious intermediate classes, the irreflexive
pomsets and the independent ones. The structure of these classes largely
remains to be investigated.

4 Observing Pomsets and Traces

Many notions of process equivalence (3,9,16,6,2) are most clearly under-
stood as equivalence with respect to some set of ezperiments. In brief, two
processes should be equivalent if and only if they cannot be told apart no
matter how they are used. This definition has two parameters: methods
for telling processes apart (the ezperiments) and methods for using them
(e.g., a programming language). Many, but not all, standard process equiv-
alences can be understood as equivalence with respect to a reasonable set of
experiments.

Typically, a process is considered a “black box” or an “alien calculator,”
an opaque shell surrounding some incomprehensible internal state, with only
a few controls and indicators of unknown function and significance poking
through. The experimenter performs some sort of experiment on the process,
manipulating the controls and observing the indicators. Two processes are
equivalent if they yield the same results on all experiments in all contexts. In
many cases, it suffices to consider equivalence with respect to all experiments
alone, as it frequently implies equivalence with respect to all experiments in
all contexts as well.

For the moment, we consider the problem of distinguishing distinct pom-
sets and traces. These are used as the basic notions of “system execution”
in the two theories. It would be rather distressing if there were indistin-
guishable yet different system executions possible. (For one thing, it would

19



be possible to specify that a program should do one but not the other of
these things; such a specification would be difficult to justify or understand.)
In fact, distinct system executions are distinguishable in both models. The
scenarios build on one of the simplest schemes, in which processes are con-
sidered to be black boxes with lights (one per action) and a start button.
When the start button is pushed, lights will flash for some time; the observer
watches the flashing, and writes down what she sees. When events are un-
ordered, the lights may flash concurrently or in any order; furthermore, they
may be so far apart that different observers will disagree about what order
they flashed in. Note that all observers agree on the order of events that
are ordered in the underlying pomset. Formally, each observation is a lin-
earization of the pomset or trace; different observers of the same trace may
see different linearizations from the same experiment.

Pomsets and traces are histories of partial executions of a program. In
both models, the denotation of a program is the set of all of its possible
partial executions. That is, a trace process is simply a prefix-closed set of
traces. Pomset processes are slightly more complex: for example, {a || b}
and {a || b,a;b} are indistinguishable. Pomset processes are sets of pomsets
closed under prefixing and augmentation; that is, increasing the linearity
of the partial order. It would be desirable that this semantics be fully
abstract; that is, that two pomset processes be equal if and only if they
are indistinguishable. In both cases, the scenario for distinguishing histories
also distinguishes processes.

In summary, distinguishing pomsets requires two technical devices: a
replacement operation which substitutes pomset processes for actions, and
concurrent observation by many observers. Distinguishing traces is much
simpler, requiring only a sequencing operation and one observer in the worst
case. Though both models are understandable in terms of observations, it
is mathematically and philosophically easier to understand the distinctions
between traces than between pomsets.

4.1 Distinguishing Pomsets (Pratt and Plotkin)

It is easy to find pomsets which appear the same to a single observer who is
simply watching the pomset; for example, a ;@ and a || @ both produce two
a’s. Pratt and Plotkin (18) give an experimental scenario for distinguishing
arbitrary pomsets. The scenario uses two tools: (1) a refinement operation,
which has the effect of replacing each action a by a process P, and (2)

20



multiple observers, who may see different orders of independent events.3

If p is a pomset, a an action, and 4 is a set of actions, we define pa := A]
to be the set of all pomsets which are like p except that each occurrence of
an a is replaced (independently) by an element of A. For example,

(a;a)la:= {a1,a2}]
(a|l a)la := {a1, a2}]

We define simultaneous substitution for many actions in the obvious way.

An observation of a set of pomsets is made by first nondeterministically
choosing an element, and then watching linearizations of that element. The
two sets of pomsets are still not distinguishable by a single observer; each
set can produce any of the four strings aiay, ajaz, aza;, aza;.

However, with two observers watching the same element, the two sets
are distinguishable. In this scenario, the two observers may see different
linearizations of the element. Two observers watching (a; a)[a := {a1, az}]
will always see the same string. However, if the element of (a || a)[a :=
{a1,a2}] happens to be ay || az, then one observer may see ajaz and the
other aza;. This is a distinguishing observation.

Generalizing this method, Pratt and Plotkin give a scheme for distin-
guishing arbitrary pomsets:

{(a1;a1), (a1 ; a2),(az; a1), (az ; a2)}
{a1 || a1, a1 || az, az || a2}

Theorem 4.1 (Pratt and Plotkin(18))

1. Let p and q be distinct pomsets. There ezists a contert C[-] (involving
simultaneous replacement), and a multiple-observer observation A (for
some number of observers) such that one of C[p] and C|q] can yield A
and the other cannot.

2. Let P and Q be distinct pomset processes. Then P and @ may be
distinguished by such a scenario.

4.2 Distinguishing Traces

The situation for traces is considerably simpler: observing single lineariza-
tions suffices to distinguish traces. The precise statement of this fact requires
some care; in particular, we must decide how visible independencies are. The
details of this depend on our treatment of concurrent alphabets.

3There is a simpler scheme for distinguishing series-parallel pomsets, those built from
actions by ; and ||.

21



First, we consider concurrent alphabets to be visible. For example, the
black box may be several black boxes connected by cables; we might know
that actions on different boxes were independent. Given this knowledge,
distinguishing distinct traces is trivial, as they have no linearizations in
common at all. Theorem 4.2 follows immediately from the definitions.

Theorem 4.2 Let 0 and T be traces over the same concurrent alphabet.
Then the following are equivalent:

1. o and T can be distinguished by linearizations; that is, there is some
string  which is a linearization of precisely one of o and .

2. o and T are disjoint; that is, they have no linearizations in common.
3. 0o#T
Proof:

1. (1 = 2) Let o, 7 be traces over the same alphabet, and let z € o such
that z ¢ 7. Suppose there exists y € o such that y € 7. Then z =, y,
and hence z € 7, and we have reached a contradiction.

2. (2 = 3) Let 0,7 be disjoint, then there exists z € o such that z ¢ 7
(or symmetrically). As o and 7 are equivalence classes, they must be
distinct.

3. (3 = 1) Clear.

.

It is possible to structure the metaphor of processes as black boxes so
that independence information is visible (e.g., by giving the calculator some
peripherals); however, for strict comparison with other systems, we should
stay with the simpler case of no information about the concurrent alphabet.

Without knowing something about the concurrent alphabet, it is impos-
sible to distinguish some distinct pairs of traces; e.g., the empty trace looks
empty over all alphabets. More generally, if @ and b are never adjacent in
any linearization of o, then it is impossible to tell whether or not a ¢ b.

So, we simply include a context which enters each pair of actions adjacent
to each other. This context can be realized with sequential composition, or
even CCS-style prefixing; it does not require the somewhat exotic operation
of action refinement. We obtain the following:

22



Theorem 4.3 If o and T are distinct traces (over possibly distinct concur-
rent alphabets) then there is a context C involving only sequential composi-
tion and a string = distinguishing them; that is, precisely one of C[o] and
C[r] can perform z.

Proof: Let £ = {ay,...,a,} be the set of actions in ¢ and 7. Let
P =0a1G1G1G20G1G3 ...,010y G201,...050n

be a string in which each pair of elements of ¥ occurs consecutively. The
experiment C[X] consists of running a process which first executes p, and
then runs X. If o and 7 are traces over different concurrent alphabets,
then there is some permutation of p which can occur in the alphabet of one
but not the other, and the two processes can be distinguished. Otherwise,

Theorem 4.2 applies. ﬁ}

Essentially the same techniques may be used to distinguish trace pro-
cesses:

Theorem 4.4 Given two distinct trace processes, there is a context C in-
volving only sequential composition and a string r distinguishing them.

5 Consistent Completeness

The order-theoretic properties of traces under prefixing are significantly sim-
pler than those of pomsets. In particular, traces (and even irreflexive pom-
sets) form a consistent-complete partial order (that is, if p; and p; have an
upper bound, then they have a least upper bound), while admitting non-
irreflexive pomsets breaks consistent completeness.

The latter can be shown by a counterexample. In Figure 6, we have
p1,p2 < p3,ps. Furthermore, there are no processes between p;,p; and
p3, p4. So, py and p; have no least upper bound.

In fact, we can prove that a large subclass of pomsets (pomsets with no
self-concurrency) is consistently complete. This subclass includes irreflexive
pomsets.

Definition 5.1 The level of an event e of the pomset p (notation lev(e)) is:

maz{n | Jei,eq,...,en.(e =€) A(e1 <p ey <p...<pe€n)}

23



b c b c b ¢

T T AN / T 1

a a a a a
n D2 D3 y 2

Figure 6: Failure of Consistent Completeness for Pomsets

Definition 5.2 A pomset p is said to have no self-concurrency iff no two
incomparable events at the same level have the same label, i.e.:

Ve,e' € Ep.(e L e Alev(e) = lev(e)) = u(e) # u(e’).

Note that the pomset p, in Figure 6 has self-concurrency. The following
is an easy observation.

Lemma 5.3 If p is an irreflezive pomset, then it has no self-concurrency.

Proof: Easy. é

Lemma 5.4 Let (P, <) be a poset with bottom element 0 such that for all
z € P the set |z = {y € P |y < z} is finite. Then if every pair of elements
z,y € P has a greatest lower bound My € P then (P, <) is consistently
complete.

Proof:

1. Since every pair of elements has a greatest lower bound, the existence
of greatest lower bounds of finite subsets X of P can be shown by
induction on the cardinality of X.

2. Let X C P be finite, and let b € P be a bound of X. Define Uy C P
to be the set of upper bounds of X no greater than b, i.e.:

Up={yeP|Vo e X.e<y<b}

Then Uy is non-empty (it contains b) and finite (because b is finite),
and hence by part (1) Up has a glb NU,. We show that u = NU, = UX.

o Vz € X,V € Up.z < ¥, so Ve € X.z < u, and hence u is an
upper bound of X.

24



e Suppose Vz € X.z < z, some z € P. By assumption there
exists d = 2Mb. Since Vz € X.z < z and z < b, we have
Ve € X.x < zMb=d. Sod € Uy, and thus NUp < 2.

P

Lemma 5.5 If p,q be pomsets with no self-concurrency, then their greatest
lower bound pT q ezists.

Proof:

It is convenient to work with canonical representatives of pomsets, de-
signed to give the same names to events that might be the same in p and g.
Suppose p is a pomset, and define a pomset I(p) by:

Ew = {(a,n)|3e € Ep.u(e) = a,lev(e) = n}
(a,i) <yp) (b,7) <= Feasen(plea) = aAples) =b
P Alev(eg) = i Alev(ep) = j Aeq <p ep)

w(lai)) = a

If p has no self-concurrency, p = I(p). (To see this, define f : E, — Ey) by
f(e) = {a,i) where u(e) = a,lev(e) = i; it is easy to see that this is an order
isomorphism). We thus abuse notation and choose [(p) as our representative
of p for the remainder of this proof.

If v and v are pomsets, we write u = v if E, = E, (which, by the above
convention, means Ej,) = El(,,)), and the identity map is a labelled partial
order isomorphism between them. If p is a pomset and e € Ep, then |,e is
the minimal pomset prefix of p containing e.

It is straightforward to show that, if s < p, then

Ve € E,.l,e = |,e (3)

Suppose p and g are non-self-concurrent pomsets. We define r as follows;
r will be the infimum of p and q. We use the notation X | E for the restriction
of the function or relation X to the set E.

E, = {e€E,nEy|le= e}
<k = Sp rEr

Hr = ,uprEr

Note that <, = <, [ E, as well; if e; <, ez, then €; <p €3. As the identity is
an isomorphism between |,e; and lq€1, we have €1 <4 €3 as desired.

25



1. We show r < p,q. It suffices to show that E, is a downward-closed
subset of Ep; E, is symmetrical. Suppose thate € E, and E, 3 e’ < e.
As |,e = |4e, €' € Egand l,¢ = |,€'. Hence ¢’ € E,.

2. We show that, if s < p,q, then s < r. Clearly s has no auto-
concurrency. Using s = I(s), we see that E, C E, N E;. By (3),
we have |,e = | e = | ,e. Hence

E. = {e€E,NE,NEyle= le=lye}

C {e € E,nEy|l,e= 1qe}
- E,
and
< = Sp rEr
<s <p IE,

= < rEs
and clearly the labels are correct. Hence by construction s < 7.

Thus r is the desired greatest lower bound. {;}

Figure 7 shows examples of greatest lower bounds for pomsets.

d
T
b b c b c b
T N / / N T 1
a a a c a d
y4t D2 D3 D4

Figure 7: Examples of Greatest Lower Bounds for Pomsets: p; = p1Mpz,a =
p1Mp3,a=pNps

The main theorem of this section now follows.

26



Theorem 5.6 Finite pomsets with no self-concurrency are consistently com-
plete.

Proof: To prove consistent completeness for finite pomsets with no self-
concurrency, first observe that for every pomset p theset {¢ | ¢ < p} is finite.
By Lemma 5.5, every pair of pomsets with no self-concurrency has a greatest
lower bound. The result follows directly from Lemma 5.4.

Corollary 5.7 Irreflezive pomsets are consistently complete.

Proof: Direct from Lemma 5.3 and Theorem 5.6. {l}

By the order-isomorphism (Theorem 3.21), consistent completeness of
Mazurkiewicz traces also follows from Theorem 5.6. For an alternative proof
involving possibly infinite traces see e.g. (13).

Corollary 5.8 Mazurkiewicz traces are consistently complete in trace prefiz
order C.

Proof: Direct from Theorem 5.6 and Theorem 3.21. {E‘

6 Operations

Execution histories are not used in isolation. They are frequently built from
simple histories; for example, a system might be specified by saying that first
it performs A, then it performs B and C in parallel, and finally it performs
D. Pomsets are well-suited for this sort of specification; a wide variety of
operations are available on pomsets (20). Central among these operations
are concurrency || and sequencing ; already described. The algebra of these
operations is developed in (7).

Neither operation is well-defined on Mazurkiewicz traces. Actions cannot
be in parallel with themselves. For example, it is impossible for a daisywheel
printer to print two a’s at the same time; any two such events must be
sequenced. Similarly, if @ and b are independent, then they cannot happen
sequentially without some form of communication. For example, let M and
N be computers separated by an asynchronous network without a global
clock. It is impossible to have first M, then N flash a light without some
intervening communication in which M tells N that M has finished flashing

27



its light. This is an intuitive motivation for forbidding general concurrency
and sequencing.

More precisely, irreflexivity conflicts with parallel composition: a | @
iS Dindep, the example of a non-irreflexive pomset of Figure 5. Similarly,
independence conflicts with sequential composition, and (a;b); (a||d) is
Pirr Of the same figure.

Mazurkiewicz traces use a single operation of concatenation which has as-
pects of both sequencing and concurrency, making actions concurrent when
possible and sequencing otherwise. However, both sequencing and concur-
rency are given by concatenation of suitable strings. This can be understood
by the addition of a type system. First, all work should be done in the same
concurrent alphabet; it makes little sense to have a and b as letters on a
printer in one part of the specification, and actions on different processors
in another. We fix a concurrent alphabet for the remainder of this discussion;
properly, it should be part of the type structure.

Definition 6.1

1. A type A is a set of actions. A trace o has type A, written o : A, if
all actions in o are elements of A.

2. Two types are concurrency compatible iff for alla € A, b € B we have
acb.

3. Two types are sequencing compatible iff for alla € A, b € B we have
(a ).

Intuitively, concurrency compatible types are alphabets of actions on
separated machines (in particular, unlike CCS and CSP, traces do not syn-
chronize on matching actions)?, while sequencing compatible types are al-
phabets of actions on the same (or closely connected) machines.

Let 0 : A and 7 : B. If A and B are concurrency compatible, then
the two traces occur on separate machines, and so it makes sense to exe-
cute them in parallel. In fact, o - 7 represents o and 7 running in parallel.
The corresponding fact holds for sequencing. Our connection with pomsets
(in which concurrency and sequencing are defined) allows us to state this
formally:

“Both pomsets and Mazurkiewicz traces have CCS or CSP style synchronization op-
erations, which run sequences of actions in parallel synchronizing on shared actions. We
expect similar results to hold for these operations.

28



Theorem 6.2 Leto : A and T : B.
1. If A and B are concurrency compatible, then pom(o-1) = pom(o) || pom(7).

2. If A and B are sequencing compatible, then pom(o-1) = pom(a) ; pom(7).

Proof:

1. Let o, 7 be traces over concurrency compatible alphabets, and let E,.,
denote the set of events (points) of pom(a-7), E,|;r the set of events of
pom(c)||pom(r). We haveo C o7, and hence E, C E,.-. Also, since
the alphabets are concurrency compatible, we have r C 7-0 =0 -7,
from which it follows E, C E,... It is easy tosee that E,., = E,UE, =
E,||r- Define f : E;.r = E;- by:

f([pal,) = [pa],
It is easy to see that this is an order- and label-preserving isomorphism.

2. Similarly.

2

It remains to be seen if there is a clear connection between pom(o - 7),
pom(c), and pom(7) in the case where A and B are neither concurrency
nor sequencing compatible. We feel that a synchronization operation would
have to be used.

7 Conclusion

Pomsets amount to a model of untyped true concurrency, in which arbitrary
combinations of actions are possible. This generality gives it great power
in modeling and specifying processes. Mazurkiewicz traces amount to a
model of simply-typed true concurrency. In this model, some actions are
pre-defined to be independent (e.g., occurring on different machines) and
others are dependent (e.g., on the same machine). This additional struc-
ture imposes restrictions on which operations are possible (e.g., arbitrary
sequencing and concurrency are not possible, as they can be used to violate
the independence relation), but these restrictions pay off in mathematical
simplicity (exemplified by consistent completeness) and foundational sim-
plicity (exemplified by the simpler experiments used to distinguish between

29



the two). In this paper, the proofs concerning traces tended to be sim-
pler than those concerning pomsets. In particular, the induction scheme on
traces was straightforward (as with strings, if [s], # [e],, then [s], = [c],[s'],)-

This suggests the following methods of usage. It seems likely that most
situations will be simply typed, and hence can be described in terms of
Mazurkiewicz traces. It is better to use traces whenever possible, as they
are significantly simpler and have more structure. In a few situations, they
will prove inadequate. Then, the work can be translated into the more
powerful setting of pomsets, using the theory of Section 3.

7.1 Open Problems

Continuing this form of analysis with other restricted classes of pomsets
would be helpful. For example, the classes of series-parallel and codot pom-
sets (7) and seems to be mathematically tractable, and may have advantages
similar to Mazurkiewicz traces in other settings.

We have only discussed operations on execution histories in both mod-
els, as a basis for appropriate operations on process denotations (i.e. prefix-
closed sets of traces or pomsets). To build a denotational framework for true
concurrency semantics, it would be desirable to derive and relate suitable
operations on pomset and trace processes. Ideally, these operations should
be continuous, either in the metric sense or in the sense of Scott, and should
model sequential and parallel composition, non-determinism and synchro-
nization. The order-theoretic and metric properties of traces have been
investigated in (13,12). Pomsets form a complete metric space (5), but a
further analysis of the topological properties is necessary.

Another interesting problem is to provide a typed process calculus for
which Mazurkiewicz traces are fully abstract.

8 Acknowledgments

The first author would like to thank Vicki Borah for terminological assis-
tance. The second author would like to acknowledge the Amsterdam Con-
currency Group at CWI, especially Jeroen Warmerdam, for helpful discus-
sions on this and related subjects.

30



References

[1] I. Aalbersberg and G. Rozenberg. Theory of traces. Theoretical Com-
puter Science, 60:1-82, 1988.

[2] S. Abramsky. Observation equivalence as a testing equivalence. Theo-
retical Computer Sci., 53(2/3):225-241, 1987.

[3] B. Bloom and A. R. Meyer. Experimenting with process equivalence. In
D. M. Kwiatkowska, editor, Proceedings of the International BCS-FACS
Workshop on Semantics for Concurrency, pages 189-201, Leicester,
U.K., July 1990.

[4] M. Chandy and L. Lamport. Finding global states of a distributed
system. ACM Trans. Comput. Syst., 3(1):63-75, 1985.

[5] J. W. de Bakker and J. H. A. Warmerdam. Metric pomset semantics
for a concurrent language with recursion. In I. Guessarian, editor, Se-
mantics of Systems of Concurrent Processes, volume 469 of Lect. Notes
in Computer Sci., pages 21-50. LITP Spring School on Theoretical
Computer Science, Springer-Verlag, Apr. 1990.

[6] R. de Nicola and M. C. B. Hennessy. Testing equivalences for processes.
Theoretical Computer Sci., 34(2/3):83-133, 1984.

[7] J. L. Gischer. Partial orders and the axiomatic theory of schuffle. Tech-
nical Report STAN-CS-84-1033, Stanford University, 1984.

[8] J. Grabowski. On partial languages. Fundamenta Informaticae,
IV(2):427-498, 1981.

[9] C. A. R. Hoare. Communicating Sequential Processes. Series in Com-
puter Science. Prentice-Hall, 1985.

[10] M. Kwiatkowska. Fairness for Non-interleaving Concurrency. PhD
thesis, University of Leicester, 1989.

[11] M. Z. Kwiatkowska. Defining process fairness for non-interleaving con-
currency. In K. Nori and Veni-Madhavan, editors, Foundations of Soft-
ware Technology and Theoretical Computer Science, volume 472 of Lec-
ture Notes in Computer Science, pages 286-300. Springer-Verlag, 1990.

31



[12] M. Z. Kwiatkowska. A metric for traces. Information Processing Let-
ters, 35(3):129-135, 1990.

[13] M. Z. Kwiatkowska. On the domain of traces and sequential compo-
sition. In S. Abramsky and T. Maibaum, editors, TAPSOFT’91, vol-
ume 493 of Lecture Notes in Computer Science, pages 42-56. Springer-
Verlag, 1991.

[14] A. Mazurkiewicz. Concurrent program schemes and their interpreta-
tions. Technical Report DAIMI Report PB-78, Aarhus University, 1977.

[15] A. Mazurkiewicz. Basic notions of trace theory. In Linear Time,
Branching Time and Partial Order in Logics and Models for Con-
currency, volume 112 of Lect. Notes in Computer Sci., pages 25-34.
Springer-Verlag, 1989.

[16] R. Milner. A modal characterisation of observable machine-behaviour.
In E. Astesiano and C. Bohm, editors, CAAP ’81: Trees in Algebra and
Programming, 6th Colloguium, volume 112 of Lect. Notes in Computer
Sci., pages 25-34. Springer-Verlag, 1981.

[17] R. Milner. Communication and Concurrency. Prentice Hall Interna-
tional Series in Computer Science. Prentice Hall, New York, 1989.

[18] G. Plotkin and V. Pratt. The resolving power of multiple observers
(extended abstract). (The final version has not yet appeared, to my
knowledge), 1990.

[19] V. Pratt. The pomset model of parallel processes: Unifying the tempo-
ral and the spatial. In S. Brookes, A. Roscoe, and G. Winskel, editors,
Proc. CMU/SERC Workshop on Analysis of Concurrency, volume 197
of Lect. Notes in Computer Sci. Springer-Verlag, 1985. LNCS 196.

[20] V. Pratt. Modelling concurrency with partial orders. International
Journal of Parallel Programming, 15(1):33-71, 1986.

[21] M. W. Shields. Elements of a theory of parallelism. (to be published).

[22] P. H. Starke. Traces and semiwords. In A. Skowron, editor, Com-
putation Theory, volume 208 of Lect. Notes in Computer Sci., pages
332-349. Springer-Verlag, 1985.

32



[23] E. Szpilrajn. Sur lextension de l'ordre partiel. Fund. Math., 16:386—
389, 1930.

[24] K. Taylor and C. Critchlow. The inhibition spectrum and the achieve-
ment of causal consistency (extended abstract). In Proceedings of the
9th SIGACT-SIGOPS Symposium on Principles of Distributed Com-
puting (PODC ’90), 1990. (to appear August 1990).

33



	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif

