Assessing Program Visualization Systems
as Instructional Aids

Technical Report GIT-GVU-91-23
October 1991
Graphics, Visualization, and Usability Center
College of Computing
Georgia Institute of Technology

Albert Badre!
Margaret Beranek?

J. Morgan Morris®
John Stasko!

!Graphics, Visualization, and Usability Center
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332-0280

2Computer Information Systems Department
Georgia State University
Atlanta, GA 30303

*Department of Mathematics and Computer Science
Georgia State University
Atlanta, GA 30303-3086

Abstract

Recently, program visualization systems have received much attention as learning tools and as
software understanding aids. How to evaluate these systems, however, is an open and unexplored
area. In order to determine what factors may be important, we conducted an exploratory study
using XTango, an algorithm animation system. First, we asked professors to complete surveys
intended to solicit information regarding current practices in the teaching of algorithms. Next,
we observed two groups of students: one group received a handout and viewed an animation of
the Shellsort algorithm, the other received the same handout and listened to a lecture featuring
drawings on the blackboard. The students were queried on their understanding of the sort and their
impressions of the animation system. Comments indicated a high perceived value for the system,
with most students favoring its use as a teaching tool. It was clear from students’ responses that
an algorithm animation system can be used more effectively as a supplement in the classroom
environment than as a substitute for the teacher. The results of this study identified changes to the
animation system that will help integrate it into the classroom environment, and provided several
important factors to consider in future empirical studies.

Keywords: program visualization, algorithm animation, software understanding, computer aideed
instruction, educational software

1 Introduction

Recently, program visualization systems[Mye90] have garnered increasing attention as aids for soft-
ware understanding and for teaching computer science. Program visualization systems provide
graphical views of the constituents, methods, and techniques of computer programs. They enable
end-viewers to “look inside” the mysterious black-box of a program and visualize its inner workings
in a convenient, (hopefully) understandable visual format or metaphor.

Program visualization systems range from showing programs at a low level of detail, such as
showing data structure manipulations, to showing programs at a more global level, such as showing
the program’s purpose and methodologies[SP91]. Systems presenting a more global, high-level
abstract view are called algorithm visualization systems. Often, these systems present a continuous,
smooth view of a program during its execution, this earning the name algorithm animation.

Over the past ten years, a number of algorithm visualization systems have been created[LD8&5,
Dui86, Bro88, HHR89, Sta90]. Each concentrates on a slightly different aspect of the problem of
viewing program execution, and all have their individual merits. The clear focus to this work,
however, has been on improving the systems technology and visual techniques involved. Somewhat
lost has been the original motivation for the systems—how to improve software understanding
through pictures. Although many systems have been designed, no systematic evaluation of the
systems’ utility has been conducted. No formal end-user testing has been performed. Essentially
no follow-up to the claim that these systems improve software understanding has been checked.
The small amount of system evaluation done to date is largely anecdotal.

Perhaps the most extensive application of algorithm visualization technology was the use of the
Balsa system[BS85, Bro88] as an aid for teaching algorithms at Brown University in the mid-1980s.
Classes were taught in a large auditorium with Apollo, and subsequently Sun, workstations. FEach
lecture was accompanied by visualizations of the algorithm(s) being taught that day. Informal,
anecdotal results of this application were good; students frequently mentioned how the visualiza-
tions helped them understand how the algorithms worked. No formal study or attempt to quantify
how much the visualizations helped was conducted, however.

Instructors in a class on analysis of algorithms at San Diego State University utilized the
MacBalsa[Bro88] system (a descendant of Balsa) and a local system called Algorithms Lab to help
teach algorithms[WU90]. The instructors noted that the better students seemed to derive more
and learn more from the addition of the computer visualizations. The authors believed that the
minimal computer science background of the weaker students somewhat lessened the cognitive
gains made by these students. The students’ impressions of the visualizations were difficult to
quantify precisely. The instructors noted, “Motivation and enthusiasm defy simple measurement.”
The visualization systems, however, did receive favorable feedback from the students; most felt the
visualizations added to the course.

One reason for the lack of user testing in algorithm visualization is the sheer difficulty involved.
What are the appropriate visualizations to utilize? How do we measure program understanding?
What criteria are used for evaluation? How is the evaluation properly and fairly conducted? We
believe that these difficulties are the reasons for the lack of significant system testing, and this has
motivated the exploratory study we report in this paper. Rather than performing an evaluation of
an animation system immediately, our goal was to learn how to evaluate an algorithm animation
system.

We wanted to learn how experienced teachers might utilize this technology as an aid in the
classroom. We wanted to learn how to evaluate a student’s understanding of a program, and we
wanted to learn what problems might arise in performing such testing.

We also wanted to learn what constitutes a good algorithm animation. How should a student

be able to interact with the system? What further capabilities would be beneficial? For example,
adding sound and help facilities would make a system more of a multimedia tool, and might
significantly improve usefulness.

Existing work in algorithm visualization has given us intuition about the answers to these
questions. But as has frequently been shown, intuition is not always correct. Consequently, we set
out on this study to gather important evidence for confirming or disputing our beliefs. We focused
on identifying the factors that would be important in conducting a more formal, empirical study.
In a subsequent project, we will use the information we gathered to perform an exhaustive testing
of the impact of an algorithm animation system on instruction.

2 Exploratory Study

The exploratory study consisted of two parts: a survey of faculty for current teaching practices,
and an observational study of students interacting with an algorithm animation system. The
faculty survey on teaching practices strived to identify current teaching methods for algorithms,
specifically, uses of drawings, pictures and conceptualizations of algorithms. The observational
study investigated the effectiveness of computer animation to enhance algorithm comprehension
in a classroom environment. The computer animation was implemented on top of the algorithm
animation system, XTango[SH90] that helps to design graphical representations of data structures
and algorithms. The animations were presented to students as a supplemental learning tool, and
the students were tested to determine their knowledge and ability to conceptualize the algorithm
presented to them. The algorithm was also presented to a second group in a regular classroom
environment using blackboard lecture style.

2.1 Faculty Survey

An important part of this study was to identify current methods of teaching algorithms and to
identify appropriate conceptualizations of the algorithms to be used in the computer animation.
These conceptualizations, or mental models, indicate how the professor visualizes the algorithms
and how they transfer their vision of the algorithms to their students. To acquire this information
we surveyed professors who have taught algorithms courses at two different universities. The survey
consisted of two parts. Part one asked for information about the professors’ background in teaching
algorithms, the teaching methods used, their use of teaching aids such as textbooks, drawings and
diagrams, overhead transparencies, and the use of supplemental notes.

Part two consisted of a list of four algorithms. The professors were requested to draw a dia-
gram to emulate their conceptualization of the algorithms. The drawing could be accompanied by
verbal explanations and/or color. The drawing could be static, or it could be a dynamic concep-
tualization, with motion indicated by the use of multiple drawings, arrows, etc. This helped us
identify appropriate conceptualizations of algorithms and data structures to be used in computer
animations.

Results and Discussion

Eleven professors responded to the questionnaire. In terms of current practices, the most common
teaching method (36%) was a combination of lectures, textbook and use of drawings and diagrams.
82% of the professors used a textbook to supplement lectures, 81% also used drawings and diagrams
as a supplement, while only 26% used overheads and only 27% used other supplementary materials.
From this, along with the results from part two of the survey, we can conclude that most of the

professors attempt to show the dynamic nature of the algorithms through the use of a series of
drawings. Only one professor indicated that he had used any form of computer animation or
graphics package in the classroom or laboratory to supplement his lectures. This would indicate
that in the teaching of algorithms it is necessary to somehow show the dynamic nature of the
operations of these algorithms, but very few, if any, professors are currently using any form of
computer graphics package as an aid.

With regard to general conceptualizations, all of the respondents used separate phases or steps
in their drawings to indicate dynamic representations for at least one algorithm. 86% of the total
conceptualizations described did contain dynamic components. Four professors responded with
conceptualizations of the Shellsort, which we chose as the algorithm to represent in our study.
Other sorting methods, including bubble sort, selection sort, and insertion sort, are frequently
taught in introductory programming courses. Since the Shellsort is usually taught at the data
structures level, it was less likely that the Shellsort would be familiar to the students. The concepts
involved in the Shellsort may be learned quickly, requiring knowledge of either a bubble sort or an
insertion sort. In the Shellsort, subarrays are sorted in each pass, until the entire array is sorted in
the final pass. The subarrays are formed using elements a specified distance apart. A sequence of
distances are chosen, with the last distance having a value of 1 so that the entire array is sorted.
For example, the sequence of distance values could be 40, 13, 4, 1. Each subarray is sorted using
either bubble sort or insertion sort.

Of the four Shellsort conceptualizations that the professors described, two used bars of various
sizes lined up on a horizontal axis. The height of the bars represented the values to be sorted. Ex-
change of the bars, or data values, during the sort was indicated by a change in color or circling the
bars to be exchanged. A third representation lined up the numbers of the data values on a vertical
axis and indicated an exchange using arrows. The fourth representation was from Knuth[Knu73].
We chose the first representation as the one used in our animation.

2.2 Observational Study

The case study group consisted of students from three separate undergraduate data structures
classes. They are an appropriate audience for this study, since students usually get their initial ex-
posure to many algorithms in a data structures course. Eleven students volunteered to participate.
Approximately 64% of the students were in a Computer Science degree program and 36% were in
a Computer Information Systems degree program.

The algorithm animation system we used in our study is the XTango system[SH90]. XTango
supports color, two-dimensional views of programs in a workstation-based windowing environment.
In our experiments, end-users were viewing animation previously created and designed to help
explain different algorithms. XTango is a descendant of the original Tango system[Sta90], and it is
a simpler and more portable system. XTango functions directly on top of the X11 Window System,
and it generates color or black-and-white animations without any intermediate software. XTango
is available via anonymous ftp, and over 200 installations worldwide have acquired the system.
It has been used for teaching computer science courses, illustrating the workings of an operating
system, illustrating robot planning, doing VLSI chip drawings, etc. As more institutions acquire
it, we anticipate further new and interesting usages.

Figure 1 shows a frame from the XTango animation of the Shellsort. In it, the array of values to
be sorted is illustrated by a row of rectangles in the top half of the window. Each rectangle’s height
has been scaled to correspond to the value it represents. The animation illustrates the Shellsort by
lowering all the elements in an equidistant subarray, keeping their horizontal orientation constant,
and then exchanging and sorting those elements below. When the subarray has been sorted, it

is raised back into the main array, and the next set of elements descends. This continues, using
subarrays of decreasing spacing size, until the entire array is sorted. The frame we show has caught
a lowered subarray of elements being sorted.

In our study, five of the students received a handout describing the Shellsort plus a blackboard
lecture depicting the effects of the sort for a specific data set. The other six students received
the same handout, but instead viewed an animation of the Shellsort using XTango. Following
the presentations, all of the students were asked to answer three questions. The first question
asked that the students perform a Shellsort with a different data set and a particular subarray
distance sequence by rearranging the numerical values, and showing the results of each step on a
sheet of paper. In the second question, the students were presented with a set of rectangular bars
representing data values, and asked to show the results of the sort for those values pictorially. The
third question asked for the students to describe why the distances chosen for the Shellsort should
not be relatively prime. After answering these questions, the students were given a questionnaire to
gather subjective information about animations. They were also asked for their comments regarding
the use of animations in a classroom setting.

Results

Performance results varied depending on individual background. Most students reported their
expected grade to be at least a B. These good students were observed to perform well regardless
of whether they used the animation. Further, the technically-oriented students also performed well
irrespective of their use of animation.

A primary focus of this observational study was to determine typical attitudes toward anima-
tion systems. The blackboard students were presented with a demonstration of XTango following
completion of the experiment, so that they also could comment on the system. The results showed
that the students enthusiastically support the animations when asked to rank perceived quality.
When asked to rank the quality of XTango on a scale from poor to excellent, no student ranked
the system toward the poor end of the scale, with most assigning a rank of very good or excellent.
Similarly, most ranked the system as being understandable and efficient. One student who ranked
the quality of the system as fair and who found the system confusing made the following statement:
“From the beginning of the graphic program execution I was unsure of what was what; more label-
ing of visual elements would help. If text was included with the animation, it would be appropriate
for the classroom. I didn’t completely understand the animation — I had more questions about it
than it could answer.” Other students indicated that the use of color was confusing at first, and
others indicated problems with the system response time.

Students were also asked to comment on the appropriate role of an animation system in the
classroom. All indicated that they would like to see animations become part of a data structures
course. One stated, “I thought it was helpful. I couldn’t remember rules, but I could visualize what
was going on.” When asked whether they should be a part of a separate laboratory or integrated
into the traditional classroom setting, most were in favor of integrating them into the classroom.
One student differed, stating, “I think they would be helpful in the classroom. Personally, I could
use a separate animation system with textual explanations added, but I would like to have someone
around to ask a question.” Most students preferred the typical group interaction that takes place
in the classroom, with one student saying, “We still need a teacher and group to benefit from
discussion from others.”

KIANGO

EE»V&

=)l ‘I III|‘I||“I“I||
dm NN

g E

Figure 1: Sample animation frame from the XTango Shellsort animation. A subarray of elements
being sorted has been lowered. When this set is in order, it will rise back in place.

3 Conclusion

3.1 Lessons Learned
Discussion

The faculty survey results suggest that the current practice for teaching algorithms is a combi-
nation of lectures, textbooks, and drawings. This information, although anticipated, helps define
the instructional environment expected by a student learning computer algorithms. Any instruc-
tional strategies incorporating animations should follow this model in order to match students’
expectations.

The use of drawings in the classroom seems necessary to impart the dynamic qualities of an
algorithm in execution. These dynamics are the basis for the existence and use of algorithm ani-
mation systems such as XTango. For any given algorithm there may be multiple representations of
the objects and actions during execution. The survey results indicated no definitive representation
of any of the algorithms. Most of the replies were influenced by depictions provided in textbooks
or through prior experience with animation systems. Although none of the responses contradicted
the views frequently used in XTango, more research is needed to explore the qualities that comprise
an effective view for an algorithm.

The results of the observational study identify a high perceived value for XTango, with many
students stating that they would like to see similar animations integrated into data structures
courses. Such reports are crucial to the use of animation systems, and enthusiasm could translate
into long-term performance gains during a data structures or algorithms course.

Little effort has been directed toward evolving animation systems into effective teaching tools.
The responses from students using such systems are the ultimate test of their value. Although the
responses about XTango were highly favorable, many suggestions were made that could enhance
the effectiveness of XTango as an educational tool. Some suggestions for improvement include
better response time, consistent use of labels to accompany states and actions during an animation,
and textual explanations of the algorithms. Such reports are consistent with usability principles
and with current classroom practices. Adding value labels to the Shellsort animation would be
beneficial, according to student comments. Value labels are appropriate for small data sets intended
to demonstrate the mechanics of an algorithm. Value labels are impractical, however, with large
data sets, particularly when the animation compares several algorithms presented simultaneously
on the screen.

The observational study provided valuable insights into formal studies intended to gauge the
effects of animation on performance. Important variables to control include academic and technical
background, since they will obscure any other variables which may affect performance. Data about
spatial abilities should be collected and analyzed. It is possible that poor visualizers would benefit
most from the explicit visual representations made possible by animation systems. Data regarding
prior experiences with visual technologies, including game-playing and educational systems, should
be collected from the participants.

Many algorithms may have inherent visual qualities for which animations can enhance learning
and performance. For example, a common view of the heap sort uses a visual representation of
the heap, with elements gradually migrating to the sorted array. One student who took part in
the observational study who was only moderately enthusiastic about the Shellsort animation was
highly impressed with the heap sort animation used in XTango. It is difficult to determine whether
this difference may be attributed to the relative quality of the views for Shellsort and heap sort, or
if the heap sort algorithm is more suited to a visual representation. A formal study should examine
several algorithms in order to gain more insight into this issue. Additionally, the experimental task

must be constructed carefully in order to identify any performance benefits of animations.

Summary

The following is a summary of what we have learned in this initial attempt to evaluate animation
systems.

¢ Many instructors report the use of lectures, textbooks, and drawings to aid the teaching of
algorithmic concepts.

e The views reported by instructors report no definitive views and do not contradict those
currently used in XTango.

e Students were receptive and enthusiastic towards animations, and would like to see them
included in the classroom.

e Performance results are difficult to relate to the effects of an animation, since many factors
may influence learning. The factors that must be considered in an empirical study include
include:

1. Academic and technical background.
2. Spatial abilities.
3. Prior experience with visual technologies.

e Some algorithms may have more of an inherent visual quality than others. This implies
differences in performance benefits by students for animations of different algorithms.

o Generating an experimental task that evokes differences in visual representations may prove
difficult or artificial.

o Several features of XTango animations may be improved or manipulated to determine their
effects.

The addition of labels to images.

The addition of textual explanations of the algorithms.

Improvements in system response time.

The adjustment of execution time for the algorithm.

Ot A~ W N =

The relationship between large and small data sets and the implications for labeling.

e Students prefer that animation tools such as XTango augment the current instructional en-
vironment and do not want them to replace the classroom setting. Students seem to prefer
the benefits of group interaction for answering questions.

3.2 Future Work

The observational study cited here is the initial step in our project to examine the use of anima-
tion to promote the comprehension of algorithms and, more encompassing, the use of computer
animation to enhance learning in a classroom environment. The major objectives of the study
are to determine if learning is increased, if learning is increased over time, if there is a difference
in learning between different algorithms, what types of views better promote comprehension, and

ultimately, whether animation should occupy an important place in a computer science classroom
environment.

The next step in this line of research is developing a longitudinal study in a classroom environ-
ment, similar to the study of animations and physics in [RBA90]. We will make appropriate changes
to the animations as suggested by this study, to make the graphical images easier to interpret and
provide for a more responsive system. These changes include the addition of more text and legends
to the animations. An implementation in a classroom environment will provide us with a sizable
user community and the ability to conduct a longitudinal study.

We will increase the generalizability of the software as a learning tool for algorithms and,
to control for learning differences between different algorithms, use it to teach several different
algorithms. A second change we may explore is the use of a videotape of the animations for use in
a classroom environment. The videotape will become part of the instruction received in classes, and
it would allow us to reach a larger audience. We still plan to have students view animations on-line
as well, because of the interactive nature of some of the animations. In addition to being tested
on comprehension of the algorithms, the students will also be tested at a later dates to determine
whether animations lead to changes in retention over time.

This observational study has also suggested future improvements to the animation system itself.
We plan to explore the inclusion of sound, voice, textual information, and on-line help to make the
system more of a multimedia tool. Such improvements could make the animation system a valuable
instructional unit, which a student could independently progress through at an appropriate pace.

Acknowledgements

Reid Turner implemented the XTango Shellsort animation. We thank him for his contribution.

References

[Bro88] Marc H. Brown. Exploring algorithms using Balsa-1I. Computer, 21(5):14-36, May 1988.

[BS85] Marc H. Brown and Robert Sedgewick. Techniques for algorithm animation. [EEE
Software, 2(1):28-39, January 1985.

[Dui86] Robert A. Duisberg. Animated graphical interfaces using temporal constraints. In Pro-
ceedings of the ACM SIGCHI "86 Conference on Human Factors in Computing Systems,
pages 131-136, Boston, MA, April 1986.

[HHRR9] Esa Helttula, Aulikki Hyrskykari, and Kari-Jouko R&ihd. Graphical specification of al-
gorithm animations with Aladdin. In Proceedings of the 22nd Hawaii International Con-
ference on System Sciences, pages 892-901, Kailua-Kona, HI, January 1989.

[Knu73] Donald E. Knuth. Sorting and Searching. Addison-Wesley, Reading, MA, 1973.

[LD85] Ralph L. London and Robert A. Duisberg. Animating programs using Smalltalk. Com-
puter, 18(8):61-71, August 1985.

[Mye90] Brad A. Myers. Taxonomies of visual programming and program visualization. Journal
of Visual Languages and Computing, 1(1):97-123, March 1990.

10

[RBA90] Lloyd P. Rieber, Mary J. Boyce, and Chahriar Assad. The effects of computer animation

[SHO0]

[SPY1]

[Sta90]

[WU90]

on adult learning and retrieval tasks. Journal of Computer-Based Instruction, 17(2):46—
52, Spring 1990.

John Stasko and J. Douglas Hayes. The XTANGO Algorithm Animation System, User
Documentation. GVU Center, College of Computing, Georgia Tech, Atlanta, GA, De-
cember 1990.

John T. Stasko and Charles Patterson. Understanding and characterizing program vi-
sualization systems. Technical Report GIT-GVU-91/17, Graphics, Visualization, and
Usability Center, Georgia Institute of Technology, Atlanta, GA, September 1991.

John T. Stasko. TANGO: A framework and system for algorithm animation. Computer,
23(9):27-39, September 1990.

Roger E. Whitney and N. Scott Urquhart. Microcomputers in the mathematical sciences:
Effects of courses, students, and instructors. Academic Computing, 4(6):14-18,49-53,
March 1990.

11

