
Polynomial Interpretations and the

Complexity of Algorithms

E.A.Cichon and Pierre Lescanne

Abstract

The ability to use a polynomial iterpretation to prove termination

of a rewrite system naturally prompts the question as to what re-

striction on complexity this imposes. The main result of this paper is

that a polynomial interpretation termination proof of a rewrite system

R which computes a number theoretic function implies a polynomial

bound on that function’s rate of growth.

1 Introduction

The ability to use a polynomial iterpretation to prove termination of a rewrite
system, a method due to Lankford [4, 5], naturally prompts the question as to
what restriction on complexity this imposes. Various claims and conjectures
have been made, significant amongst which is:

Of course, polynomial interpretations do not suffice in
general, since they give a polynomial upper bound on the
complexity of the computations by R, interpreted as a
program computing over integers, whereas arbitrary re-
cursive functions can be defined by term rewriting sys-
tems.

HUET AND OPPEN, 1980

At first sight, it would appear that this claim, which appears in [3], has,
once and for all, been refuted by Lautemann [6] and Geupel [2], who show
that polynomial interpretation admits doubly exponential derivation lengths.
Lautemann and Geupel give the following system of rewrites for the number
theoretic squaring function, together with a polynomial interpretation which

1

proves termination:

Rewrite Rules Polynomial Interpretation

x + 0 → x

x + s(y) → s(x + y)
d(0) → 0

d(s(x)) → s(s(d(x)))
q(0) → 0

q(s(x)) → s(q(x) + d(x))

[0] = 2
[s](X) = X + 1

[+](X, Y) = X + 2Y
[d](X) = 3X
[q](X) = X3

They then consider terms of the form q(n)(s(s(0))). These terms satisfy:

q(n)(s(s(0))) →∗
R s22n

(0)

Since no rule increases the number of occurences of s by more than one,
the length of this derivation must be doubly exponential. Lautemann and
Geupel then go on to prove:

Theorem(Geupel [2],Lautemann [6])
If R has a polynomial interpretation then there is a constant c such that, for
any terms t, s,

if t →n
R s then n ≤ 22c.L(t)

where L(t) is the number of symbols in t and t →n
R s means that t rewrites

to s in n steps under the rules in R.

There is, however, more than one notion of complexity which can be
employed. By computational complexity we shall mean the assignment of a
measure to rewrite systems in terms of lengths of derivations. Algorithmic
complexity will refer to the classification of a rewrite system according to
the form of its rules. To illustrate this with an example, consider a function
defined by primitive recursive schemes. This means that the function is
defined by a set of equations, all of which are formed according to the criteria
set out in the definition of the Primitive Recursive functions. As pointed out
by Plaisted in [7], such equations are easily oriented into a set of rewrite rules
which compute the function, and so these rules form a rewrite system with
primitive recursive algorithmic complexity.

Thus we are led to considering the problem of classifying the algorithmic
complexity of rewrite systems whose termination is provable by polynomial
interpretation. We shall restrict ourselves to rewrite systems which compute
number-theoretic functions. The main result of this paper is then that a
polynomial interpretation termination proof of a rewrite system R which
computes a number theoretic function implies a polynomial bound on that
function’s rate of growth.

As a corollary, one can obtain the correctness of Huet and Oppen’s con-
jecture.

2

2 Preliminaries

The term rewriting notations used in this paper will be largely based on
those advocated by N.Dershowitz and J-P.Jouannaud in [1]. This justifies
our omission of the customary paragraphs dealing with these issues.

2.1 The {0,s}-Constructor Discipline

The main emphasis in this paper is on the use of term rewriting systems for
defining number theoretic functions, that is, functions:Nk 7→ N. We therefore
restrict our attention to term rewriting systems which are assumed to have
the following properties:

1. R is a finite set of rewrite rules over the set T (F ,X) of terms.

2. The set F of function symbols is finite, contains only one constant
(0-ary function symbol), 0, and contains the unary function symbol s.

3. R is terminating and confluent, and the set

{0, s(0), . . . , s(s(. . . s(s
︸ ︷︷ ︸

n times

(0)) . . .)), . . .}

is precisely the set of normal forms for the ground terms in T . This
means that for every function symbol f in F , which is not 0 or s, there
is an f -eliminating rule in R.

Henceforth we write s(n)(0), and frequently sn0, for s(s(. . . s(s
︸ ︷︷ ︸

n times

(0)) . . .)).

The term sn0 represents the numeral n. A function symbol f in F rep-
resents the number theoretic function {f} if

f(sm10, . . . , smk0) →!
R sm0

if and only if
{f}(m1, . . . , mk) = m.

It is in this sense, therefore, that we say R computes {f}.

2.2 Polynomial Interpretation Termination Proofs

A polynomial interpretation termination proof for a rewrite system R over a
set T (F ,X) of terms is achieved by assigning to each function symbol f in
F a polynomial with integer coefficients. We denote this polynomial by [f].
If f is n-ary then [f] must be a polynomial in n variables. The polynomial
[f] must satisfy the monotonicity condition:

x < y =⇒ [f](· · ·x · · ·) < [f](· · · y · · ·)

3

and must ensure that terms are mapped into nonnegative integers only. Each
rule must be reducing with respect to the its interpretation, that is

l → r ∈ R =⇒ [r] < [l]

for all values of variables greater than the minimum of the interpretations of
the ground terms.

Remark 1 Whenever R has a polynomial interpretation termination proof
the following useful inequality arises:

if t →∗
R s then [s] < [t].

3 Exponential Functions and Polynomial In-

terpretations

In this section we shall show that functions of exponential growth cannot
be computed by rewrite systems with polynomial interpretation termination
proofs. The proof is achieved by first establishing a relationship between the
rate of growth of a function and the length of its computation and then using
Lautemann and Geupel theorem.

Definition 1 We define the height, | t |, of a term t in T (F, X) as follows:

| t |=

{

0 when t is a constant or a variable,

maxi∈1..n{| ti |} + 1 when t = fk(~t).

where ~t = t1, . . . , tn.

Definition 2 Suppose that R is a finite set of rewrite rules {l(~x) → r(~x)}.
Let

MR = max
l(~x)→r(~x)∈R

{|r(~x) |}

Theorem 1

If t →1
R s then |s | · | t | ≤ MR.

and hence

If t →n
R s then n ≥

|s | · | t |

MR

Proof: The proof is given by lemmas 1, 2, 3 below. 2

4

Lemma 1 For any substitution ~d (= d1, . . . , dn) for ~x (= x1, . . . , xn),

| t(~d) | ≤ | t(~x) | + max
i∈1..n

{|di |}.

Proof: The proof is by induction on the term tree for t(~x). When t is a
constant or a variable, the result is trivial.
If t(~x) = f(t1(~x), . . . , tm(~x)) then

| t(~d) | = max
j∈1..m

{| tj(~d) |} + 1

≤ max
j∈1..m

{| tj(~x) | + max
i∈1..n

{|di |}} + 1

(by induction hypothesis)

≤ max
j∈1..m

{| tj(~x) |} + 1 + max
i∈1..n

{|di |}

= | t(~x) | + max
i∈1..n

{|di |}.

2

Lemma 2 For any substitution ~d for ~x,

|ri(~d) | ≤ | li(~d) | +MR

Proof: By lemma 1,

|ri(~d) | ≤ |ri(~x) | + max
i∈1..n

{|di |}

≤ MR + max
i∈1..n

{|di |}

≤ MR+ | li(~d) | .

2

The next lemma generalises lemma 2 to the case where a one step rewrite
occurs by applying a rule in R to a proper subterm of a term t. We shall use
the notation t[u] to denote a term t with u as a proper subterm.

Lemma 3 For any substitution ~d for ~x,

| t[ri(~d)] | · | t[li(~d)] | ≤ MR.

Proof: This is now a straightforward induction over the term tree for t. 2

We can apply the results above to obtain a connection between algorith-
mic and computational complexity of a function {f} computed by a rewrite
system R. The computation of {f}(m1, . . . , mk) is achieved by normalising
f(sm1(0), . . . , smk(0)) under the rules in R.

5

Suppose that {f}(m1, . . . , mk) = m so that

f(sm1(0), . . . , smk(0)) →! sm(0).

By theorem 1, if n is the number of steps to normalisation, we obtain

n ≥
|sm(0) | · |f(sm1(0), . . . , smk(0)) |

MR

Since
|sm(0) |= m = {f}(m1, . . . , mk)

and
|f(sm1(0), . . . , smk(0)) |= max

i∈1..k
{mi} + 1

we therefore have

n ≥
{f}(m1, . . . , mk) · maxi∈1..k{mi} + 1

MR

In particular, if {f} is an exponential function, then the number of steps
to normalisation is at least exponential in the height of the starting term.

We now obtain:

Theorem 2 If R computes the number theoretic function {f} and {f} has
exponential growth then R has no polynomial interpretation termination proof.
Proof: Without serious loss of generality and with considerably greater clar-
ity we give the proof in the case where

{f}(x) = 2x.

For any j, consider the term f (j)(0). Then

f (j)(0) →n
R sm(0).

We write 2k to denote 22·
··
2

}

k times. We have

m = 2j−1

and, by theorem 1,

n ≥
2j−1 − j + 1

MR
.

Now, if R had a polynomial interpretation termination proof then by Laute-
mann and Geupel theorem we would have

n ≤ 22cL(f(j)(0))

= 22cj

so that
2j−1 − j + 1

MR

≤ 22cj

, for all j

which is clearly impossible. 2

6

Theorem 2 shows that functions with at least exponential growth cannot
be computed by rewrite systems with polynomial interpretation termination
proof.

In the next section we shall sharpen this and show that a polynomial
interpretation termination proof of a rewrite system R which computes a
number theoretic function implies a polynomial bound on that function’s
rate of growth.

4 Polynomial Interpretation Termination Proof

Implies A Polynomial Bound On {f}

This section is devoted to the proof of the following theorem:

Theorem 3 Suppose that R is a rewrite system which computes the function
{f} and that R has a polynomial interpretation termination proof. Then,
according to the interpretation of s, we have the following:

1. If [s](X) = X + q, where q is a constant ≥ 1, then {f} is bounded by
a polynomial function P i.e. {f}(~x) ≤ P (~x), for all ~x.

2. If [s](X) = aXp + Q(X), where doQ < p and either a ≥ 1 and p > 1
or a > 1 and p ≥ 1, then {f} is bounded by a linear polynomial.

4.1 When the constructor s has a linear interpretation

In this section we consider the case when the constructor s has a linear
interpretation, namely

[s](X) = aX + q where a(≥ 1) and q(≥ 1) are constants.

Without loss of generality, we suppose that f is a monadic function. Assume
that [f](X) is a polynomial of degree d with leading coefficient c and [0] = b.

There are two cases to consider:

Case 1 a = 1.

We have
[sn(0)] = b + nq

Therefore
[f(sn(0))] = [f](b + nq)

Since [f] is a polynomial, so clearly is λn.[f](b + nq). ¿From the inequality

[f(sn(0))] > [s{f}(n)(0)]

7

which is a consequence of remark 1 and f(sn(0)) →∗
R s{f}(n)(0), it follows

that {f} is polynomially bounded.

Case 2 a > 1.

We now have
[sn(0)] = ban + R(a) with doR < n

Therefore
[f(sn(0))] = [f](ban + R(a)) ∼ cbdand

On the other hand
[s{f}(n)(0)] ∼ ba{f}(n)

¿From the inequality
[f(sn(0))] > [s{f}(n)(0)]

one gets the following inequality on the leading terms:

cbdand ≥ ba{f}(n)

which implies

n ≥
1

d
{f}(n) + constant

This means that in this case the function {f} is bounded by a linear poly-
nomial.

An example of such a situation is the following rewrite system which has
exponential derivation lengths:

f(0, y) → y

f(s(x), y) → f(x, f(x, y))

Its termination can be proved by the polynomial interpretation

[0] = 2

[s](X) = 2X + 1

[f](X, Y) = X + Y

and indeed {f}(m, n) = n.

4.2 When the constructor s has a non linear interpre-

tation

In this section we consider the case when the constructor s has a non linear
interpretation, namely

[s](X) = aXp + Q(X) with p ≥ 2 and doQ < p

8

Again, we suppose that f is a monadic function and that [f](X) is a poly-
nomial of degree d with leading coefficient c and [0] = b. One has

[sn(0)] = anbpn

+ R(b) with doR < pn

Therefore
[f(sn(0))] = [f](anbpn

+ R(b)) ∼ cadnbdpn

On the other hand
[s{f}(n)(0)] ∼ a{f}(n)bp{f}(n)

Once more, from the inequality

[f(sn(0))] > [s{f}(n)(0)]

we get the following inequality on the leading terms:

cadnbdpn

≥ a{f}(n)bp{f}(n)

which implies
n + logpd ≥ {f}(n)

if one considers only the exponents of b. This means that in this case the
function {f} is less than linear. A natural example of such a situation is the
system:

half (s(s(x))) → s(half (x))

half (s(0)) → 0

half (0) → 0

Its termination can be proved by the polynomial interpretation

[s](X) = X2

[half](X) = Xd

and indeed {half }(n) = ⌊n
2
⌋ is less than n.

5 Practical issues

This result has interesting practical consequences. First it sets a strict
limit on the possible interpretations of the constructors, namely essentially
[s](X) = X + c and [0] = 2 and no specific limit for the defined functions.
On the other hand, we can guess from the function {f} whether the rewrite
system that defines f has a polynomial interpretation proof of termination.
Such a proof exists only if {f} has polynomial growth. For instance, a system
that defines the factorial or the exponential cannot be proved to terminate
using polynomial interpretations.

9

References

[1] N. Dershowitz and J-P. Jouannaud. Notations for rewriting, 1991.
LATEXscript.

[2] O. Geupel. Terminationbeweise bei termersetzungssytem, 1988. Diplo-
marbeit.

[3] G. Huet and D.C. Oppen. Equations and rewrite rules: A survey. In
R. Book, editor, Formal Language Theory: Perspectives and Open Prob-
lems, pages 349–405. Academic Press, 1980.

[4] D. Lankford. Canonical algebraic simplification in computational logic.
Report ATP–25, University of Texas, 1975.

[5] D. Lankford. On proving term rewriting systems are noetherian. Report
MTP-3, Louisiana Tech. University, 1979.

[6] C. Lautemann. A note on polynomial interpretation. In Bulletin of the
European Association for Theoretical Computer Science, volume 4, pages
129–131, October 1988.

[7] D.A. Plaisted. A recursively defined ordering for proving termination
of term rewriting systems. Report R-78-943, Department of Computer
Science, University of Illinois, Urbana, Illinois., September 1978.

10

