Skip to main content

Little theories

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 607))

Abstract

In the “little theories” version of the axiomatic method, different portions of mathematics are developed in various different formal axiomatic theories. Axiomatic theories may be related by inclusion or by theory interpretation. We argue that the little theories approach is a desirable way to formalize mathematics, and we describe how IMPS, an Interactive Mathematical Proof System, supports it.

Supported by the MITRE-Sponsored Research Program.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. S. Bird. An introduction to the theory of lists. Technical Report PRG-56, Oxford University Computing Laboratory, 1986.

    Google Scholar 

  2. R. Burstall and J. Goguen. Putting theories together to make specifications. In Fifth International Joint Conference on Artificial Intelligence, 1977.

    Google Scholar 

  3. R. Burstall and J. Goguen. The semantics of Clear, a specification language. In Advanced Course on Abstract Software Specifications. Springer Verlag, 1980.

    Google Scholar 

  4. R. Burstall and J. Goguen. An informal introduction to specifications using Clear. In R. Boyer and J Moore, editors, The Correctness Problem in Computer Science, pages 185–213. Academic Press, 1981.

    Google Scholar 

  5. J. Dieudonné. Foundations of Modern Analysis. Academic Press, 1960.

    Google Scholar 

  6. H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.

    Google Scholar 

  7. W. M. Farmer. A partial functions version of Church's simple theory of types. Journal of Symbolic Logic, 55:1269–91, 1990.

    Google Scholar 

  8. W. M. Farmer. A simple type theory with partial functions and subtypes. Technical report, The MITRE Corporation, 1991. Submitted to Annals of Pure and Applied Logic.

    Google Scholar 

  9. W. M. Farmer, J. D. Guttman, and F. J. Thayer. Imps: an Interactive Mathematical Proof System (system description). In these proceedings.

    Google Scholar 

  10. W. M. Farmer, J. D. Guttman, and F. J. Thayer. Imps: an Interactive Mathematical Proof System. Technical Report M90-19, The mitre Corporation, 1991. Submitted to Journal of Automated Reasoning.

    Google Scholar 

  11. W. M. Farmer and F. J. Thayer. Two computer-supported proofs in metric space topology. Notices of the American Mathematical Society, 38:1133–1138, 1991.

    Google Scholar 

  12. S. J. Garland and J. V. Guttag. A guide to lp, the Larch prover. Technical report, MIT, 1991. Available by ftp from larch.lcs.mit.edu.

    Google Scholar 

  13. J. A. Goguen. Principles of parameterized programming. Technical report, sri International, 1987.

    Google Scholar 

  14. J. A. Goguen and T. Winkler. Introducing obj3. Technical report, sri International, August 1988.

    Google Scholar 

  15. E. Gunter. The implementation and use of abstract theories in HOL. In Third HOL Users Meeting. Computer Science Department, Aarhus University, 1990.

    Google Scholar 

  16. J. V. Guttag, J. J. Horning, and J. M. Wing. Larch in five easy pieces. Technical Report 5, Digital Systems Research Center, 1985.

    Google Scholar 

  17. J. D. Guttman. A proposed interface logic for verification environments. Technical Report M91-19, The mitre Corporation, 1991.

    Google Scholar 

  18. R. Harper, D. Sannella, and A. Tarlecki. Structure and representation in LF. In Fourth Annual Symposium on Logic in Computer Science, pages 226–37. IEEE Computer Society, 1989.

    Google Scholar 

  19. D. Hilbert. The Foundations of Geometry. Open Court, Chicago, 1902.

    Google Scholar 

  20. N. Jacobson. Basic Algebra I. W. H. Freeman, second edition, 1985.

    Google Scholar 

  21. J. Krivine. Introduction to Axiomatic Set Theory. Reidel, Dordrecht, 1971.

    Google Scholar 

  22. L. G. Monk. Inference rules using local contexts. Journal of Automated Reasoning, 4:445–462, 1988.

    Google Scholar 

  23. J. Mycielski. A lattice of interpretability types of theories. Journal of Symbolic Logic, 42, 1977.

    Google Scholar 

  24. D. Sannella and R. Burstall. Structured theories in LCF. In CAAP'83: Trees in Algebra and Programming, 8th Colloquium, volume 159 of Lecture Notes in Computer Science, pages 377–91. Springer-Verlag, 1983.

    Google Scholar 

  25. J. R. Shoenfield. Mathematical Logic. Addison-Wesley, 1967.

    Google Scholar 

  26. L. W. Szczerba. Interpretability of elementary theories. In R. E. Butts and J. Hintikka, editors, Logic, Foundations of Mathematics, and Computability Theory, pages 129–145. Reidel, 1977.

    Google Scholar 

  27. A. Tarski, A. Mostowski, and R. M. Robinson. Undecidable theories. North-Holland, 1953.

    Google Scholar 

  28. J. van Bentham and D. Pearce. A mathematical characterization of interpretation between theories. Logica Studia, 43:295–303, 1984.

    Google Scholar 

  29. A. Visser. The formalization of interpretability. Studia Logica, 50:81–105, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to William M. Farmer , Joshua D. Guttman or F. Javier Thayer .

Editor information

Deepak Kapur

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Farmer, W.M., Guttman, J.D., Javier Thayer, F. (1992). Little theories. In: Kapur, D. (eds) Automated Deduction—CADE-11. CADE 1992. Lecture Notes in Computer Science, vol 607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55602-8_192

Download citation

  • DOI: https://doi.org/10.1007/3-540-55602-8_192

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55602-2

  • Online ISBN: 978-3-540-47252-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics