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Abstract

We investigate 3D visibility problems for scenes that consist of n non-intersecting
spheres. The viewing point v moves on a flightpath that is part of a “circle at infinity”
given by a plane P and a range of angles {a(t)|t € [0: 1]} C [0 : 27]. At “time” ¢, the
lines of sight are parallel to the ray r(t) in the plane P, which starts in the origin of P
and represents the angle a(t) (orthographic views of the scene). We describe algorithms
that compute the visibility graph at the start of the flight, all time parameters ¢ at which
the topology of the scene changes, and the corresponding topology changes. We present
an algorithm with running time O((n + k + p)logn), where n is the number of spheres
in the scene; p is the number of transparent topology changes (the number of different
scene topologies visible along the flightpath, assuming that all spheres are transparent);
and k denotes the number of vertices (conflicts) which are in the (transparent) visibility
graph at the start and do not disappear during the flight.

1 Introduction

In this paper we investigate a dynamic 3D visibility problem, where the viewing position
moves on a circular arc around the origin. We consider a scene, that consists of n non-
intersecting spheres s;,-- -, s,. The flightpath f is a part of a “circle at infinity” given by a
plane P and a range of angles. The range of angles {a(t)|t € [0: 1]} C [0 : 27] is parametrized
by a “time” parameter ¢ € [0 : 1]. Here, a(t) is a monotonically increasing function. At
time ¢, the lines of sight are parallel to the ray r(t) in the plane P, which starts in the origin
of P and represents the angle a(t) (see Figure 1).

We describe an algorithm which computes the visibility graph at the start of the flight-
path and time parameters ¢, at which the topology of the scene changes, together with the
corresponding topology changes. The algorithm has a running time of O((n + k + p) logn),
where p is the number of transparent topology changes (the number of different scene topolo-
gies visible along the flightpath, assuming that all spheres are transparent); and k denotes
the number of intersections (conflicts) which are in the transparent visibility graph at the

*This author was supported by the ESPRIT II Basic Research Actions Program, under contract No. 3075
(project ALCOM).



Figure 1: Flightpath f, the plane P and the range of angles [a(0) : a(1)].

start of the flightpath and do not disappear during the flight. Note that 0 < k£ < n? and
0 < p < n®. In the transparent visibility graph we store not only the visible, but also the
hidden edges and vertices.

Visibility problems of this kind arise in the field of molecular graphics, when, for example,
molecules are rotated. In this application the atoms of the molecules are represented by
spheres, the so called van der Waals hulls of the atoms.

A short overview about similar problems concerning polygonal scenes can be found
in [1]. In that paper, Bern et al. present algorithms having running times O((n? + p)logn),
O(n?logn + p) and O(n? + plogn), where n is the total number of edges of the polygonal
objects in the scene. For terrains, they obtain a running time of O((n+1) A3(n)logn), where
l is the number of opaque topology changes. For terrains and vertical flightpaths, they get a
running time of O(n A4(n)logn). The latter result was also obtained by Cole and Sharir [2).

Other results and methods can be found in [6] and [4]. In [6], Plantinga and Dyer
use “aspect graphs” to solve visibility problems. Mulmuley [4] gives algorithms for hidden
surface removal for a polygonal scene with respect to a moving viewpoint. His first algorithm
preprocesses the set A of scene polygons in time O(n.(A4)logn + n(logn)?) and builds a
cylindrical partition of R? of size O(n,(4)+n). Here, n,(A) denotes the number of “regular
crossings”, which is smaller than n?. Given any viewpoint v € R3, the scene visible from v
can be generated in O((logn)? + llogn) time, where I is the size of the “fictitious” scene.
Mulmuley’s second algorithm computes all k, “semi-opaque” topological changes between
successive scenes in case the viewpoint is moving on a linear flightpath. The algorithm takes
O(k,logn + n®a(n)logn) time, where n is the number of edges of the polygons in the scene
and a(n) is the inverse Ackermann function.

As far as we know, the present paper is the first one that considers these problems for
spheres.



In Section 2 we show what kind of events change the topology of the scene. We describe
in Section 3, how the spheres (resp. their centers) move in the projection plane during the
flight. In Section 4 we give the algorithm for computing the events that cause changes in
the topology of the scene and analyze its running time. Section 5 contains some concluding
remarks.

2 'Transparent topology changes

We consider a scene in 3-space, that consists of » non-intersecting spheres s;,---, s, with
centers Mj,---, M,,. The flightpath f is a “circle at infinity” given by a plane P and a range
of angles {a(t)[t € [0 : 1]} C [0 : 2x]. The orbit f is parametrized by the time parameter
t € [0:1]. At time¢, the scene is projected on a plane P;, which is orthogonal to the ray r(t).
This ray 7(¢), which represents the angle a(t), is contained in the plane P and starts at the
origin of P. We assume wlog that (1) the origin of the object space is always projected in
the origin of P; and (2) the intersection of P and P is the z-axis of plane P,. We investigate
the topology changes in the planar graph G;, which represents the projection of the scene
in P, at time t. The vertices of G; represent all visible and non-visible intersection points
of the circles in P;. These circles are the images of the spheres under the projection in P;.
The image ¢} of the sphere s; in plane P is called the circle of s; at time ¢. The edges of
the graph G represent the circular arcs in P;. A transparent topology change occurs at
time ¢, if the graph G; changes, that is, for all sufficiently small ¢ > 0, G;— and G4 are
non-isomorphic graphs.

Lemma 1 A transparent topology change occurs at ttme t if and only if

(1) there are two circles c} and ¢k, which touch at time t and do not touch at times t — ¢
and t + € for all sufficiently small € > 0, or

(2) there are three circles c}, c; and ¢}, which intersect in one point at time t, or

(3) there are two circles c; and ct, which are identical at time t.

The proof of Lemma 1 is obvious. We refer to topology changes being of type (1), (2) or (3),
respectively, according to their classification in Lemma 1.

Instead of moving the viewing point, we can also rotate the scene around a rotation axis
and keep the viewing point fixed. We transform the whole scene in O(n) time, such that (1)
the viewing point is at z = +o0, i.e., the projection plane p is parallel to the zy-plane, (2)
the rotation axis is the y-axis, (3) the origin of the object space is projected in the origin of
the projection plane and (4) the zz-plane of the object space is projected in the z-axis of
the projection plane p.

Let A:= a(1) — a(0), i.e., A is the total angle by which the spheres are rotated. Instead
of considering the original problem, we investigate the transformed rotation problem. We
compute the graph Gy at the start of the rotation and all topology changes in the projection
plane p that occur when the spheres are rotated by the angle A around the y-axis.



3 Conflicts between circles

For each i € {1,---,n} we denote the radius of s; by r; and the center of s; at time ¢ by
M;i(t) = (i(t),9:(¢), z(t)). Then, my(t) := (2:(t), %:(t)) is the image of M;(t) under the
projection at time £.

In order to compute all topology changes of type (1), we determine all conflicts between
circles in the projection plane. To be more precise, we say that two spheres s; and s; conflict
at time ¢, if ¢; N ¢} # 0, or ¢} is contained in the interior of ¢} (or vice versa). Two spheres
s; and s; have a conflict, if there is a time parameter ¢ € [0 : 1], such that s; and s; conflict
at time ¢.

We determine all pairs s;, s; of spheres that have a conflict. For each such pair, we
determine all time parameters ¢ at which they conflict and the corresponding parametrized
curves
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The curves cﬁj(t) and c[;(t) describe the movements of the intersection points of ¢} and c
during the rotation.

If A < 2, the set of all time parameters ¢ at which s; and s; have a conflict consists of
at most three subintervals of [0 : 1]. This set of parameters and the corresponding curves
can be computed in constant time for each pair s;, s;. (See below.)

How can we determine all pairs s;, s; of spheres having a conflict? The circles ¢! and ct
have a conflict if and only if |m;(t) — m;(t)| < r; + r;. Thus, we have to consider the orbits
of the centers in the projection plane. Since ;(t) = y; and y;(t) = y; for all £, the orbits
0; = Upct<1mi(t) and O; = Up<e<im;(t) are line segments that are parallel to the z-axis in
the projection plane. In order to determine if the corresponding circles have a conflict, we
have to determine

o lm;(t) — m;(2) 1,

the minimal distance between m;(t) and m;(t) over all times. If this minimum is less than
or equal to 7; + 7;, then ¢} and ¢! have a conflict.
Since y;(t) — y;(t) = ¥; — y; is constant and

i i\t) —my = AL i () — - 2
iz, Imi(?) mg(t)l—\/(yz w;)? + (ggin, la:(t) - 2517,
it suffices to consider

Zin 12:(t) - 2;(t)),
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Figure 2: The orbits of m(t) and m¥(t) in the zz-plane.

the minimal distance of the z-coordinates of m;(t) and m;(t) at any time.

We consider the orbits of m(t) := (2i(t), z(t)) and m¥(t) := (2;(t), zj(t)) of the centers
M;(t) and M;(t) under the parallel projection in the zz-plane. (See Figure 2.)

Let d; = Im(0)l, d; = Im¥(0)|, ¢; = arccos(z;(0)/d;) and ¢; = arccos(z;(0)/d;). We
consider the z-coordinates

z;(t) = z;(a(t)) = d; cos(a(t) + ¢;) and z;(¢) = zj(a(t)) = d; cos(a(t) + ¢;)
as a function of the angle a(t) and define d;;j(a(t)) as the difference of the z-coordinates of
m;(t) and m;(t). We have
dij(a(t)) = =2i(a(t)) - zj(a(t)) = dicos(a(t) + ¢:) — d; cos(a(t) + ¢5)
= d;cos(a(t)) cos(¢;) — d; sin(a(t)) sin(¢;)
—d; cos(a(t)) cos(¢;) + d; sin(a(?)) sin(¢;)
= [d;cos(¢;) — d; cos(8;)] cos(ex(t)) — [d;sin(¢;) — d; sin(¢;)] sin((t))
= y/(dicos(¢:) - dj cos($7))? + (d: sin(¢s) — dj sin(9;))? - sin(e(t) + @), (1)

where
d; cos(¢;) — d; cos(¢;)
d; sin(¢;) — d; sin(¢;)

We discuss |d;;(a(t))| as a function of a(t), where 0 < a(t) < 2x. The function has
its minimum (which is zero) for a(t) = —¢ and a(t) = —¢ + 7, and its maximum for
a(t) = —p+7/2 and aft) = —p + 37/2. The function |d;;(a(t))| increases from a(t) = —¢
to a(t) = —¢ + 7/2, and from a(t) = —p + 7 to a(t) = —¢ + 37/2. It decreases from
a(t) = —p+7/2to a(t) = —p+ 7, and from a(t) = —p + 37/2 to at) = —p + 27 = —¢.

The following lemma is an immediate consequence of this monotonicity property.

tan(p) = ~

Lemma 2 The value of ming<i<1 dij(a(t))| is equal to Id;;((0))1, Idi;(a(1))] or 0.
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It follows from Lemma 2, that we can find all conflicts between circles in the projection
plane in the following way: First, we compute all conflicts in the graphs Go and G;. Then
we search all pairs s;, s; of spheres with

oZip, 1d;(a(t))! = 0 and ly; —y;1 <7+ ).

Lemma 3 Suppose the rotation angle A = a(1) — a(0) satisfies A < 7. Then,
ming<¢<1 Idij(a(t))| = 0, if and only if one of the two following conditions holds:

(1) 2:(0) < 25(0) and z5(1) > =;(1)
(2) =:(0) > z;(0) and z;(1) < z;(1).

Proof: From Equation (1), we know that the relative order of the z-coordinates of m;(t)

and m;(t) changes only at the (at most 2) moments when these z-coordinates become equal.
O

. ———
z;(0) =:(0) =:(1) =;(2)
. — —
2:(0) z;(0)  =z;(1) =i(1)
e —
zj(1) =:(0) =i(1) =;(0)
—s- @ ® -
2(0) 2;(1) =2;(0) =i(1)
—e - % &—
2:(0) 2;(1) =(l) 5(0)
——e ——8—
2i(1) 2:0) 2;(0) =:(1)

Figure 3: Situations where ming<<1 |d;;((t))| = 0.

In Figure 3, we characterize the different situations where ming<s<y Idij(a(t)) | = 0. We
assume that the four numbers are different and consider the case that z;(0) < z;(1). The
case z;(0) > 2;(1) delivers symmetric events.



Lemma 3 tells us that ming<:<1 Id;;(a(t))| = 0 if and only if one of the following condi-
tions holds

(a) 2i(0) = =;(1) and
z;(0) is contained in the interval with endpoints z;(0),z;(1),

(b) 2;(0) < z;(1) and
[(z5(0) < 2;(1) and ([2:(0) : 2;(1)] is contained in, or contains [z;(0) : z;(1)])) or
(23(0) > 23(1) and
(:(0) € [z5(1) : 25(0)] or 2:(1) € [e5(1) : 25(0)] or [2(1) : 25(0)] C [2:(0) : (1))},

(c) =:(0) > :c,-(l) and
[(25(0) > 2;(1) and ([2:(1) : :(0)] is contained in, or contains [z;(1) : z;(0)])) or
(23(0) < zj(1) and
(2:(0) € [5(0) : 25(1)] or 2:(1) € [25(0) : 25(1)] or [z23(0) : 2(1)] € [2+(1) : 2:(O))).

(Note that these three cases are mutually exclusive.) Thus, the problem to compute for a
given s; all s; with ming<i<1 |d;j(a(2))| = 0 is reduced to a few simple interval queries (note
that points are degenerate intervals). These interval queries can be answered efficiently using
data structures that are based on priority search trees.

Theorem 1 ([3]) Let S be a set of n intervals on the real line. There exists a dynamic
data structure T(S) storing S, such that we can insert intervals into S and delete intervals
from S in time O(logn). The data structure has size O(n). Given a query interval we can
enumerate

o all s intervals [a: b] € S containing the query interval in time O(logn + s)

o all s intervals [a: b] € S contained in the query interval in time O(logn + s).

See McCreight [3] for a proof of Theorem 1. The structure T'(S) is called the ic-structure
of S. Note that T'(S) is based on two priority search trees.

4 Determining all topology changes

In this section we give the algorithm that computes all topology changes in the scene, when
the spheres in the object space are rotated by an angle A < 7. The algorithm consists of
three steps.

STEP 1: We compute all conflicts at ¢ = 0 and ¢ = 1. This can be done using a slightly
modified version of the standard plane sweep algorithm. (See Nurmi [5].)

For every pair s; and s; of spheres, which have a conflict in Gy or G;, we test, whether
and when a topology change of type (1) or (3) arises during the rotation. We store all these
topology changes in an event queue Q. sorted in order of increasing time parameter ¢.

STEP 2: We search for all pairs s;, s; such that

0?321 ldw(a(t))l =0 and Iy.; - yj| <+ r;.



Note that we can find pairs of spheres, which we have already detected in STEP 1. We
consider the points m] := (2;(0),y:; — 7;) and m} := (2:(0),%: + :),1 < i < n. We sort
these points in order of increasing y-coordinates. We do a sweep from y = —o0 to y = oo.
Each time, we reach one of these points, the sweep line stops. We now explain what has to
be done when we stop at point p.

Assume p = m; . At this moment, the set S;, of intervals [z;(0) : z;(1)] (movement from
left to right) with y; — r; < y; — 7; < y; + r; is stored in an zc-structure T'(S;,) and the set
S,1 of intervals [z;(1) : ;(0)] (movement from right to left) with y; — 7; < y; — 7 < y; + 75
is stored in an ic-structure T'(S,;).

(a) If 2;(0) = z;(1), we search for all intervals in T(S},) and T(S,;) which contain z;(0).
Then, we insert the interval [2;(0) : 2;(1)] in the tree T'(S,).

(b) If 2;(0) < z;(1), we search for all intervals [;(0) : z;(1)] in T'(S},) which are contained
in, or contain the interval [2;(0) : z;(1)], and for all intervals [z;(1) : z;(0)] in T(S,;) which
contain z;(0) or z;(1), or are contained in [2;(0) : #;(1)]. Then, we insert the interval
[:(0) : 2;(1)] in T'(S1).

(c) If 2;(0) > z;(1), we search for all intervals [z;(0) : ;(1)] in T'(S;,) which contain z;(0) or
z;(1), or are contained in [2;(1) : z;(0)], and for all intervals [z;(1) : z;(0)] in T(S,;) which
are contained in, or contain [z;(1) : z;(0)]. Then, we insert the interval [z;(1) : 2;(0)] in
T(Sn).

For every pair s;,s; we find, we test whether we have already detected it in STEP 1. If
this is not the case, we compute when topology changes of type (1) and (3) take place for
this pair. All these topology changes are stored in the event queue ¢..

Assume p = m]. Then, we delete the interval with endpoints z;(0),z;(1) from the
corresponding ic-structure. More precisely, if z;(0) < z;(1), we delete the interval [z;(0) :
z;(1)] from T(S,). If 2;(1) < 2;(0), then we remove [z;(1) : 2;(0)] from T(S,;).

STEP 3: Finally we determine all topology changes of type (2). For each sphere s;
which has at least one conflict, we do a sweep from ¢ = 0 to ¢ = 1. During this sweep we
only consider the set C; of spheres which have a conflict with s;. This set C; is obtained
from Q..

During the sweep, we maintain a balanced binary search tree B, which contains the
intersection curves cJ;(t), * € {I,7} defined at time ¢ (i.e., c};(¢) is not equal to undef). At
time ¢, the points cJ;(¢) in the current version of the tree B are sorted in order of increasing
angle §7;(t) := arccos((zcoord(c};(t)) — 2i(t))/r:). In the event queue @, of the sweep we store
all time parameters ¢ when (1) a curve c};() changes from undefined to defined or vice versa,
(2) i N ¢t becomes equal to ¢} for some sphere s; € C;, or (3) cf(t) = 4 (t), a,b € {I,7}, for
j#Ek

When we stop during the sweep, in order to insert or delete a curve cj;(t) from the
tree B or to swap two curves’ positions, we have to compute all intersection points of the
new neighbors in B. This can be done in constant time for every pair of new neighbors
c%;(t), ch(t), a,b € {I,7}. The equations of the intersection points, which can be found in the
appendix, imply that there are only a constant number of parameters ¢, where cf;(t) = c%(2).
If c;(t) = c&(t), then we have found a parameter ¢ where three circles cf, c%, ¢} intersect in
one point. If ¢} = c%, then every point ¢} (¢) with & # j, which is in B at time ¢, is a point,
where three circles ¢f, ¢4, ¢] intersect. All these parameters ¢ and the corresponding topology



changes are stored in the event queue Q..
As mentioned above, we carry out this procedure for every sphere s;,i = 1,--+,n, which
has at least one conflict with another sphere.

We now analyze the running time of the algorithm. Let k be the number of conflicts
between the circles ¢?,---, ¢ in the graph Gp, which do not disappear during the rotation.
Let p; be the number of transparent topology changes which we find in STEP 1. The integer
P2 is defined as the number of transparent topology changes we find in STEP 2, which we
have not found in STEP 1. Finally, p3 is the number of transparent topology changes of type
(2)- Then, p := p1 + p2 + ps3 is the total number of topology changes during the rotation.

The conflicts in the graphs Gy and G; can be computed in O((n + k + p;)logn) time
using the plane sweep algorithm of [5]. Note that we determine both visible and occluded
intersections. The sweep in STEP 2 can be done in O(nlogn + k + p; + p;) time. Since
intersections between two curves c%;(z), 2 (t),a,b € {I,7} can be computed in constant time,
the entire STEP 3 can be done in O((k + p1 + p2 + p3) logn) time. Thus, we get a running
time of O((n + k + p)logn) for the entire algorithm.

Since an arbitrary angle 4 < 27 can be partitioned into 2 angles that are at most «, we
have obtained the following result:

Theorem 2 Let S be a scene, which consists of n non-intersecting spheres. All transparent
topology changes for a flightpath, which is a part of a “circle at infinity” given by a plane P
and a range of angles, can be computed in time O((n+k +p)logn). Here, p is the number of
transparent topology changes and k is the number of transparent conflicts at the start, which
do not disappear during the flight.

5 Concluding remarks

We have given an algorithm for maintaining the visibility map of a collection of non-
intersecting spheres when the viewpoint moves on a circle at infinity. The algorithm has
a running time of O((n + k + p)logn).

Of course, one open problem is to improve our time bound. First, it would be interesting
to find an algorithm that spends only constant time for each topology change, instead of
O(logn).

Second, it would be interesting to develop algorithms whose running times depend on
the number of opague topology changes, instead of the number of transparent changes.

Finally, it is not known whether our techniques can be applied to similar problems for
other objects besides spheres. ‘
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Appendix

We describe a way to solve the intersection equations, which arise in STEP 3 of the algorithm.
We consider the sphere s; and two other spheres s;, si, which have a conflict with s;. Let

¢ (X —=z(t) P +Yi=17
G ¢ (X—2(t)’+ (Y -9)’ =r}
i (X —z(®)? + (Y~ w)? =ri

be the equations of the corresponding circles in the projection plane. We assume for simplicity
that y; = 0. First of all, we compute two lines [;;(t) and L;x(t): The line [;;(t) (resp. Lix(t))
passes through the intersection points c} N ¢4 (resp. ¢ N c}). The line [;(t) (resp. Lk(2)) is
orthogonal to the line through the centers m;(t) and m;(t) (resp. m;(t) and mg(t)). Since

Li(t) : 2(zi(t) - 2:(8))X + (2:(2))* — (2;(t))* + 24;Y — 4} —ri+7} =0
L(t) : 2(za(t) - 2:(£))X + (2:(t))” — (2(8))* + 20aY — 4} — 7 +7f =0,
the intersection point (z(t), y(t)) = L;;(t) N lix(¢) has coordinates

2 2 yizi(t 2 y.,.? yize(t 2 y.,z
i(t) ~ri—a;(t)' U5 + 8 4 SR 4 ey M-g 4 13

z(t) = -

’

a z;(t)? —22(t)zi(t)—r? + 22(t)zr(t)—zk ()’ —9} + 7}
2k '

y(t) =

If the circles ¢}, ¢, ¢} intersect in one point at time ¢, then (2(t), y(¢)) has to be a point
on the circle c{. In order to compute all these time parameters ¢, we replace X and Y in the
equation of ¢ by 2(t) and y(t). We multiply this equation by den(t) = yi(z:i(t) — z;(t)) —
yj(2i(t) — 2x(t)) and obtain the following polynomial equation in z;(t), z;(t), zx(t). (This
polynomial was obtained using MAPLE.)

0 = —2y2yir? — 2riny; — 2u3riue — 2riudy; — 2rluird + 2u3rius + 4riudyl + 2y508r7 -
2y2yird + (i — 293r? — 2rfr2 4 r5 + 2uky57E — 203ue + 20802 + v+ deyr? — 29707 — 2y3rE —
229k + 295730k — 2055 + y5)2i(8)? + (2y572uk — 2927% + 45 — 2ueyir? — 203wk +1f — 2y%r2 +
r:‘} - 21',?1'? + 2y§y§)zk(t)2 - 2yfrz-2ri + (272 — 272 — 2yd)zi(t)z;(2)® + (402 — 21'12- + 2%3 -
2r} + 293 - 2yry;)2;5(t)*2i(t) + (4yiy; — 2rir? — 298y} — 2y2r} + 20802 + 2rfr? — dypy;r? -
dyry;ri — 2yf + 298r? +arkyl + 2y§r§ 4 2y,€r§ — 2r8)z:(t)z;(t) + (Byry;r? + 2rir? — 2rf +
2rfr;‘-’ + 2y_131',3 - 2yzy;‘~’ - 2'1',":7';g - 2y§rf —2yir2 4 2yi?;)£k(t)3j(t) + (yf — 2uky; + y)zs(t) +
(292 + 41';4 -2r2 + 2yf - 2yry; — 2r3)zi(t)22:() + (—2r2 — 2y;‘-’ + 2r§)a:j(t)zk(t)3 + (4r% -
2r2 + 292 - 2r} — 2yry; + 2ud)2;(2)22r(2)? + (277 — 2¢F — 29d)zi(t)z;5(t)° + (—2y2 —2r2 +
2r2)z;(t)zi(t)® + (472 - 21':"; —2r? —4yZ + 2yf + dyry; )z (t)zr(t)z:(t) + (472 + 292 — 2r§ +
2y2 — 8yry; — 2r)z;(t)zi(t) ar(t) + (4r2 4 297 — 2r7 — 4y? — 2r? + 4yry;)2;5(t)22i(t) 2 (t) +
(—292 - 2y§ + 4yry; + 21'_,? - 2r)z;(t)zi(t)® + (—29% - 21'_? = 2ng + 4yry; + 2r2)zk(t)z:i(t)® +
(2yfrf + 4y?yk + 2;(/,31'3 - 21',2:1'? - 4yjr§yk + 21'?7'? - 2y§r§ - 4ykyjrf + 4y32-r§ - 2y§ + 2y§r,f +
2rfr? —2yty? - 2r})2i(t)en(8) + (vi + 20893 + 7 — 298y5 — 23872 — 2uey;r? + 2ueysrh — 2riul +

11



e~ 2rprD)2;(t)? + rivk + yied + y2uk — 2030} + ik + udE + vl 4 2ruyrd + 2yiriedy -

2y_,-r£r§yk — 2z;(t)z;(t) zi(t) + 22;(t)z;(t)3z(t)? + 22:(t)3z;(t)2r(t) + 2z (t)3z:(t)z;(t)% —
225 (t)*2i(t)2;(t) + 22k (t)?2:(2)%2;(2) + 224(t)%2;(2)°2r(t) — 62u(t)?2i(t)?2;(t)2—

22;(t) z;(t)zr(t) + 225 (t)32:(t)2;(t) + z;(t)%yE + y;‘-’zk(t)4 + zi(t)i2:(t)? — 224 (2)32:(t)% +
2i(8)*25(8)* — 22:(t)%2;(£)° + 2:(2)%2;(2)% + za(t)?2i(t)* + 2a(t)*2;(2)? — 22i(t)P2;(t)® +
zx(t)’2;(t)*

(Note that we also have to consider the case den(t) = 0. We have den(t) = 0 if and only
if m;(t), m;(t), mi(t) lie on one line. Thus, if den(t) = 0 and the three circles intersect in
one point at time ¢, then the lines /;;(¢) and l;(¢) are identical. This computation is similar
to the one that follows, but shorter. Therefore, we do not carry out this computation.)

In the above equation, we replace z.(t) by a. cos(a(t)) + b.sin(a(t)), * € {4, 7, k}. Then
we replace cos(a(t)) by C and sin{a(t)) by S:

0= (26353 — 2b:b%b, — 26%b;bs — 2bbib; -+ 263b:b2 + 2b;b352 — 626267 — 26383 + 26362y +
2b3b2b; + 2b2%b;, — 2b3% + b2b% + BEbE + bEbF + b7b% + P62 + 2b7b7b; + bEb2)SC
+(4biajb? - 2a.,-b‘}bk + 2akbkb;‘ - 662%’53 - Gakblzcb? + 4akbib§ + 26iajbj + 2bfb§ak + 4bfajbjbk +
6a;b7b2bs + 4b;53axby + 6b;a;53% + 20;030% + 2bFa;b; + 40;b7b% — 6b3a;b% — 6a;07b3 + 4b%a;b3 +
2a,-b,-b_‘} + 6akbib?_bj + 4b2aibibj + Zbibfaj - Sakbzb,;bj - 2btb,~aj - 2b§a,-b,- - Zbgbjak - 2b;-‘ajbk -
8a;b?bjbk - 12akbkb,?b§ - ].Zbib?ajbj - 12bia;b,-b§ + 2bia,;b; + 462550,55_,' + 4biaib? + 6akbib.;b§ +
2a.kbkb§ — Gbiaib? - 6akbibf + 2bfb§ak + 2b§aib,- + 4akbib,? + beajbﬁbk + 4aib,'b§bk + 2b§bfaj +
Gbiaibgbj + 4akbkb?bj - 2b,'b§ak - Sb,-a,-bﬁfbk)ssc
+(—8a;a;b3bs — 2a;b%ax + 6bF a2b2 + Barbra;b? + af b} — 6bFalb; — 18ardfa;b% — 6afbrbl +biaZ +
Sakaajbj + 4bfa_,-b_.,-ak + Ga,":bib? + 2b§a§bk + 6a,-bfb§ak + Ga?b;bﬁbk + Zbibgai + 4a.,-b?akbk +
6a;a;b2b; + 8a;blab; + bfa? + 6a2b?b% — 6b%alb; — 18a;67a;b7 — 6a7b;bT + afb} + 6b7a2b2 +
8a;b,~a,~b§ +6akbib?aj +4bia,-b,-a,_,- + 12akbia,'b,'bj + Gai bkb?bj + 262&? b;— 8akbib,-a,- - SGkbia;bj -
12a3bgb:b; — 2bia;a; — 8a;bPa;by — 8a;b3bar — 12afb2b;b, — 2bajar — 6b%ba? — 6bFaZb? —
24b%a;b;a;b; — 24axbpbla;b; — 24aybra;b;b% — 6afb2b% + 2b3ba? + 6arbfa;b? + 4bjasa;b; +
6b7a?b? + 8arbra;b? + 12ab3bia;b; + 6aZbebib? — 6b3a?b; — 18axbfa;b? — 6afbib? + afb} +
6b%a;b2ax + 8arbia;d; + 6b%a2b;br + 12a;b;a;b2by + 6aZbZb? + 4a;b;b3ax + 2a2b3b + bia? +
Gbiaibfaj + Gbiafbibj + 4a,kbkb§aj + IZGkbkaibfbj + 12a,;bfajbjbk + IZb;ajbiakbk + Gbiaﬁbjbi +
2a,2¢b?b_,- - 12b,'a§b§bk - Sb;ajbgak)5402
+(—8a;a;biar — 12a;a2b2b;, — 18a7bra;b? — 2a5b% + 4b7a3b; + 12azbra2b? + 4afa;b% — 2b5as -
18arbza2b; + 4asbia? + 4arbia? + 12afb2a;b; + 4a3beb? + 6a;b2a2by + 6a?b;blar + 2a3bib; +
6b;a;b3af + 2b;abf + 2a;b3af + 6a;aZb;b} + 12a?bla;b; + 4afb;b? — 2b%a} — 18a;b%alb; —
18a2b;a;b% — 2a2b? + 4b%a3b; + 12a;b;a2b% + 4aa;b3 — 12aZb}b;a; + 120} a;b;a; + 6arbZalb; +
2b2a§aj + Gaibkbf a;+ 12a§bka,-b,-bj+2a2bfb,- - 8akb2a,-a,- - 12aibiaib_,- - 8azbkb,'bj — 8a,-bfa._.,-ak -
12(1? bfbja.k - 12a§b§a,-bk - SG,?b.;bjbk - IZbiaibiag - IZbiafajbj —48arbra;b;a;b; — 12(1],l)kb¢g ? -
12a;bra? b§—12aib§ajbj—12aiaib,-b§ +2b} a;a%+4bfa?h;+12arbra?b? +6azbib;ai+12axblasa b+
Gaibka;b§+4aiaibf—18akbiafbi+12a,2ebkb;ajbj+6bfa§bja.k—18a,ibka,-bf+2a2b,~b§+12aibia,-b,--
2b3a? + 2b%adby + 12a,~b,-a,,-b§a;c — 24363 + 12a.,-biafbjbk + 4arbia? + Gafa,jb?bk + 2afb?ak +
6bfafbia; + 4afbrd? + 2bfafb; + 12arbrasbla; + 12axbralbib; + 2b3alar + 12a:b%a;bjar +
12a?biajbjbk+IZb;agbjakbk+12aiajb§akbk+2aib,?aj+6aiaib,?bj—126,'&? bfak—Sb,-a?b,-bk)Ssc"'
+(—86¢a§bjak - Zb,-a;?bk - 12a,-a§b§ak - Sa;agbjbk - 18aibka§bj + 8akbka§bj + b,zea:‘} + Gaiagbg -
6axbia} +6afalb;b;—6afa;b% +6afbfal+8agbra;b;+afb?+6a;b7alar + 6a?b;albe +2ablar +
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4a}a;b;by +6b;a2bjal +4b,~d§akbk +6a;a;b2a? +6a?b?a? +8alb;a;b;+afbi+2a;a3b% — 6a;b%ad -

18a§b;a§bj — 6afa;b? + bZa} + 8a;b;adb; + 6afaZb? + éakbiafaj + 12a2bra;b;a; + 6albealb; —
120%17;‘:(150‘.; - Saibkb,-aj - 8a2bka,-bj - Za,zb,'bj — 12a§b§a,-ak — Safb,-bjak — 8a?biajbk — 2a§bjbk -
Gbiafag —24axbra?a;b; —24arbra;b;a? — 6afb?a% —24afa;b;a;b; — 6afa?b? + bfaf +6arbiasal +
8azbralb; +6afa?b? + 6afbrb;a? + 12afbraia;b; — 6azbia? — 18aZbra?b; — 6ada;b? + 4adb;a;b; +
2a3a;b% + 8a3brasb; + 4a;b;a3be + 2b%aday + 6afblal + 12a;b;a2bjax + 6a?a2b;by + 6aZa;biax +
atb?+2b2ada; +4arbradb;+12azbralbia;+12a7b;a;0; 08 +12a;a2bjakbe +2a3 b2 a; +4adasb;b; +
6a2a;bla;)S2C*

+(—2b:afar — 8a;abjar + 4afasbia; — 6afbrad + 2arbral + 4afab; — 6afalb; + 6afalbia; +
4aibral+2a5a;b;+6a?b;alar+2aalby +4afa;bjar + 2b;a%af +6a;a2b;af +4afb;al + 2afa;b;+
4a,-a?akbk —2a;a5b; — 6a?b;al —6aa2b; + 2a.,-b,-a§ +4aZab;+ 6aZbrala; —8aibra;a; —2atb;a; —
8a3b;a;ar — 2afa;by — 2afbja, — 12arbrafa? — 12afa;b;a2 — 12afa?a;b; + 2arbraf + 4afadh; —
‘6aZbra? + 6afbrasal + 2afbia? — 6afalb; + 4afa;a;b; — 2afash; + 4asbadar + 6alalbjar +
4a3bra? + 2afad; + 4arbrada; + 2a?adby + 2afadb; + 2a}a?b;)SCP

+(a}a} — 2¢;a%ar + 2a}a;a? + 2a;ala} + afal + alaf + a}af + 2a}ala; — 2afa;a; — 2afa} +
2a}alaz + afa? + 2a}afa; + 2a}alay — 2a}a? — 2a}a? — 2afa;ar + afaf — 6afafa})C®
+(2yfbjb?bk - 2r§bjb?bk + 2y;‘:bjbfbk + 2y§bjbibi + 41‘%1)_7'6?613 - 8ykyjbjbfbk - 21'221756325], +
47';‘:65521)5 + ngbz + yfb;-* -+ y;‘:b;-l + 4ykyjb§b;bk + 4ykyjbjbibi - 2yky_,~b§ - 4y£bjbib,' —2r; bgbkb; -
2r2b;b%b; + 2yFb20% + 2y2b%0% — 2r7b2bE — 2yiy;b2b% + 4r3b267 — 2r?b707 — 2r§b§b§ + 21‘; b.z.;b,zc -
2y2b;b3 — 2r2b;b5 — 2r2b b3 — 2y,3bkb? + 2rfbeb? + 2y2b2b7 — 2r2b2b2 — Zykyjbk:,- + 421‘.7;6,:6,- -
4y§b§b¢bk + 2y,2cb,2¢b§ + 21‘?5{62 - 21‘?1)‘362 + 4ykyjbkb? + 21'25],6;?' - 23/36,'62 - 2y'1zbzkbi - 21’kbg- b;'b: -
27’?61,17? - 2yzbkb? + 2y§b§b¢bk + y,fbg - Zyky_,-bﬁbf + 2y§b§b§ - erb;‘tbf + 4r%2-bjb;bk + 2y; bjbi -
27’? b;b,'bk + 41‘;‘26?17? - 21‘?1)?6? - Zyzb,'b? + 21',-2 bgb? - 21‘21),'17? - 21‘;‘;’256? + 21‘jbjb.‘- + 4yry;b;b; —
2y?b;b7 — 2y;b;b7)S*

+(8ykyjajbjbgbk - 2T§bjb§ak - 41’? bja;b;br +4yry; ajbibi - 27‘?(1_7'53 bk+2y,fa_.;b,3bk +4y£bjaib,;bk +
2y,§bjbfak + 4r§ajbfbk + Sbejaib,'bk + 4rfb_,-bfak + 4y§bjakbkbi - Sykyjajbfbk - 8y,§bjakbkb,- -
16y y;b;a;b;b — Sykyjbjbfak + 4yfbja;bgbk + Zy;-’bjbfak + 2y;‘-'ajb§bk - Zy,fakb? + 4r32-b§b,'ak -
4rib_.,-a;b,-bk - 21‘,%5]'6?@]: - 4rfb_.,-akbkb,- + Srlzcbjakbkbi — 41'?bjakbkbi + 4yfakbi + 4y,fa,-b§ -
8yky;a:bf + 4r2b2asby, — 2rfa;bbs — 8yZa;b;bibe + 2y2bbEa; + 4yfaid? + 2yZa;bib; + 4yla;bf —
4y2b;ba; —4yfa;bib; —2r2b;bia; — 2rfa;bEb; —4ria;b;bibe +4rEb;bla;+4rfa;b%h; — 2ribbia; +
4y,€a_,-b,-b,-bk - 21’30.,'521),’ + 4y,fajbjbi + 4‘y§b§akbk - 4ykyjb§akbk — 4r,2ca.jb_,-b,2‘ — 41‘,2326-32(1],61; +
4y§a,-b,-bi+4y§b§akbk—4ykyjajbjbi+8r,?b:";akbk—4rfb,zea,-b,-+8rfa,-b_.,-bi—4r§a_.,-bibi—4rgbjakbzk+
Grfb,-akbi + 2’r§a,-bi - Gyfbjakbi - 2y;‘-'ajbi - 4y§b§b,-ak - 4y§b§a;bk — 2rfa;b3 — 677 bja.kb,; -
21',%6?6;(1], - 27’12¢b§aibk - 2y§akb? - GT,L-zbkajbﬁ - ZTfakbg — 6y,fbka,_.,-b§ + Grzbkajbg + 27‘;‘:akbj -
arfapbb? — 4dyry;biash; + 4ylarbrd? + 4y2bfash; — 4rZbia;b; — 4yryjarbeb? + 8riblab; +
8r2apbb? — 4rZapbib? + 4yfasbib? + 4y2biasd; + 6r2b;arb? + 2r2a;bi — 2r§a,-bi - 6r§b,-akbi3 -
6y2b;axbf + 6rZbra;b? — 2yZa;b} + 2r2arb? + 12y, y;b50:07 + 4yry;arb? + 2y,fb§b,-ak = 2y§akbi -
Gyfbka,-bf — 6yZbra;b? — 2r§akb? - 6r§bka,~bf + 8r§ajbjb;bk + 4ykyjb§b,-ak + 4ykyj:ja,-bk2+
2y§b§aibk—4ykyjb§aibi—-4ykyjajb,-bf—2rf b?b,'a.k—2rfb§a,-bk+4y;‘:b§aib,-—4'rfb§a,-bi—4ri a;b;bi+
4y£ajbjbf - 4rfajbjb;bk + 4y§ajbjbf + 4y§b§a,-bi + 81'26?0.,'6; + 8rlzcajbjb% — 4r§b§a;bi - 6y;‘:b,-a.jb§ -
2ufa;b3 + 2r}a;b3 + 6r7b;a;0% — 4r2a;b;b7 — 2r a;b?— 6rfbia;b% — 277 a ;b7 — 6r§bja,-bz + 2rza,-b§ +
672b;0:b7 +4yry;a;b3 + 12yiy;b5a:b7 +4yry;b;07 a;: — 6y2b;a:b7 — 6y b;ia;b7 — 2y2a;bf —2yfa;b +
8yky]-bjakbkb,-)053

+(-—4r§bjakbka,- - 4r§a.jakbkb,- + Sykyjajbjb,-ak + 8ykyjajb_,-a,-bk + Syky_.,-a_.,-akbkb,- - 21'?(1]' b,?ak -
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B3 o2 sy ibia; + 4yla;a;b;b +
2r2b;a?by, - 41'§bja:ibiak - 4r?ajaibibk +2yga;blax + 2y,;b_,a, :kb+ 43;1:3;.1:.7621;2{: 4:56 J akb;ai +
2= b2 ?bja;b;ar — 4ra;a;b;b) — 2ria;b 303
2b;a2bs + 4r2a;b%a), + 8r2bia;b;a k@i
4yibjaibia + 4ribjalby v 9 : 2, .h2 8yry;a;biar — 8y?barbra;—
- ibja?be — 16yry;bja:biar + 2y2a;bla; — Syry;a;blax £
4y2.a,_7-akbkbz 8yry;b;a;br 777 2p.a2b, —4r2b;a;b;ar —472b;arbra; —
Sy%ajakbkbi—16ykyjaj“ibibk+2y:g ajb’zak+4yjzbj:i zibazk-—l--zfz‘ kzb’zzgk i;l;l:;‘a;b: + 4:‘;173%'% o+
: Zbjarbra; + 8rfa;arbed; + 6yZaZb? + 6yfalb? — 3%% 2 a0
4r?ajakbkb” + 8rkb'7ak ki k= 2..212 2b 2b._8 Za-b-aibk—4ykb_.;akbi+
. 2b;a2be— 8y} a;b;b;a+6yfa?b?+2y2balb;—8y2a;b;
4r2.a2-bibk—2r.?a§bzbk+2yg 7@; Ok 77777 2 19 20.b:a1b —41'2a'b'b'ak—
2 4 2a;bla;+4r2bialb;+4ria;bla;+16r7a;b a.b,—4r2a;b;b;
Z2a;bfa;—2r?b;a2b;—2ria;bla;+4r2bialb;+4ria;b? 5 4
6y3a?b?—4yia;ba;—2r2b;alb;—2r 5 2a;b;a;b; + 2y2b2al — 2ypy;b2al —
;b — 2r2bjazb; — 2rlajbla; + 4yfa;bibiar + 4yfajbiaibe + 2yPblad J
4r’€ajbja'zbk W b 718;25; -a,kbkk—72.:‘2bzai — 2rialb} + 2y7bla} + 8yla;bjarbi +
2yry;alb} — 8yryja;bjarby '2- 5 5% 51 2k zjbgaz + 4r2b2a2 + 4r2a2b2 — 8r2a;b;arbe +
205058 + 8yicajbjarbe + 2yja3b] - 2rjajb - e AT, B —4y2b20:0— 4y a2bibi—
6r3bjakby+6ria;arb} 6y} ajakb’:f —Gygbj(l];:k -:ri:jal;bk_ 2:;:; a:-l-k 6r§a2¢;jb'4 _ 8r?albkaibi—
b2 —6r2bralb; —6rfara;b2 —6ygbratb;+6rfbrald; - 2riblal ? 2, 272
6y2aka bg Gr,bka:, 9 3 2%3 J 272 2 2.2 ?_2r2b2a?_2r,akb.—
2 ) -b;ai—2yky-a2b?—Sykwakbkaibi+8yf“kb’=“ib"+2yib’°a‘+2y’ a"b’z 2521 1672 brasbit
o o z’,,z;; 2r2a‘zb.bk—2r,2,a,2;b?+8y,3akbka;b,-+2y£bia?+4"jakbi+16’:‘“2k k“*b;
8riakbra;b; —2ribja;a) —2riajd; : 2 2a;a,bf — 6y2bialby — 6yZa;arby +
4r2bla? + 6r2b;afbs + 2yfafb? + 6ria;arb} — Grfb"azkbk N Grg? a::{, Gygbzagb‘ = ﬁf%“k“i”? -
sréaka.;b? + 6rZbra?d; + 12yry;aa;d? + 12yy;bra?b; —zi!zlj kai+z 22 :'fb ;kz_; 4ykyj-bz e —
;b2 — 6r2bra?b; — 6ylara;b? + 8r2a;bbiar + 247 ;@i 0k %5 % el d
Gyza'ka"lbz? 6erka" & J 2 2 4 b 9 2bza? + 2y2a2.b? + Sykajb,agbi =
202 jazbibe — 2yky;a2b} — 8uiyja;biets + 2uibla? + 2yfal] 20282
2yky;bial + dyry;ajbide e 2a2b? —8rfa;bja;b;—4r?a;bibiar +2y2a2b? +
20242 Sr?a-a.,-b'bk+8"'zajb:iaibk—27'ia'j ; —OT;2;05a:0; 1 %5% . ol
2r‘?b§af+2y]b:,a,+ e 7 212 2 242021 1672a:b.a:b: — 2r2b2 { —6yga;a;b5+
;bi—2r2b2a;a —4rfa;bjasbe +4rfbia? +4rfalbl+ 16r7a;bia:b; — 2r3b%a? k ]
8yZa;bja;b;—2ribia;ar —4rfa;b; ol s b; —6r2a;a;b? — 6r2b;a%h; —6ria;a;b? —
2b;a2b; — 6yFbia2b; — 2r2a2b? —8ria;bja;b; —6rfasa;b? — 6rfbia2b;
6r?a;a;b% + 6r2b;a2b; —6yZb;aZb; — 2r2a2b? B;a2b; — 6y2a;a;b? + 4yla;azbiby —
6r2b;02b: + 6r3bjatb: + 6rlazasb? + 12ueysasait? + 12?”‘”’2’“‘2",; ) i e
£ 3 e .
2a;a;b? — 6y2b;a2b; + 8yry;bjarbra; + 4yry;bialb;
Gyjz'bja?bi - eykajatb; Gykbjaz ; + Y sz J : za.a?bk+4y?a,'a,'biak"zrfb:iazgak—zr:?a'ja’?bk—
+(8yk3/:ia:'“kb’°a‘_4riz' ajakbkai+4ykyjbjakazt . 22 t+ 4 : aJazb- + 4r?b;ata; + 43/;12 a$b; +
2p.q2 dyia;asbiar + 2yfajafbe + dyyja;ald; o
dria;a;bar + 2ytbjata + 4yfa; 2 a.:a2bp— 1695 y;a:0;b;ap—
3% 2 0 ;—8yky;bja; ar—8yry;a;aibe—16yy;a;
—2720-a2b _41'2a,-a.,-b,'ak+4y~a,akbkaz YrY;05a; 37
4r?a;afbr—2rfa;albr—4ria; 7 2 3 4ria;bja;ar + 4yfadd; — 8yry;alh; +
; — 4r?ajarbra; + 8riajarbra; + 4yaiby — 4rfajbiazar L 2 9y
8yiajanbua; — driajarbra; + Bria; 2 3 2p;ala; —8y2a;b;a;a; ~4yPajalb; -
. Fbjaka;+2y7a;jafb; +4yZalb; —4yibjata; — 8ylajb;
4r2.a2.biak+4rz-a2'azbk+2yg 705 Ci 37k 9 26. 2 ._ngaz.b'ak-l-
2.7 7 7 4 tbjafa;+4ria;alb;+8r7a;b;al —4ria;bjaiar—2r2bjaf a;—2rfalb;
2ribjatai—2ria;albitaribjala; taria;albi +riasb;al~ jbia? — dypyjadanby + dyfasbial +
4y;€aj"’akbk ~ 4yky;a;bjaf — 2riajasby — 4r’€a§: . 3""‘2"’1? ot lz;b-: 2r2bad —;ngbjjai -
3 2 22 ria;aiby i 050 — 2Y;
fajbjaf —4rialapb, — 4rla;bjaf +8riadarbi +6riajaf J 2. 3
4nga§akbk+4y-7a'7 3%k 779, 2'72 2,2 b 2yzb a3—6r?a,kazbj-—21'.; bkaj -
2q:a2bhi — 6 2a-azbk—4y'a'biak—4yjajai k — 4YrU%a; Chatagf ] 3%
21’?6;(12 “Gria:,ak k y] 1%k 273 2 b 2 + 4y2'akbka? i+ 4y'akaib‘i -
. tara2b; + 2ribea? — 4yry;alash; — dyryjerbial J i 2%
6ygaraldb; + 6riazald; kOka; : A 2 4 8r2a2a;b;+ Brlabyal+4ylalashi+
B 2 ?—4r2akbka,?—41‘iakdibi+4ykakbkai+ T 05a:0; 3 1 %3 ®
4"1?“]3“:61_47'1 akbka’ k * 2 2 2ar.a2b; + 21‘2ka3 - 2y-b,-a,, +
;a8 — 2r2b;a® — 6r2a;alb; — 6y;a;aiby + 6riarald; A i
6r3aiazbk + 21'zbzak ZTJ (ad J k J T 2 b, 6?2-aka'b' -
i .bka‘." - 2r'2a2-biak = 2riajasby — 2yfbiaf + 12yysanafbi + 4yk¢;,bz:,a,ak . zbz.az _
y’;w kzz; 2 2’1: ;3 2rzbka3—eyz.aka?bg+2y§a§biak—ZTibjafak-FZyk“j“*b"+4yky’za§ zbk
6yiara;b: -2y, bra; —2r3bra; ? s g 2 2a;br + 8r2a;a;b;ax — 4r2aazh; —
.a:bia? + 4 2az'aibi+4ykajbjai + 4yry;ajaiby 1 4360 VE
4ykyja'§aibi_4yky.7a.7b.7at T 4y,.a; 3 2 8r2a2a;b;+8r2a;b;a?—4r%a%a;b;—
Fa;bja} +4y}aja;b;—2r}a;aib;+8r a;bja;0r+8r7ada;bi+8ria; b af —ar3 o
4riajb;a}+4y}asb;ja} +4y} alasb; 2 2a;b;a? —6r2a;a%b;—2r2b;ad —2r2bja3 +2r2bjad —
21,3 2q-a2b. —6y2 ~a2.b--—41'-a,‘b'a-—67'kaiaj j— 4T 0ia; B3 J
2y,fb,-a,§f+2ri b;a;+6r; aza,fg zykaz 393 h 3 JGJ 2;.azb._2y‘~.’b-a?'+12ykyjajafbi—2y§bi“?'
6ria;aibi+2yjb;afar +6ria;albi +4y,y;ba} ~ 6yjajalb; —297b;a]
£ 3
20.-a2b: :a:b;a;a)SC3 2 B
6y(ka,2a, b'z+ Sy;yjzaa ;2(2 k)zyky jaf+2yfa;alar—2ria;a}a;—2rla;alar+2yfal a,-ak—22y,- a’;a"+
+ 2y.a,-a,-ak— Tjaj g Ufe — 7% 4 20 .n2r. — Anr2r o2 . — 27%a.:a a; +
41‘2a:7a;a}:—8ykyjajagak +yj0} + yio} + 4yky;a;afa; + 2y}ajafa; — dyfajaia; — 2rleja}
199"
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4ria;ala; +2y,fa§ai —-2yky_.,-a§ai - 2r£a§a§ +2y]2-a,§ai + ZT,Eaka? = 2r§a§a§ +41';"a:;fa,,2c +2rfaja2 =
2rfa;a} —2yla;af —2yfaral —2raral —2rfa}a? + 2yl af o? — 2uyja} a? — 2riafa? — 27 a2a;a) —
4yjala;ar+4riaial +2yfafal +2rfaia} — 2r2a;a} + 2r}aral +4yryjara? — 2r2aiaf - 2yfarad -
2y}ara?+yial+yia;—2r}ddaiar+4riala;ar — 2yry;alal +4yry;ala;ar + 2yfaZa? — 2rfakal +
2y?ala? +4rfala? — 2yfa;a} + 2ra;ia? — 2rfa;ad — 2rfa;af — 2yfa;af + 2r2aja} + dyryjaaf —
2yZa;a? — 2r3aZa?)C*

+(rfd? + rgbf + 2y£yfbi — 21',?1';?13,2e - 2;1/_;"»’1';'-’11,2c - 2y§’ykbi - 2yy;7Eb2 + yib? + 'r',‘tb:;‘Z + rf‘bf +
2y,-r§yk b2 — 2y_12-r;‘:bi +'y,‘§b§ —2yPy;b2—2riy2h? - 2y;‘-’r§b;? —~2y2r2b? +y_$bi +4yry;r2bi + 2y,fyf b2+

iT5%
2y y;rEb? — 2y3yrd? — 2rfr2b7 — 292 r 707 — 2r2r?b% - 2rfyZbl + 2y ;b2 — 2yky 7702 — 2y rIbi —

2y¢y;b3+ 2yFy202+r b} — 2y b;b — 2y ribb; + 2y ribeh; — 2rir2bed; —2y2ribeb; —2yfyZbeb; +
2y§r,2cbkbj - 2r§bkbj + 21‘?1';61,1)5 + 8ykyjrf beb; — 4yjr§ykb,-bk + T;bi + 2y,":rf b;bz — 4yky,-r,-2 bibr +
4yFr3b;bi+2rirbibi—2r r2b:be — 2y r2b;be — 20 $bib +y 07 — 292 y2bibr + 4y yrbibi+2r2r2bibe+
2y3riebibi+ 2y r2bib 4 2rirdbpb;+ 2y 2yrb? — dyry rEbidj—dyry;rPbibi+ 2rfr2bib+2rEr2bib; —
Zszibj + 2y;‘:rfb,-bj + 2y;‘-’r§b,-bj + 2y;‘:1'§b,:bj - Zy;‘-’rib;bj - 2y§yfb,-b_,- - 21‘31‘?17,'1):,' + 4y,§yjb,-bj +
4riy2bb; — 2y,fb,-bj)S 2

+(—2ygbia; — 2yfbiar +4yfylarbe — 4rfriarby + 2riarby — 4yiriarde + 2rfarbe — 4y3yiarbi —
dyry;r? abi+2yf arbi + 4y;riyear by — 4y riaby + 2yf a:bi — 4yyjaib; — 4rylash; — 4y?riash; —
dyZriabi+2riabi+Hayfylabi—4ydyraibit2riabi—4rirlab+ 2yfasbi—4yZriasb;—4riria;b+
2ria;b; — 4rjyRa;b; — 4yfria;b; — 4yiyiazb; + 2riab; + 4yiyiasb; + 2yfa;b; - 2yfabe +
2yEr2bra;—2yiribra;—2y3ribra;—2rirlarb;—2ytyibra; ~2riribea;— 2yiri arb;— 2yt rarb;+
2yiriarb; + 2y3riarb; + 2yiribra; — 2yfylard; — 2rfard; — 2ribra; + 2r7rlarb; + 2riribea; +
2rZriab; + 2rirZbra; + 8yry;riard; + 8yry;Tibra; + 2yriba; — 4yry;riabe — 4yry;ribiar +
2yiria:be+4ylribiar+2rir2biar — 2yt riasbe 2y ribias — 4y iy asbe —2riasbr —4y;riyrbiak+
4yf-rfa,-bk —2r¢r2a;b, — 2rrfbia) — 2r$bax + 2ririaby — 2yfy3bar + 23}?";‘:@5& + 21/_,2-1'12,biak +
dydyrasbp+2r? T.?aibk+2T,3T,2'bidk+4y§ykbiak—2y,fyf-a;bk +2yiriabe+2y3ribiar+4y;riveashi+
8yry;riasb; + dyrysriab; — 2ribia; + dyryiriash; — dyryiriazh; — dyryiribia; — dyryiribia; +
2rfr?bia; —2riasb;+2riribia; +2r2rfash; — dyry;riash; — dyryjriasb;+2yZriab;+ 2yl ribia; +
2yiriasb;+2ylribia; +2yfriab; + 2yfr2ba; 4+ 2rirdash; +arfyiaih; — 2yirfaib; — 2y}ylash; +

4ypy;bia; —2rirlab; + 4yy;a:b; — 2r7r2bia; — 20 y2bia; — 2yribia; +4rZylbia; — 2yfa;b;)CS
+(yja? —2yfria? +ria? + 27yka} — 2rirlial — 2yiria}l — 2ytyeaf +ria} +rial — 2unyirial +
rfa? - nyr;‘:ai + y,fa? + yj-‘ai + Sykyjrfakaj - 2y2yjaf + 2yjr§ykaf - 2r,fy;‘:af — nyrfaf -
2y2ria? + dyryrial + 2yiyia? + 2yey;rial — 2ydyra? — 2rirZa? — 2rfr?al + 2yry;rial —

2riyial — 2yry;rial - 2yirial — 2yiy;ak + 2ufyial + yia? + ria} + 2rirfara; — 2ytaiai +

2yfriara; — 2yfriara; — 2yiriara; — 2ririara; — 2yfyiara; + 2yiriara; + rial — 2riaka; +
2r?r2ara; + 4yiriaiar + 2yfriaia, — dy;riyra;ar — 2rirfa;ar — 4yryjriaiag — 2ria;a; —
2yiriaiar +2rirda;ar +2y3rfaiar + 4ydyraiar — 29fyi aiar + 2rirla 0 + 2y¢riazar — 2rfaia; —
dyryirhaia; — dyeyiriaia; + 2y5r3mal + 2ririaia; + 2yiriaia; + 2yfrlaia; + 2rirlaia; +
driyta;a; — 2y3riaia; — 2yfyiasa; — 2ririaia; + 2yiriaia; — 2ypaia; + 4yiy;a:a;)C?

—2ytrir — 2ylyir? — 2riyny; — 2y3riy — 2rfyiy; — 2r2yfed + 293riu + ardylyl +riu 4+

vird + ylut — 20303 + virh + ulud + rivl + 2r2yirl + 2uirEriue — 2y5rirdu + 2y02 -
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Let eg be the coefficient of C9S” in the above polynomial. Using this notation, we can
write the above equation in the form:

Y. enCiST=0.
0<gr<6
g+r<6

The following statement is valid for all coefficient e, # 0:
¢g=0mod2 < r=0mod2.

Hence we can write the above equation in the form

> e, CIST = 3 —€g:CIS".
¢, =0mod 2 g, =1mod 2
0<g+r<6 0<g+r<6

We denote the polynomial on the left side by P.(C, S) and the polynomial on the right side
by P,(C,S). The fact P,(C,S) = P,(C, S) implies (P.(C, S))? = (P»(C, 5))>. Note that all
solutions of the first equation are also solutions of the second equation. Now we solve this
second equation. Consider the equation

0 = (P.(C, S))? - (P,(C, S5))? := > e, CI57.
0<¢g, <12
g+r <12

The coefficients e, with ¢ = 1 mod 2 or 7 = 1 mod 2 are 0. We replace S2by1-C?
(note that sin(a(t))? = 1 — cos(a(t))?) and obtain a polynomial P(C) = 35, &,C?? in one
variable. Replacing C? by ¢ gives P(€) = Y5.0Z,8% Then, we compute the at most 6
real-valued solutions of the equation P(&) = 0. For each positive solution s we compute the
(at most two) square roots of s. For each square root » with —1 < 7 < 1 we determine the
(at most 2) parameters ¢t with » = cos(a(t)). Finally, we determine whether or not these
values of ¢ are solutions of the original equation.

To summarize, we have shown that the number of parameters ¢ such that the three circles
f, ¢t and ¢} intersect in one point at time ¢, is a constant (< 24). Note that usually, this
number is much smaller than 24.

C

16






	92-1020001_gerade-u-cropped
	92-1020002
	92-1020003
	92-1020004
	92-1020005
	92-1020006
	92-1020007
	92-1020008
	92-1020009
	92-1020010
	92-1020011
	92-1020012
	92-1020013
	92-1020014
	92-1020015
	92-1020016
	92-1020017
	92-1020018
	92-1020019
	92-1020020

