THE UNIVERSITY OF

WARWICK

Original citation:

Czumaj, Artur (1992) An optimal parallel algorithm for computing a near-optimal order of
matrix multiplications. University of Warwick. Department of Computer Science.
(Department of Computer Science Research Report). (Unpublished) CS-RR-224

Permanent WRAP url:
http://wrap.warwick.ac.uk/60913

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

warwickpublicationswrap

M
highlight your res

http://wrap.warwick.ac.uk/

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60913
mailto:publications@warwick.ac.uk

Research Report 224

An optimal parallel algorithm for computing a
near-optimal order of matrix multiplications

Czumaj A

RR224

This paper considers the computation of matrix chain products of the form Mj x Mz x ... Mp].
The order in which the matrices are multiplied affects the number of operations. The best
sequential algorithm for computing an optimal order of matrix multiplication runs in O (n logn)
time while the best known parallel NC algorithm runs in O (log2 n) time using # 6/log6 n
processors. This paper presents the first approximating optimal parallel algorithm for this
problem and for the problem of finding a near-optimal triangulation of a convex polygon. The
algorithm runs in O (log ») time using » /log n processors on a CREW PRAM, and O (log log
n) time using n / log log n processors on a weak CRCW PRAM. It produces an order of matrix
multiplications and a partition of polygon which differ from the optimal ones at most 0.1547
times.

*This work was supported by the grant KBN 2-11-90-91-01.

Department of Computer Science

University of Warwick

Coventry CV4 7AL

United Kingdom February 1992

An optimal parallel algorithm for computing a
near-optimal order of matrix multiplications*

Artur Czumaj

Warsaw University
and

University of Warwick
Februa.ry, 1992

Abstract

This paper considers the computation of matrix chain products of the form
My X My X ---X M, _1. The order in which the matrices are multiplied affects the
number of operations. The best sequential algorithm for computing an optimal
order of matrix multiplication runs in O(nlogn) time while the best known par- -
allel NC algorithm runs in O(log? n) time using n°/log® n processors. This paper’
presents the first approximating optimal parallel algorithm for this problem and
for the problem of finding a near-optimal triangulation of a convex polygon. The
algorithm runs in O(log n) time using n/log n processors on a CREW PRAM, and
in O(loglogn) time using n/loglog n processors on a weak CRCW PRAM. It pro-
duces an order of matrix multiplications and a partition of polygon which differ
from the optimal ones at most 0.1547 times.

1 Introduction

The problem of computing an optimal order of matriz multiplication (the matriz chain
product problem) is defined as follows. Consider the evaluation of the product of n —1
matrices

M=M1>(M2X"'XM"_1

where M; is a w;—; X w; (w; > 1) matrix. Since matrix multiplication satisfies the
associative law, the final result is the same for all orders of multiplying. However, the
order of multiplication greatly affects the total number of operations to evaluate M.
The problem is to find an optimal order of multiplying the matrices, such that the total
number of operations is minimized. Here, we assume that the number of operations to
multiply a p X ¢ matrix by a ¢ X r matrix is pgr. It was shown in [Cha-75] that an

*This work was supported by the grant KBN 2-11-90-91-01.

arbitrary order of matrix multiplications may be as bad as O(TZ2,), where Top is the
minimal number of operations required to compute matrix chain products.

One can show that this problem is equivalent to the problem of finding an optimal
triangulation of a convez polygon (see [HS-80]). Given a convex polygon (vo, Viy. - -;Vn)-
Divide it into triangles, such that the total cost of partitioning is the smallest pos31b1e
By the total cost of triangulation we mean the sum of costs of all triangles in this
partitioning. The cost of a triangle is the product of weights in each vertex of triangle.

Both these problems can be solved sequentially in O(nlogn) time [HS-80]. The best
known approach to design parallel a.lgonthms is based on dyna.rmc programming. It
gives us NC algorithms which run in O(log? n) time using O(n® JlogF n) processors on a
CREW PRAM for some k ([Ryt-88], [HLV-90] and [GP-92]). Algonthms which increase
the total time-processor product from O(nlogn) to O(n® [log* n) are not of much of
practical value. This suggests designing approximating algorithms for these problems.
They would run fast and use few processors what would fill the gap between the total
work in their serial versions and parallel ones.

[Chin-78] described a sequential approximating algorithm for finding a near opti-
mal order of matrix multiplications. This algorithm was later improved, analysed and
transformed to the problem of finding a near-optimal triangulation of a convex n-gon in
[HS-81]. The algorithm runs in linear time and has an error at most 15. 47% (i.e., its
cost is at most 1.1547 X the cost of an optimal order of product of matnces) Espec1a.lly
interesting is the fact that th.ls error is decreasing when n is growing,

In this paper we describe the first optimal parallel algorithm wlnch solves these
two problems a.pproxlmatelly It runs in O(logn) time using n/logn processors on a
CREW PRAM and in O(log log n) time using n/log log n processors on a CRCW PRAM.
Moreover we can improve these running times if the domain of input is restricted.-In the
matrix chain product problem there are always integer values of matrix dimensions. We
will show that if dimensions are drawn from a domain [k. .. k+ s] we can implement our
algorithm to run in O(a(n) + logloglog s) time with linear time-processor product on
a priority CRCW PRAM!. Our algorithm produces the order of matrix multiplications
and the triangulation of a convex polygon with an error ratio at most 0.1547 - the same

as in Chin-Hu-Shing algorithm.

The models of parallel computation that are used in this paper are the concurrent-
read exclusive-write (CREW) and the concurrent-read concurrent-write (CRCW) parallel
random access machines (PRAM). A PRAM employs synchronous processors all having
access to a common memory. A CREW PRAM allows several processors to read the
same entry of memory simultaneously, but forbids multiple concurrent writes to a cell.
A CRCW PRAM allows simultaneous access by more than one processor to the same
memory cell for both reads and writes. In this paper we mainly focus on the weakest
model of a CRCW PRAM - weak CRCW, in which the only concurrent writes allowed
are of the value 1.

This paper is organized as follows. Section 2 contains some basic definitions and

la(n) denotes very slowly growing the inverse-Ackerman function, for definition see e.g. [BV-89]

notions concerning the algorithm. Section 3 recalls Chin-Hu-Shing sequential algorithm.
Section 4 shows reduction of the initial problem to the one of finding an optimal tri-
angulation in a basic polygon. Section 5 describes the new algorithm which is then
implemented on a CREW PRAM and on a CRCW PRAM in section 6. In the last

section we give some extensions of our algorithm.

2 Basic notions and definitions

Firstly we introduce some basic notions and facts.
The fact stated below converts the matrix chain product problem to the problem of
finding an optimal triangulation of a convex polygon, see [HS-80].

Fact 2.1 Any order of multiplying n — 1 matrices corresponds to a partition of a n-sided
convex polygon. '

Corollary 2.2 The problem of finding an optimal order of multiplying a chain of matri-
ces is equivalent to the problem of finding an optimal triangulation of a convex polygon.
Here by the cost of partitioning of a polygon we mean the sum of costs of all triangles in
a given partition, and by the cost of a triangle we mean the product of values of three
Vert1ces in this triangle.

Th1$ eqmvalence and transformation are clear, so we give the followmg observatmn
without a proof. ;

Observation 2.3 Any partition of a convex polygon can be transformed to an order
of multiplication of chain of matrices in constant time with n processors on a CREW
PRAM. Also any order of multiplication of chain of matrices can be transformed to a
partition of a convex polygon in constant time with n processors on a CREW PRAM.

From now on, only the partitioning problem will be discussed.

Throughout this paper we will use wo,ws,...,Wn-1 and vg,v1,...,Vs-1 t0 denote
vertices as well as their weights in a convex polygon. For simplicity we assume that all
weights are distinct. If there are some vertices with the same weights then we assume that
a particular ordering is chosen and remains fixed. We can choose e.g. lexicographically
ordering?.

Define a vertex v; to be the smallest (minimum) one if for each other vertex v; we
have v; < vj. Similarly we define the kth smallest vertex v; if there are exactly k — 1
vertices smaller than v;.

We will need the following problems.

The all nearest smaller values problem
Given an array A = (ao, a1, ,an). For each g; (0 €7 < n), find the nearest element
to its left (and the nearest element to its right) that is less than a;, if such an element
exists. That is, for each i, 1 <4 < n, find the maximal j (0 <j < i) and the minimal k
(i < k < n) such that a; < ¢; and a; < a;.

2That is, v; < v iff v; <wvj,orv; =vjand i < j

3

Fact 2.4 ([BSV-88], [BBGSV-89]) The all nearest smaller values problem can be
solved in O(log n) time using n/log n processors on a CREW PRAM and in O(loglog n)
time using n/loglogn processors on a weak CRCW PRAM. :

The prefix minima problem -
Given an array A = (ag,a1,"**,ay). For each a; (0 < ¢ < n), find the minimum among
ag, - -+ 5 G;.)

Fact 2.5 ([Sch-87], [BSV-88]) The preﬁx minima problem can be soIved in O(log n)
time with n[log n processors on a CREW PRAM a.nd in O(loglog n) trme w1th n/log logn
processors on a weak CRCW PRAM 2

o

The all nearest zero problem - . g
Let A = (ao,a1,.-.,an) be an array of bits. Fmd for each b1t a, the nearest zero bit
both to its left a.nd right.

Fact 2.6 The all nearest zero problem can be solved in 0(10é n) time using n/log’rz
processors on a CREW PRAM and in O(a(n)) the using n/c(n) processors on a weak
CRCW PRAM ([BV-89)).

Evaluation of logical ‘AND’ in a tree
Given a binary tree T (with possible chains) of n nodes. Let each vertex has assigned a
logical value false or true. Evaluate for each internal vertex v logical ‘AND’ of v and all
its descendants.

Remark. This problem can be transformed to the problem of evaluatmn of expressmn
with loglca.l opera.tlon ‘AND’ in each mtemal vertex. '

Lemma 1

Suppose we are given an mﬁx order in a tree T That is, for each node v; we know
its infix rank i. Assume also that for each node there is given the number of all its
descendants in a tree. Then we can evaluate logical ‘AND’ for all vertices in a tree T in
O(logn) time using n/logn processors on a CREW PRAM and in O(a(n)) time using
n/a(n) processors on a weak CRCW PRAM.

Proof: We show how to reduce this problem to the all nearest zero problem. Let
A= (ay,...,a,) be an array of bits such that a; = 1 iff the sth (w.r.t. to an infix order)
vertex v; in a tree T has assigned value true. Because of infix order we know that for
given vertex v; (with :th number) all its descendants are in the consecutive subarrays to
its left (descendants of its left son) and right (descendants of its right son). Therefore
we start with finding for each a; (that is, for each vertex v;) the nearest zero bit to its left
and rigth. Then we have to check if these zeros are in a subtree rooted at v;. Because
we know the number of its descendants we can check this in constant time with one
processor for each node v. : O

Remark. These results can be extended to the case when we are given a prefix or postfix
order and the number of all descendants or if we are given in the array the Euler tour
(see e.g. [GR-88]) of the input tree. '

fan(v;)

t ‘ (i‘l) t
Figure 1: Procedures (i) cutoff (ve) and (3) fdn(vg)._

3 Chin-Hu-Shing approximating algorithm
The Chin-Hu-Shing ([Chin-78] and [HS-81]) algorithm is based on two i
e If a vertex has a very large weight, then it should be cut in the optimal partition.

e If none of vertices has a very large weight, then we should join the smallest vertex
with all other vertices.

Let v,, be the smallest vertex of a convex polygon, and v; be a vertex with v and Ve
as its two neighbours. Define vertex v; to be large iff

1 01 1,1
— >+

Vi Ve Ut Um
In Chin-Hu-Shing algonthm the followmg procedures are used

Procedure cutoff (v):: -
Let v and v, be two neighbours of vertex ve. Join v with v, (1 e., cut off v;) and call
this arc h-arc. Later we consider a polygon without vertex ve.

Procedure fan (v)::
Join v, with all vertices in a polygon. These arcs are called fan-arcs.

Additionally there are three procedures. They pop a given vertex off the stack
(pop(v;)), push onto the stack (push(v;)) and return the top of the stack (top).

Chin, Hu and Shing described the following heuristic linear-time algorithm.
Chin-Hu-Shing Algorithm

Input : - a sequence of weights of vertices in a polygon - wo, w1, ..., Wa-1
Find the smallest vertex w; and shift indices of vertices such that w; is the first
element of a sequence; that is, vo = W;, V1 = W(i+1)modn, * * *» Vj = W(i+j)modn,* **

push(vo);
3= 1;
while : <n-1do
if top # vo and top is large then
cutoff(top); pop(top);

else
push(v;);
fi;
od;

fan(vp);

In the sequel this algorithm will be called algomthm CHS.

What is especially interesting, in most cases algorithm CHS yields the optlma.l solu-
tion or a solution which takes only a few percent worse than the optimal one®. As was
mentioned in the mtroductlon the (worst case) error ratio is inversely proportlonal ton
and is maximum when n = 5. In general, if value ¢ = max;{ —L} has ipper bound, then"
Hu and Shing [HS-81] calculated the maximum error ratio for any glven mput n. This
ratio is given by the following formula:

- t—1

A 24t (n—4)

For example, ift = 2, then R = 1/(n + 2), and if ¢ = y/n, and n approaches oo, then
R=-

Fact 3.1 ([HS-80], [HS 81]) Algonthm CHS finds a nea.r—optmal pa.rt1t10nmg of a

polygon and a near-optimal order of computing the matrix chain products with the
maximum error ratio ~ 0.1547 (exactly it is —¥X3

maximum error ratio R

6+3_73 :

4 Reduction to the problem of ﬁndmg an optlmal
triangulation in a basic polygon

The first step of our algorithm is a partition of a convex polygon into smaller noninter-
secting basic polygons.

Fact 4.1 ([HS-80]) There exists an optimal triangulation of a convex polygon contain-
ing arcs or sides between the smallest vertex and the second and the third smallest
ones

Define a basic polygon to be a polygon containing sides between the smallest vertex
(v0) and the second (v;) and the third (vn—;) ones. Fact 4.1 implies a partition of a
convex n-gon into smaller nonintersecting basic subpolygons which are in an optimal
triangulation. Such a partition can be found in the following way.

First divide a polygon into two parts by joining the smallest vertex with the second
smallest one. Consider two obtained subpolygons independently. Assume that vo, vn_1
are two smallest vertices and vp 1s the smallest one.

Observation 4.2 Vertex v; is the third smallest one if and only if v, is a vertex with
the greatest index between vo and vn_1, such that there is no vertex less than v; in the
SEqQUENCE V1, V2, . . -, Vg—1.

3less than 1 percent on the average, see simulation results in [Chin-78]

6

Using the observation above we can easy design parallel a.lgonthm which divides a
convex polygon into basic polygons.

Let vg, vy, . . . Un_1 be the weights of a polygon with vg as the smallest vertex and v,—;
as the second smallest one. Solve the prefix minima problem with respect to weights
(v1y-.-,Vn-1). Join v; with vo iff this vertex is the minimal in the range vy, ... ,v;. Hence
we obtain the following fact.

Fact 4.3 Partitioning of the polygon into nonintersecting basic subpolngns can be &one
in O(logn) time using n/logn processors on a CREW PRAM and in O(log log n) the
using n/loglog n processors on a weak CRCW PRAM. ~

5 Outline of a new algorithm

In this section we describe an overview of a new algorithm which produces the same
partitioning as that of Chin-Hu-Shing. An input of this new algorithm is a basic polygon
with v as the smallest vertex, v; as the second smallest one, and v,,_1 as the third smallest
one. : : ~ :
First, our algorithm finds the set of candidates for h-arcs. We show a necessary
condition for an arc to be an h-arc. Moreover this condition gives us the set of edges in
a polygon which do not intersect, what implies that this set of candidates is not too big
(it counts exactly n-3 arcs). Then from the set of all candidates for h-arc, we eliminate
these edges which are not chosen by algorithm CHS. At the end we find all the fan-arcs.

Let us define a candidate to be an arc (v;,v;) such that for each k, < k< 75 the
inequality v; < vk, v; < v hold. We show that arcs with this property are candidates
for h-arcs (i.e., this is a necessary condition to be h-arc). '

Observation 5.1 No candidates intersect.

Observation 5.2 Let vk, v, be neighboﬁrs of vertex v;. If v, is large then the following
condition holds

ve < vy, and vg < vy

Now we give some observations concerning algorithm CHS. We can see that during an
execution of the procedure cutoff (v:), with vg and v. as neighbours of v, two invariants

hold:
l.k<t<e
2. foreachi(k<i<e, i#t), v, <v;

Hence we obtain the following crucial lemma.

Lemma 2
h-arc is always a candidate.

O ay, (vo)

v12 6 ay 5 v

a; (v2) ag (v11)

8
o
g

v

as (U{s) aio (vlo)

&
&
N

g (V)

as (vs) - ag (v7)

/

ag (vﬂ4) .

ar (1)3)

Figure 2: Partitioning of a convex polygon by candidates and the corresponding tree of
candidates. In the tree each vertex is represented by the corresponding candidate and
in brackets we present vertices whlch store given candidate.

Let us look at the polygon a.fter ﬁndjng all candidates. Th.is polygon is completely
divided into n—2 triangles. We introduce a tree of candidates. Triangle (v;,v;,v;) (where
i < j < 1) is said to lie lower than arc (v;,vr). Let us take candidate (vx, vc). It is obvious
that each such an arc (if k < ¢ —1) has exa.ctly one lower tna.ngle We can define the
tree of candidates as follows.

For given candidate (vg,v.) we define its sons to be arcs (except ¢ sides of polygon) in
the lower triangle for (v,v.). It is easy to see that this tree is a binary tree (i.e., each
vertex has at most two sons) with n — 3 vertices.

Observation 5.3 For each ca.nd1date (vk, v,), all its descenda.nts are of the form (vi, v;),
where k<t <j<ec

Given a tree of candidates, we need to verify for all the candidates whether they are
h-arcs.

Algorithm CHS begins by creating h-arcs and then non-divided subpolygon is parti-
tioned by fan-arcs. Always when vertex v; is cut new h-arc is added. Therefore during
the exectuting the loop in algorithm CHS there is always only one non-divided convex
polygon. Thus we obtain the following

Fact 5.4 The loop in algorithm CHS finishes with exactly one convex polygon without
internal arcs.

This fact implies the following important observation.

Observation 5.5 Let (vk,v.) be the h-arc obtained by algorithm CHS. Then all the
candidates (v;,v;), for k <1i < j < ¢, are generated by CHS algorithm as h-arcs.

Proof: From the above fact, we see that there is no fan-arc in polygon (v, V41, .-, Ve)-
Hence this polygon must be triangulated by h-arcs. o

The following is a new algorithm for partitioning of a basic polygon.
Algorithm Par-CHS

{ Input : basic polygon with vertices vo,v1,...,Vn-1 }
1. Create the tree of ca.ndida.te's.v Iy

2. Verify all candidates - i.e., find all h-arcs.

3. Find all fan arcs in a polygon.

Theorem 3
Algorithm Par-CHS produces the same partition of a convex po]ygon as CHS algonthm

Proof: It follows from the prevmus comments and from the fact tha.t a.ll arcs d1v1ded,
a convex polygon into basic subpolygons are fan-arcs. ..o

6 An optimal parallel algorithm

In this section we show how to implement efficiently algorithm Par-CHS on CREW
PRAM and CRCW PRAM machines.

Begin with building a tree of candidates. From previous observations we can esta.b-
lish condition when procedure cutoff (v¢) is called. Let v; and v, (k<t< c) be two
neighbours of v;. Then a vertex v; is poped off the stack if and only if all vertices between
vk and v, (in the original convex polygon) are greater than v, (and vk < ve and ve < vy).
That is, foreach i, k <t < c,i #t, vy <v;.

Therefore, to find such a triple it is enough to find for each vertex v; two vertices v
and v, which lie on the both sides of v; and satisfy the above condition. It is clear that
this is equivalent to the problem of finding all nearest smaller values. For each v; choose
v to be the nearest smaller vertex to the left side and v. to be the nearest smaller vertex
than v; to the right side. And now create the set of pairs - (k, c) which are stored in the
array node(t).

Then we need to create the candidate’s tree. That is, we have to find fathers for
all nodes (i.e., for all pairs (k,c)). The root of the tree is a pair (1,n — 1) stored in
node(T), Where r is this vertex which was cut off by arc (v1,vs-1). Definition of the
father’s relation implies that the father of candidate (v;,v;) is either node(j) = (i,7), if
v; < v, or node() = (I, 7), if vj < v;, for some r or I. Hence we can find fathers in 0(1)
time using n processors on a CREW PRAM.

From the previous section we know that a candidate is an h-arc iff

o it cuts off a large vertex (with respect to this arc) and

e all candidates below it (in the tree of candidates) are h-arcs too

9

One can easily show that if node(t) = (k,c) and (vk, vc) is an h-arc, then (vi,v.) cuts off

vy as a large vertex. Hence to check whether given candidate is an h-arc we can solve

straight-line program which evaluates boolean expressions. For each leaf node(t) = (k,¢)

of the tree of candidates assign value true if vertex v, is large with v and v, as its two

neighbours and false otherwise. For every internal vertex node(t) = (k,c) assign the

logical operation ‘AND’ if v; is large with vx and v as its two neighbours, otherwise

set value false. Then compute a tree of expression. If node(t) = (k,c) has computed :
value true then candidate (vk,v) is an h-arc. But standard algorithms for expression

evaluation (see e.g. [CV-88] or [Ryt-90]) run in at least O(log n) time on any of PRAM’s

models. Therefore we will need new ideas to solve this problem. ,

Let us look at the tree of candidates. Each candidate (v, v,) is s held in node(t) For
each such a node we know the number of all its descendants (exactly c-k-2) and ‘morever
t — 1 is its infix number (see e.g. a tree from figure 2). Thus we can use the algorithm
from lemma 1. So a node correspondmg to a ca.nd.ldate (vk,vc) has va.lue true if a.nd only-
if it is an h-arc. - Fags

At the end we need only to find all other verticesin the polygon, i.e., all fan-arcs. From
the previous step we have in the array node(i) some h-arcs, and all others candidates are
not in the partitioning. Hence we can check whether node v; was cut off dunng executing
algorithm CHS, simply by checking if node(z) is an h-arc. If node(z) is not an h-arc, then
join vertex v; with a vertex vo and put_ th1s mforma.tlon mto node(z) It can be done in.
constant time with n processors. ™ ' :

This completes the proof of the followmg r&sult

Theorem 4
The problem of finding a near-optzma.l order of matrix chain products a.nd the probIem
of finding a near-optimal pa.rt1t1on of a convex pongon can be soIved

e in O(logn) time using n/logn processors on a CREW PRAM
e in O(loglogn) time with n/loglogn processors on a weak CRCW PRAM ‘

7 Conclusion and extensions

We gave very fast optimal parallel algorithm for finding a near-optimal order of matrix
chain product and for finding a near-optimal partitioning of a convex polygon. It runs
in O(log n) time on a CREW PRAM and in O(loglog n) time on a weak CRCW PRAM.
This algorithm has optimal linear time-processor product. These bounds seem to be
optimal among linear-work algorithms on both CREW and CRCW PRAM.

One can improve these bounds if the domain of input values is restricted. In the
matrix chain products problem there are always integer values of matrix dimension.
Therefore if dimensions are drawn from a domain [k. .. k+ s] we can find a near-optimal
order of matrix multiplications in O(a(n) + logloglog s) time with linear work on a
priority CRCW PRAM. This result follows from the algorithm with the same bound
for the nearest smaller values problem (and also the prefix minima problem) where the
domain is restricted to the set [0...s] [Ber-92].

10

We can speed-up our optimal algorithm to a(n) time on a common CRCW PRAM
if the difference between two succesive elements (i.e., dimension or weights of vertices
of a polygon) is bounded by some constant k. It also follows from the result for the all
nearest smaller values problem [BV-91].

As in [Cha-75] the algorithm can be generalized to a larger class of functions by
assuming that the multiplication of a p X ¢ matrix and a ¢ X r matrix takes 7(p,q,T)
operations. Most of the results (except the error ratio) will stay true as long as 7(p, g, r)
is nonnegative and reasonable, i.e., 7(p, ¢,) is monotonically nondecreasing in p, ¢, and

7(p,q,7) = 7(r,p, 9)-

Acknowlédgment

The author would like to thank B. Chlebus, K. Diks and W. Rytter for carefully reading
draft of the paper and many helpful comments.

References

[Ber-92] O. Berkman, personal communication, 1992.

[BBGSV-89] O. Berkman, D. Breslauer, Z. Galil, B. Schieber, U. Vishkin, “Highly par-
allelizable problems”, Proceedings of the 21st Annual ACM Symposium on Theory
of Computing 1989, pp. 309-319.

[BSV-88] O. Berkman, B. Schieber, U. Vishkin, “Some doubly logarithmic optimal par-
allel algorithms based on finding all nearest smaller values”, UMIACS-TR-88-79,
University of Maryland, Institute for Advanced Computer Studies, 1988.

[BV-89] O.Berkman, U. Vishkin, “Recursive *-tree parallel data-structure”, Proceedings
of the 30th Annual Symposium on Foundations of Computer Science, IEEE Com-
puter Society, 1989, pp. 196-202, also UMIACS-TR-90-40, University of Maryland,
Institute for Advanced Computer Studies, 1990.

[BV-91] O. Berkman, U. Vishkin, “Almost fully-parallel parentheses matching”,
UMIACS-TR-91-103, University of Maryland, Institute for Advanced Computer
Studies, 1991.

[Cha-75] A.K. Chandra, “Computing matrix chain products in near-optimal time”, IBM
Research Report RC 5625(#24393), IBM T.J. Watson Res. Ctr., Yorktown Heights,
N.Y., 1975. ‘

[Chin-78] F.Y. Chin, “An O(n) algorithm for determining a near-optimal computation
order of matrix chain products”, Communications of the ACM, Vol. 21, No. 7, 1978,
pp. 544-549.

[CV-88] R. Cole, U. Vishkin, “Optimal parallel algorithms for expression tree evaluation
and list ranking”, Proceedings of the 3rd Aegean Workshop Comput., 1988.

11

[GP-92] Z. Galil, K. Park, “Parallel dynamic programming”, manuscript 1992.

[GR-88] A. Gibbons, W. Rytter, “Efficient parallel algorithms”, Cambridge University
Press, 1988.

[HLV-90] S-H.S.Huang, H. Liu, V. Viswanathan, “Parallel dynamic programming”, Pro-
ceedings of the 2nd IEEE Symposium on Parallel and Distibuted Processmg, 1990,
pp- 497-500.

[HS-80] T.C. Hu, M.T. Shing, “Some theorems about matrix multiplication”, Proceed-
ings of the 21st Annual Symposium on Foundations of C’omputer Sczence IEEE
Computer Society, 1980, pp. 28-35. i 2% 3.

[HS-81] T.C. Hu, M.T. Shing, “An O(n) algorithm to find a near-optimum partition of
a convex polygon”, Journal of Algorithms, Vol. 2, 1981, pp. 122-138.

[Ryt-88] W. Rytter, “On efficient parallel computations for some dynamic drogramming
problems”, Theoretical Computer Science, Vol. 59, 1988, pp. 297-307.

[Ryt-90] W. Rytter, “On parallel computation of expression and straight-line programs”,
Computer and Artificial Intelligence, Vol. 9, No. 5, 1990, pp. 427-429.

[Sch-87] B. Schieber, “Design and analysis of some parallel a.lgorithfﬂs”, PhD Thesis,
Tel Aviv University, Tel Aviv, 1987. i

12

