
Independent AND-Parallel Implementation of
Narrowing

Herbert Kuchen* Juan José Moreno-Navarro** Manuel V. Hermenegildo'

Abs t r ac t . We present a parallel graph narrowing machine, which is
used to implement a functional logic language on a shared memory mul-
tiprocessor. It is an extensión of an abstract machine for a purely func­
tional language. The result is a programmed graph reduction machine
which integrates the mechanisms of unification, backtracking, and inde­
pendent and-parallelism. In the machine, the subexpressions of an ex-
pression can run in parallel. In the case of backtracking, the structure of
an expression is used to avoid the reevaluation of subexpressions as far
as possible. Deterministic computations are detected. Their results are
maintained and need not be reevaluated after backtracking.

1 Introduct ion

During the past few years, several a t tempts have been made to achieve an in-
tegration of functional and logic programming languages, trying to combine the
advantages of both paradigms. Functional logic languages, one class of such lan­
guages, have functional syntax and use narrowing, an evaluation mechanism tha t
uses unification for parameter passing, as operational semantics [21]. Babel [19,
20,11,12] is a functional logic language based on a constructor discipline defined
in a simple, flexible, and mathematically well-founded way.

A natural way of implementing these languages is to extend functional pro­
gramming techniques. A couple of graph narrowing machines have been defined
for the sequential implementation of Babel. [11,12] follow an innermost strategy,
while [18] uses lazy evaluation. All of them have been designed by extending a
graph reduction machine for a functional language [15] with those features tha t
are necessary for executing functional logic programs, i.e. unification, backtrack­
ing, and logical variables. The mechanisms used for both are inspired by the
techniques used in the implementation of Prolog, mainly the ideas present in
the Warren Abstract Machine (WAM) [24]. The approach contrasts with oth-
ers, normally termed Logic functional languages, such as e.g. K-LEAF [1], where
the converse solution of adding support for functional characteristics to a logic
language is taken both at the language and implementation levéis. One advan-
tage of the functional logic language approach, is tha t it guarantees tha t purely

* RWTH Aachen, Lehrstuhl für Informatik II, Ahornstrafie 55, 5100 Aachen, Germany,
email: herbertQzeus.informatik.rwth-aachen.de

** Universidad Politécnica de Madrid, Facultad de Informática, Campus de
Montegancedo, Boadilla del Monte, 28660 Madrid, Spain, email: {jjmoreno,
herme}Qfi.upm.es

http://herbertQzeus.informatik.rwth-aachen.de
http://upm.es

functional programs can be executed almost as efficiently as in the original func-
tional machine, although some overhead due to the different parameter passing
mechanism cannot be completely avoided.

In this paper the subject of parallel execution in the context of the functional
logic language Babel is treated. A particular form of parallelism is presented and
an abstract machine for its implementation, which is essentially a parallel variant
of the BAM [11], is then described. The parallelism exploited allows subexpres-
sions of an expression to run in parallel, if they do not share a logical variable.
This is essentially a generalization of the concept of independent and-parallelism,
known from logic programming [6,3,10], where AND is the only "function" com-
bining subexpressions. As in [15], we allow n expressions e2 (1 < i < n) to run in
parallel with the expression e that uses it. The synchronization is, however, dif­
ferent from the usual one in independent and-parallel implementations of Prolog.
In most such implementations, and due to the lack of information on directional-
ity of arguments in logic programs (unless extensive global analysis is performed
or the program is annotated), a computation e, which combines the results of
some parallel computations ez (1 < i < n), has to be placed and evaluated after
them. In a language of the type being considered we can take advantage of func­
tional dependencies so that the synchronization of e and each e2 is performed
when e really needs the et. This increases the degree of parallelism because n + 1
tasks (instead of n, where the extra task could in turn genérate more parallel
tasks) run in parallel. The ability of the abstract machine of keeping múltiple
environments is used to take advantage of the structure of e to avoid reevalua-
tions. When some e2 produces a new solution, only the work made after the use
of this e¿ needs to be redone, while for several reasons in Prolog implementations
the evaluation of e generally restarts from the beginning.

Moreover, it is possible to keep some results of the parallel tasks, avoiding
reevaluations. Since Babel is a functional language a Babel function maps each
sequence of (ground) arguments to exactly one result. This property can be
used to dynamically detect so-called deterministic computations [12,16]. Such a
computation cannot produce an alternative result. If it is involved in a parallel
execution, it is not affected by backtracking. Its result is kept and can be used
later on, when the reexecution of the previous expressions is successful and the
valué is needed again.

This paper is organized as follows. In Section 2, we briefly introduce the
language Babel and discuss extensions to Babel in order to be able to express
parallelism. Section 3 presents the independent and-parallel Babel machine. Sec­
tion 4 focuses on the backtracking mechanism of this machine. Section 5 presents
some related work. Finally, in Section 6, we conclude and point out future work.

2 The Functional Logic Language Babel

The language Babel integrates functional and logic programming in a flexible
and mathematically well-founded way. It is based on a constructor discipline
and uses narrowing as evaluation mechanism [21]. Babel has a Miranda-like

polymorphic type system [23]. Since herein we want to focus on the issue of par-
allel implementation, we will not consider higher order functions throughout this
paper (although including them presents no additional problem). Also, rather
than giving a precise description of the syntax and semantics of Babel (which
can be found in [19, 20,11,12]) we will present Babel in an intuitive way by first
using a small example program for the well-known towers of Hanoi problem and
then presenting some basic concepts:

d a t a t y p e pin := a | b | c.
d a t a t y p e nat := 1 | (suc na t) .
d a t a t y p e list a := nil | (cons a (list a)).
fun towers: pin —>• pin —>• pin —> nat —>• (list (list pin)) —>• (list (list pin)).

towers Source Help Dest 1 L := [[Source, Dest] | L].
towers Source Help Dest (suc M) L :=

towers Source Dest Help M [[Source,Dest] | (towers Help Source Dest M L)].

A Babel program consists of a sequence of da ta type definitions and a sequence
of function definitions. The program can be queried with a goal expression. For
example, a valid query for the previous program can be

so lve towers a b c N [].

which would return the list of moves for each valué of N (number of disks)
start ing with 1, i.e. the first solution is the valué [[a,c]] with binding { N / l } .

A datatype definition introduces a new ranked type constructor (e.g. pin, nat
(both of arity 0), list (of arity 1)) and a sequence of data constructors (separated
by |). If an n-ary type constructor (n > 0) is applied to n argument types
(including type variables -like a - representing any valid type) the resulting type
expression is a valid type, e.g. "list pin" and "list ce". A consistent replacement
of type variables in a polymorphic type (i.e. a type including type variables) by
other types yields an instance of the polymorphic type.

A data constructor is an uninterpreted function mapping an instance of its
argument type (given behind the ñame of the constructor) to the corresponding
instance of the type on the left hand side of the da ta type definition. For example,
the most general type of "cons" is cons: a —>• (list a) —> (list a). But "cons" may
also be applied to arguments which have a more specific type (i.e. an instance of
the argument type), e.g. "cons 1 nil" is of type "list nat" (a is replaced by na t) .

A Prolog-like syntax for lists is allowed, i.e. [e | e'] is equivalent to "cons e
e'", [e, e'] represents "cons e (cons e' nil)" and [] is the empty list "nil".

For each function, its type and a sequence of defining rules are specified. A
rule for a function / has the form

f t\ .. .tm
v v '

left hand side
ü 2̂ ^

optional guard body
" v

right hand side

where t\,... ,tn are terms, & is a boolean expression, and e is an arbitrary ex­
pression. A térra is either a (logical) variable (denoted by an identifier beginning
with a capital letter) or an application of an n-ary data constructor (n > 0) to
n argument terms. An expression has the form:

e ::= t % term
| (c e i . . . e„) % application of a n-ary data constructor c (n > 0)
| (/ ei . . . e„) % application of a n-ary function / (n > 0)
| (b —> e) % guarded expression, meaning "if b then e else undefined"
| (b —> e\ • e?) % conditional expression, meaning "if b then e\ else e^

All expressions have to be well typed. For an application this means that the
types of the arguments have to be (consistent) instances of the argument type
of the function. We assume that application associates to the left and omit
parentheses accordingly.

Babel functions are functions in the mathematical sense, i.e. for each tupie
of (ground) arguments, there is only one result. This is ensured by syntactic
restrictions for the rules (see [12]). In order to simplify the translation of Babel,
no variable may occur more than once on the left hand side (left linearity). The
type bool is predefined in Babel: da ta type bool := true | false. Moreover, several
basic operations like equality (=) , conjunction (,), disjunction (;) and so on are
predefined. In [12], a straightforward translation of Prolog rules to Babel rules
is shown.

2.1 Narrowing Semantics

The operational semantics of Babel is based on narrowing. To use narrowing
as the operational semantics of (syntactically) functional languages was first
proposed by Reddy [21]. An expression e is narrowed by applying the minimal
substitution that makes it reducible, and then reducing it. The minimal substi­
tution is found by unifying e with the left hand side of a rule. A new expression
e' and an answer substitution a binding some variables from e are the outcome
of one narrowing step (denoted by e =>CT e'). If, after several steps, an expression
e is narrowed to a term t, we speak of a computation for the goal e with result t
and answer a, where a is the composition of the answer substitutions of all the
individual steps. If e cannot be narrowed further, but it is not a term, then the
computation fails. The machine will backtrack in such a situation. The rules are
tried in their textual order.

The goal in the towers of Hanoi example can be narrowed as follows:
1. solution: towers a b c N [] ^{N/I} [[a>c]]
2. solution: towers a b c N [] =^{N/SUC M}

towers a c b M [[a,c] | towers b a c M []] =^{M/I}

towers a c b 1 [[a,c],[b,c]] =^
[[a,b],[a,c],[b,c]]

3. solution: . . .
The outcome of the second solution consists of the result [[a,b],[a,c],[b,c]] and
the answer {N/ suc 1}.

2.2 Extensions of Babel to Express Parallelism

An (intermedíate) goal usually contains several subexpressions, which can in
principie be narrowed in parallel. In the above example, the expression

towers a c b M [[a,c] | towers b a c M []]
contains two applications of the function towers, namely e\ := towers a c b M
[...] and 62 '•= towers b a c M []. The resulting parallelism is a generalization
of the and-parallelism of Prolog. While in Prolog the conjunction is the only
way to connect applications of predicates, Babel allows arbitrarily nested func­
tion applications. Although the notion subexpression parallelism might be more
appropriate, we will still cali it and-parallelism.

Explicit Parallelism. Clearly, it is not always advisable to narrow subexpres­
sions in parallel. First of all, there is the issue of "granularity" (we will deal
with other issues in the foUowing section): for a "small" expression (in terms of
execution time) it may be the case that spawning a process to evalúate it is more
expensive than evaluating the expression sequentially. Although some work has
been done on automatic granularity analysis [2,14] available results still need
to be extended to functional logic languages and there are still few practical
analysis tools. In this paper we adopt the solution of providing a special syntax
which allows the expression of the desired parallelism. This allows the user, who
is in the best position to determine which expressions are complex enough, to
do so. Alternatively, if an automatic parallelization of the program is possible
based on techniques capable of predicting the granularity of the subexpressions,
the proposed language can serve as the intermedíate language to which these
tools transíate.1

First, we will extend the syntax of expressions with what will be termed a
letpar-expressiome ::= letpar Xi := e\ & . . . & Xn := en in e
where e2 has to be an application of a defined function to terms (1 < i < n)
and e may contain the new auxiliary variables X\, . . . , Xn. To simplify the
implementation, we allow at most one letpar-expression in each rule. This is
no real restriction, since it is always possible to decompose an expression by
introducing new functions.

The meaning of a letpar-expression is that e±,... ,e„, and e (!) will be nar­
rowed in parallel. e will be evaluated using a leftmost innermost strategy. If e
needs the outcome of some e¿, it has to wait (suspensión) until the corresponding
process is ready (synchronization), at which point it can continué (reactivation).
The outcome of e2 is needed if an X¡ or a variable Y, occurring in e and e2, is
accessed during the narrowing of e. In order to facilítate backtracking (to be dis-
cussed in Section 4), we will require that the outcomes of e\, . . . , en are always
needed in the same order. If some outcomes are needed in a runtime dependent
order, we say that all of them are needed, when the first of them is needed. For
example in
1 This is the approach taken in the &-Prolog system [9], which has allowed a concurrent

but rather independent development of the parallel language implementation and the
automatic parallelization tools.

letpar Xx := ex & X2 := e2 in h (b -> Xx • X2) Xi X2

the outcomes of e\ and e2 are both needed after the narrowing of b.
In order to make the parallelism in the towers example explicit, we can change

the function towers as follows:

fun towers: pin —>• pin —>• pin —> nat —>• (list (list pin)) —>• (list (list pin)) —> bool.
towers Source Help Dest 1 L R := R = [[Source, Dest] | L].
towers Source Help Dest (suc M) L R :=

letpar Li := towers Help Source Dest M L R i &
L2 := towers Source Dest Help M X R

in [[Source,Dest] | Ri] = X
—>• true.

Note that the type of towers had to be changed in order to enable the decompo-
sition of the nested application of towers using the free variable X. Remember
that free variables are only allowed in the guard. The goal has to be changed
correspondingly:

solve towers a b c N [] R.

R will be bound to the oíd result.

Independent And-Parallelism. Even if two expressions are of adequate gran-
ularity there is still another issue, the existence of dependencies among the ex­
pressions to be executed in parallel, which may make it not always advisable
to do so. In general, if two expressions which are narrowed in parallel have an
unbound variable in common, this may lead to problems. Consider the following
simple rules:

/ a := g a f b := 1 g b := 1

If the goal is / X = g X, the two expressions e\ := / X and e2 := g X can be
narrowed in parallel. Suppose that the narrowing of e\ binds X to a and reduces
f a to g a. Now, the narrowing for e2 may want to try the rule for g. This fails
because X is already bound to a and it cannot be bound to b. After this, the
narrowing of e\ fails because there is no rule for g a. Henee, X is unbound and
later bound to b, in order to try the second rule for / . But this is already too
late for the narrowing of e2, since it has already discarded the rule for g.

This example shows only one possible problem which may arise when depen-
dent expressions are narrowed in parallel. Other more complicated situations can
oceur. A general solution ensuring that the correct result is always computed
would arguably require a very complicated backtracking mechanism which would
be a source of large overheads. Furthermore, there is an additional complication
related to efficieney in ensuring that the search space to be explored by the pro-
gram is not enlarged [10]. Due to these problems we take the approach, inspired
by the theoretical results obtained for independent and-parallelism in Prolog
[10] (ensuring correetness and "no-slowdown" properties for parallel execution),
that subexpressions will only be narrowed in parallel if they are independent,

i.e. they do not share unbound variables. As in [10], we offer two built-in (pseudo-
)functions

ground: a —>• bool. independent: a —>• (3 —>• bool.

ground e delivers the result true, if e is a ground term (i.e. a term without
unbound variables) and false otherwise. independent e e' delivers the result true,
if e and e' do not contain a common unbound variable and false otherwise. As
in [3, 8] the implementation of ground and independent may decide to deliver
the valué false, if it is too expensive to compute the exact valué, e.g. if ground
is applied to a very long list. These pseudo-functions may be used to guard a
letpar-expression:

e ::= letpar grd =>• X\ := e\ & . . . & Xn := en in e
where grd is a conjunction of pseudo-function applications. The meaning of such
a letpar-expression is that ei, . . . , e„, and e will be narrowed in parallel, if grd
evaluates to true. Otherwise, they will be evaluated sequentially.

Accordingly, the second rule of the towers example might be modified to:

towers Source Help Dest (suc M) L R :=
letpar (ground [Source, Dest, Help, M]), (independent L R) =>•

Li := towers Help Source Dest M L R i ,
L2 := towers Source Dest Help M X R

in [[Source,Dest] | Ri] = X —• true.

For the goal "íowers a b c N [] R", this results in a sequential evaluation, since
N is not ground. But e.g. "íowers a b e (suc 1) [] R" would be narrowed in
parallel.

In many cases, global program analysis [17] can detect that a variable is
always bound to a ground term or that two variables are always independent.
In those cases, the corresponding checks can be omitted at runtime. For the
second goal, for instance, and for a given query pattern, it is possible to infer
that Source, Dest, Help, and M are always bound to ground terms and that
L and R will be independent, and all checks can be removed. Note that this
type of program analysis is easier in Babel than in Prolog, due to the presence
of types and nested function applications in Babel. In Prolog, nested function
applications need to be flattened by introducing new variables, and it may take
some effort to rediscover the structure which the programmer originally had in
mind.

2.3 Deterministic Computations

In order to apply a rule, the arguments of a function are unified with the cor­
responding patterns on the left hand side and the guard is evaluated. Often,
no variables of the rule are bound during the unification and the evaluation of
the guard. We cali this a deterministic computation [16,12], since the syntactic
restrictions on Babel rules (Section 2) imply that no other rule for the same
function needs to be tried. Henee, no choice point is needed in this case. Note
that this optimization is more difScult in Prolog, since it uses relations rather
than functions.

3 The And-Parallel Babel Machine

The PBAM is a parallel abstract graph narrowing machine tha t has been de-
signed for the implementation of Babel on a shared memory multiprocessor. It
has a decentralized organization of the runtime structures in a graph instead of
a stack.

The graph component of the PBAM contains, among others, so-called task
nodes which correspond to ordinary activation records of function calis, but
which for decentralization purposes contain all the information needed to execute
a function cali, e.g. a stack for da ta manipulations and a local program counter.
Some information for parallel execution is also needed.
The store of the PBAM consists of these components:

— the program store containing the translation of the Babel rules into PBAM
code,

— the graph, which may contain task-, variable-, and constructor nodes,
— for each processor, one active task pointer, which points to the task node

corresponding to the currently executed function cali,
— a task queue, containing pointers to task nodes, ready to be executed.

Task Node:
TASK code address argument list local variables

program counter local stack | father pointer
backtracking information parallelism information

backtracking information:

local trail determ. flag
backtracking address

backtracking pointer last descendant pointer
program counter and local stack of the father

parallelism information

Constructor Node:

Variable Nodes: unbound

parallelism flag Ti state Ti T state Tr,

CONSTR constructor ñame list of components

UBV or bound: VAR Graph-address

Fig. 1. Structure of graph nodes.

3.1 T h e G r a p h

The graph consists of several nodes which are accessed via their addresses. Fig­
ure 1 shows the structure of such nodes. The computation is controUed by the
task nodes, which represent function applications. Each task node contains:

— the code address of the code for the corresponding function symbol,
— pointers to the graph representations of the arguments,
— a list of pointers to initially unbound variable nodes representing local vari­

ables,
— the program counter,
— the local stack, needed for accessing and building structures in the graph,

— the father pointer, pointing to the node by which the current node has been
created (this pointer is used when a task finishes successfully and control
has to be returned to the father task), and

— the return flag indicating whether the task is looking for its first solution.

The task nodes contain also certain backtracking information. This consists
of

— a local trail which keeps track of variable bindings to be removed in case of
backtracking,

— a determinism flag used to discover whether the current function cali is a
deterministic computation,

— a backtracking pointer indicating the task that has to be forced to backtrack
in case of a failure,

— a last descendant pointer indicating the last successful descendant of the
current task (used to initialize the backtracking pointer of newly generated
subtasks),

— a backtracking address, which is the program address of the next alternative
rule of the current function cali, and, finally,

— safe copies of the program counter and the local stack of the father task
which have to be restored upon successful termination after backtracking
has occurred.

All this will be explained in more detail in the following section, where the
organization of backtracking is shown.

In order to control parallel execution, task nodes contain also some parallelism
information. This consists of

— a parallelism tag indicating whether subtasks shall be evaluated in parallel,
— pointers to the tasks involved in the parallel execution,
— a status tag for each of these tasks, which should contain the valúes READY,

DETERMINISTIC, EXECUTING, Or DORMANT.

In addition to the task nodes, the graph contains constructor and variable nodes.
Constructor nodes represent structured data. They contain the constructor ñame
and a list of pointers to the graphs representing the components of the structure.

Variable nodes are needed for the organization of unification. We distinguish
nodes for unbound and bound variables. Unbound variable nodes only consist
of the tag (UBV). When a variable is bound, the corresponding node is changed
into a bound variable node pointing to the node representing its binding.

3.2 Translation

Next, we show how a Babel program is translated into PBAM-code and sketch
the behaviour of the machine instructions. Due to lack of space, we will only
treat the translation of a letpar expression in detail. The general translation
scheme will be sketched using an example. An expression:

letpar grd =>• Xi := fx í M . . . í i , m i & . . . & Xn := /„ í„,i . . . tn¡mn in e
produces the following code

code for grd
code for ti,i . . . t i j m i

PCALL (ck(/i), mi, k i , l)

code for t„,i . . . tn,mn

PCALL (ca(/„), m„, k„, n)
code for e

where kj is the number of local variables of f¿ (1 < i < n).

grd is some test for independence and is translated by using the instructions
GROUND and INDEPDNT. The code for evaluating the expression e has the
following properties:

— Before the first appearance of each X¡ or of a variable Y occurring in the
terms t^\,... ,t2¡rni, where Y is not guaranteed to be bound to a term, the
instruction WAIT i is inserted.

- Each consultation of Xt is done by the instruction LO ADR i.

In Figure 2, the translation of the towers example and of the goal (towers a b e
(suc 1) [] R) is given. The first CALL instruction generates a task node for the

forcé:
towers:

rule2 :

bina:

rhs-2:

CALL {goal, 0, 1)
MORE
JPF stop
FORCÉ
TRY_ME_ELSE rule2
... code for the first rule
RET

: UNDO
TRY_ME_ELSE fail
LOAD 4
UNIFYCSTR (suc,l,bmd)
UNIFYVAR 1
JMP rhs-2

:LOADX 1
CNODE (suc,l)
BIND

: CUT fail
GROUND 1
GROUND 3
GROUND 2
GROUNDX 1

INDEPDNT
LOAD 2
LOAD 1
LOAD 3
LOADX 1
LOAD 5
LOADX 2

(5,6)

PCALL (towers,6,3,l)
LOAD 1
LOAD 3
LOAD 2
LOADX 1
LOADX 3
LOAD 6
PCALL (towers,6,3,2)
LOAD 1
LOAD 3
CNODE (nit !,0)
CNODE (cons,2)
CNODE (cons,2)
WAIT 1

fail:

goal:

end:
stop:

LOADX 2
CNODE (cons,2)
WAIT 2
LOADX 3
CHECKEQ
RET
UNDO
FAILRET
TRY_ME_ELSE en,
CNODE (o,0)
CNODE (6,0)
CNODE (c,0)
CNODE (1,0)
CNODE (suc,l)
CNODE (ni/,0)
LOADX 1
CALL (towers,6,3)
RETURNRESULT
PRINTFAILURE
STOP

Fig. 2. PBAM-code for the towers example.

goal and starts its evaluation. After a successful evaluation, the programmer is
asked by the instruction MORE, whether more solutions are wanted. If this is
the case, the FORCÉ instruction is executed and the task for the goal is forced

to backtrack. Otherwise, control jumps to the STOP instruction at the end of
the code. The translation of the functions follows after this preliminary code.

The towers example contains only one function with two rules. Since the first
rule does not contain any parallelism, we omit its code due to the lack of space.
The code for the second rule starts with an UNDO instruction that deletes the
bindings that should have been produced by the first rule. Then, the backtracking
address fail is stored in the actual task node (TRY_ME_ELSE fail). This label
will be used if the rule fails. After this, the non-variable arguments of the actual
task are unified with the corresponding terms on the left hand side of the rule.
The 4th argument must consist of an application of the unary constructor suc. If
this is the case, the UNIFYCSTR command leaves a pointer to the substructure
(argument) of this argument on the stack. It is unified with the corresponding
part of the term on the left hand side of the rule (UNIFYVAR). If the 4th
argument is an unbound variable, this variable is bound to the appropriate term
(by the three commands following bind). These possible actions correspond to
the read and write mode of the WAM [24], respectively. If the 4th argument
starts with another constructor than suc the rule fails.

The translation of the body of the rule starts at label rhs-2. The CUT in­
struction at the beginning of the code for the body is used to detect deterministic
computations, as mentioned in Subsection 2.3. If the current computation is de­
terministic this instruction sets the backtracking address to the fail label of the
considered function. The technical details of the CUT instruction can be found
in [12,16].

The top expression on the right hand side is a letpar construction. First, code
is generated to check the groundness of the arguments Source, Dest, and Help
(using GROUND instructions) and of the local varible M (using GROUNDX
1). Then, code to check the independence of L and R (instruction INDEPDNT
(5,6)) is appended. GROUND, GROUNDX, and INDEPDNT set the parallelism
flag (initially true) to false, if the corresponding check fails. If the parallelism
flag is false, subsequent GROUND, INDEPDNT, and WAIT instructions will
be ignored and PCALLs are handled like CALLs.

Using LOAD (to load an argument) and LOADX instructions (to load a local
variable) the arguments for the cali to towers are pushed on the stack. A task
for the first cali to towers is produced with a PCALL instruction, moving the
arguments to the new task node. The second cali to towers is handled analo-
gously. The code for the main expression in the letpar, an equality, follows next.
First the arguments of the equality are constructed on the stack using LOAD,
LOADX, and CNODE instructions. CNODE (c,k) takes k components from the
stack and inserís them into a new constructor node for constructor c.

However, before the use of Ri (LOADX 2), the first parallel task needs to be
finished. The instruction WAIT 1 is used to wait for this event. Similarly, WAIT
2 is placed before the use of X (LOADX 3).

Finally, control is given back to the calling task by RET. If the second and
last rule also fails a jump to the command referenced by the current backtrack

address (fail) is performed. All bindings produced by the rule are deleted (by
UNDO) and backtracking is initiated (by FAILRET).

The translation of the goal appears after the code for the towers function.
This translation is done analogously to the translation of the right hand side of
a rule. A RETURNRESULT is included at the end in order to print the result
after a successful termination. This instruction terminates the evaluation of the
goal and gives control back to the top level task which continúes with the MORE
instruction. If the evaluation of the goal ultimately fails this is reported by the
PRINTFAILURE command.

4 Backtracking

This section describes the management of backtracking both in the sequential
and in the parallel case. Although the components of the backtracking infor-
mation have already been sketched previously, we now explain their behaviour
in detail. The local trail is a list of graph addresses indicating bound variable
nodes, which have to be replaced by unbound variable nodes when an UNDO
instruction is executed. The management of backtracking is mainly controlled
by two pointers: a so-called backtracking pointer to the predecessor task and a
so-called last descendant pointer to the most recently generated task, i.e. the last
successor task generated by the task or one of its descendants.

The notion of a predecessor task needs a precise definition. If a task is the first
child of its father the predecessor task is the father. Otherwise, in the sequential
case, it is the last task that terminated successfully before the currently executed
task was generated.

In the parallel case, the predecessor task is initially the task fmished before
the code for the letpar was started. When WAIT i is executed, the backtracking
pointer of the i-th parallel task is set to (the last descendant of) the previously
fmished task (if it is a sequential one), or to the (i — l)-th parallel task, if there
is no cali to a task between the use of task i — 1 and i, i.e. between WAIT i — 1
and WAIT i. Furthermore, the last descendant pointer of the father is updated
with the last descendant pointer of the parallel task. By using this mechanism,
the last descendant pointer of a task contains the most recently used task and
it can help to set the backtracking pointer of the next task.

The backtracking pointers determine an implicit stack of nodes that reflects
the order in which the nodes have been activated. While the father pointers are
used to control the forward computation, the backtracking pointers determine
the order of backward computation:

- A task returning with success (RET command) gives control to the father
task (indicated by the father pointer) which continúes its execution.

— A task returning with failure (FAILRET command) gives control to the
predecessor task in the implicit stack (indicated by the backtracking pointer).

Here, it is important to point out that a deterministic task without children
cannot give any new result, and it is not included in the backtracking chain.
Any parallel task of this kind has the status DETERMINISTIC.

Some additional information for handling backtracking is needed in the task
nodes. The backtracking address is the program address where the task must
continué in case of backtracking (i.e. the address of the next rule). The back­
tracking information contains also a safe copy of the state of the father: a copy
of the program counter and the stack. It is used to restore the state of the father
in case of termination of a subtask after some backtracking has occurred. In
this case the father must redo all evaluation that was done after the previous
successful termination of the subtask. The copy is made during the execution of
the CALL or PCALL command and the restoration is made after the successful
reevaluation of a subtask, by the RET instruction in the sequential case and by
the WAIT instruction in the parallel case. This situation is detected by checking
the return flag.

Now, we can explain an instance of backward execution using an example.
We want to evalúate the body of the rule:

f X := g eo (letpar
Xi := ei & X2 := e2 & X3 := e3 in (b Xx e4 X2 -> h X3))

The structure of the graph after the evaluation of this expression is shown in
Fig. 3.2

father pointer
backtracking pointer

Fig. 3. Structure of the graph.

There are three situations when a task fails:

Sequential backtracking to the predecessor task appears, if the failing task was
not spawned by a letpar (e.g. when backtracking from g to h, h to e3, b to e2

(e3 may still be running), e4 to ei, and eo to /) .

Parallel inside backtracking occurs when a task fails during its execution in par­
allel with other tasks. In this case, intelligent backtracking can be performed.
Since we use independent and-parallelism, the failure is certainly not caused by
a bad binding of a parallel sibling. Henee, the parallel sibling tasks and the in­
termedíate sequential tasks (like e4 and b) are removed and their bindings are
undone (by the FAILRET instruction of the failing task). In our example, this
kind of backtracking occurs if ei,e2 or e3 fail, looking for their first solution.
They will backtrack to eo.

Sequential inside backtracking occurs when the reevaluation of an originally par­
allel task Tj fails. If it is not the first one, it backtracks to the predecessor task

2 Note that the order in which the expressions are linked in the backtracking chain is
the order in which they are used, rather than that in which they are generated or
specified.

like in sequential backtracking (e.g. from e-¡ to b, e^ to e.4), but it is converted
into a dormant task (which can be reexecuted). If it is the first one, the complete
letpar expression fails and all the parallel tasks are disposed. If T¿ returns with
success, the rest of the dormant tasks are evahiated from scratch (in parallel).

Returning to the example: if the reevaluation of e\ fails, the whole letpar
expression fails and all the parallel tasks e±, e2, and e-s are deallocated. However,
when a new solution is generated, e^ and e-¡ are started again, and e^ is executed.
After this, the corresponding WAIT command before the use of X2 ensures the
synchronization with e^ and the execution of b is started. The synchronization
with e-s can wait until b finishes.

Note that e^ and e-s are only restarted when e^ has produced a new result.
The policy is to restart the execution of parallel tasks only in the case of a
forward execution and not in a backward one.3

Recall that deterministic tasks are not included in the backtracking chain. There-
fore, they are not affected by the backtracking mechanism and, henee, they are
not reevaluated. However, the result is kept for later use. Suppose that, in our
example, e^ is a deterministic task. A failure in b yields backtracking to e^, but
the result of e<¿ can be accessed after a successful reevaluation of e±.

5 Some Related Work

Due to length limitations we will only review some directly related work. As
mentioned in the introduction, the approach taken herein contrasts with that of
other languages, normally termed Logic functional languages, which are based
on adding support for functional characteristics to a logic language both at the
language and implementation levéis. A notable example of such languages is K-
LEAF [1]. A parallel execution model for this system has also been proposed
and implemented. However, it is based on the exploitation of or-parallelism and
its abstract machine is an extensión of a logic abstract machine, rather than
a functional one. Thus, the solutions presented herein are different and com-
plementary to those presented for K-LEAF. Since there is also backtracking in
Babel, or-parallelism can also be exploited by extending the PBAM with either
the environment sharing or the environment copying techniques used in the com-
bination of and- and or-parallelism in Prolog, or, perhaps, with the techniques
used in K-LEAF.

Some authors have proposed or implemented functional logic systems which
support dependent And-parallelism (e.g. [13]). In [13] every variable belongs
to a process, and only the owner may bind it. Usually, the extended synchro­
nization in such systems imposes more overhead. It is not clear at this point
whether this overhead would be worthwhile. An interesting logic programming
system which does support dependent and-parallelism is the Andorra-I system
[4], which allows (in addition to or-parallelism) dependent and-parallelism but
only for goals which can be found to be deterministic. A similar approach could

3 This corresponds to "point backtracking" as opposed to "streak backtracking" [6].

be taken in the PBAM, with the advantage of being able to more easily detect
determinism. This deterministic dependent and-parallelism could be combined
with the non-deterministic independent and-parallelism presented in the spirit of
the combination of the Andorra-I and &-Prolog systems presented in the IDIOM
model [22].

The approach presented in this paper borrows similarities from the indepen­
dent and-parallelism found in Prolog [3, 6,9,10] and exploited in &-Prolog. The
main difference is that in that scheme the processes for some expressions e\ &
. . . & e„ are not linked by an expression e in a letpar expression. Rather, the
evaluation of e would have been placed after that of e±, . . . , en. This leads to a
simpler backtracking mechanism, but it requires the complete reevaluation of e,
if some e2 has to produce a new solution. Many of the compile-time techniques
developed in the context of this work could be extended to be useful for the
model presented in this paper.

The idea of running e±, . . . , e„, and e in parallel, and to synchronize e and
e¿, when e needs the result of e¿, was used for the implementation of a purely
functional language in [15]. In their framework, the order of the processes is not
important, since in a functional language there is no backtracking.

The idea of allowing parallel expressions to proceed until their results are
required, although developed independently, is reminiscent of Halstead's mul-
tilisp "future" construct [5]. However, the reasons for which synchronization is
imposed are quite different in Babel, since they are related to nondeterminism
and the partly logical nature of the language.

6 Conclusions and Future Work

We have presented some techniques for the parallel implementation of narrowing,
by integrating mechanisms used in functional and logic programming implemen-
tations. We propose a new synchronization model, where it is only necessary to
wait for the valué of a parallel subexpression, if the result is needed. The ap­
proach increases the parallelism and decreases the reevaluation effort, especially
in the case of deterministic computations. We have also presented an abstract
machine, the PBAM, capable of implementing the model of parallelism, sketched
the translation process from Babel to PBAM instructions, and discussed in detail
the more involved issues, such as backtracking.

Currently we are developing a concrete Babel implementation on a Sequent
shared-memory multiprocessor, based on the approach presented. We hope to
have a complete running prototype and some performance measurements in the
near future. As future work, we plan to investígate the efficient management of
the stopping of processes in order to implement the intelligent backtracking, and
emcient groundness and independence tests. We also plan to develop a parallel
machine for lazy narrowing, extending the design presented in [18]. Moreover, we
wish to intégrate the machine in a distributed environment. The graph structure
will support this.

References

1. P. Bosco, C. Cecchi, C. Moiso, M. Porta, G. Sofi: Logic and Functional Program-
ming on Distributed Memory Architectures, Proc. 7th ICLP, 325-339,(1990).

2. S. Debray, N.-W. Lin, M. Hermenegildo: Task Granularity Analysis in Logic Pro-
grams, Proc. ACM Conf. on Programming Language Design and Implementation,
1990.

3. D. DeGroot: Restricted And-parallelism, Conf. on 5th Generation Comp. Syst.,
1984.

4. G. Gupta, V. Santos Costa, R. Yang, M.V. Hermenegildo: IDIOM: A Model In-
tegrating Dependent-, Independent-, and Or-parallelism, Proc. of the 1991 Int'l.
Logic Programming Symposium, MIT press.

5. R. Halstead: Multilisp: A Language for Concurrent Symbolic Computation, ACM
Trans. on Prog. Languages and Systems 7:4, October 1985, pp. 501-538

6. M.V. Hermenegildo: An Abstract Machine for Restricted And Parallel Execution
of Logic Programs, 3rd Int. Conf. on Logic Programming, LNCS 225, 25-39 (1986).

7. M.V. Hermenegildo, R.I. Nasr: EfRcient Management of Backtracking in And-pa­
rallelism, 3rd Int. Conf. on Logic Programming, LNCS 225, 40-50 (1986).

8. M.V. Hermenegildo, M. Carro: Experimenting with Independent And-ParaUel Pro­
log using Standard Prolog, Proc. PRODE'91, and Tech. Report, UP Madrid.

9. M.V. Hermenegildo, K.J. Green: &-Prolog and its performance: Exploiting Inde­
pendent And-Parallelism, Proc. 7th ICLP, 253-268, (1990).

10. M. Hermenegildo, F. Rossi: Strict and Non-Strict Independent And-Parallelism in
Logic Programs: Correctness, Emciency, and Compile-Time Conditions, Journal of
Logic Programming, to appear (1992).

11. H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodríguez Artalejo: Graph-Based
Implementation of a Functional Logic Language, ESOP, LNCS 432:271-290 (1990).

12. H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodríguez Artalejo: Graph-
Narrowing to Implement a Functional Logic Language, Technical Report, UP
Madrid (1992).

13. H. Kuchen, W. Hans: An And-Parallel Implementation of the Functional Logic
Language Babel, Aachener Informatik-Bericht 91/12:119-139, RWTH Aachen
(1991).

14. A. King and P. Soper, Granularity Analysis of Concurrent Logic Programs, 5th
Int. Symp. on Computer and Information Sciences, Nevsehir, Turkey, 1990.

15. R. Loogen, H. Kuchen, K. Indermark, W. Damm: Distributed Implementation of
Programmed Graph Reduction, PARLE, LNCS 365:136-157(1989).

16. R. Loogen, S. Winkler: Dynamic Detection of Determinism in Functional Logic
Languages, 3rd PLILP, LNCS 528:335-346 (1991).

17. K. Muthukumar, M.V. Hermenegildo: The CDG, UDG and MEL methods for
Automatic Compile-time Parallelization of Logic Programs for Independent And-
Parallelism, Proc. ICLP, (1989).

18. J.J. Moreno Navarro, H. Kuchen, R. Loogen, M. Rodríguez-Artalejo: Lazy Nar-
rowing in a Graph Machine, 2nd ALP, LNCS 456:298-317 (1990).

19. J.J. Moreno Navarro, M. Rodríguez-Artalejo: Babel: A Functional and Logic Pro­
gramming Language Based on Constructor Discipline and Narrowing, Int. Conf.
on Algebraic and Logic Programming (ALP), LNCS 343:223-232 (1989).

20. J.J. Moreno Navarro, M. Rodríguez Artalejo: Logic Programming with Functions
and Predicates: The Language Babel, J. of Logic Programming: 12: 191-223 (1992).

21. U.S. Reddy: Narrowing as the Operational Semantics of Functional Languages,
IEEE Int. Symp. on Logic Progr., IEEE Computer Society Press, 138-151 (1985).

22. V. Santos Costa, D.H.D. Warren, R. Yang: Andorra-I: A Parallel Prolog system
that transparently exploits both And- and Or-Parallelism, Proc. Principies and
Practices of Parallel Programming, to appear.

23. D.A. Turner: Miranda: A Non-Strict Functional Language with Polymorphic
Types, ACM Conf. on Functional Languages and Computer Arch., LNCS 201:1-16
(1985).

24. D.H.D. Warren: An Abstract Prolog Instruction Set, Technical Note 309, SRI In­
ternational, Menlo Park, California, October 1983

