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Abstract. An extension of PROLOG which supports software specification 
by means of a class of two-level grammars is presented. AFFLOG logic 
programs are typed and modes can be specified if desired. By examining their 
underlying grammatical properties, a static analysis is performed. Our 
purpose is to support translator writing starting from a grammatical model 
that has been checked and debugged. 

1 The context 

Data processing can be viewed fundamentally as the transformation of data 
delivered as character strings into results which are character strings too. Therefore, 
programs should be designed as translators of the language defining the input data into the 
language defining the output data. Processing steps are considered as semantic compu- 
tations on some intermediate languages. 

Typical approaches of the so-called grammatical programming framework have 
been described e.g. in [Hehner-83,Torii-84]. However, these works are limited from the 
following points of view : 

- the grammatical formalisms which are used. In general, only the context-free 
approximation of the input language is formalized. 

- the static checks which are performed on the definitions. Few works 
emphasize the need to check and debug the specifications. 

Our goal is to propose a powerful grammatical formalism (Chomsky's class 0) 
that helps to write readable specifications which can still be machine-oriented and 
automatically evaluated (e.g. to produce parsers or translators). We investigate the use of 
two-level grammars and in particular the Extended Affix Grammar formalism (EAG) 
[Watt-74]. 

In [Boulicaut-92], a Wide Spectrum Grammatical Programming Framework is 
proposed. Starting from formal specification by means of an EAG, a program (i.e. a 
translator) is considered as a device that computes tuples from a characteristic relation of 
this EAG. In this framework, the refinement of the specification, from prototyping 
through efficient implementation relies on affix grammars. A compiler compiler like 
STARLET [Beney-90] is used when we have to compute deterministic translations (a 
realistic need). 
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Besides, there is a close relationship between context-sensitive grammar proces- 
sing and logic programming [Kowalski-79,Colmerauer-75,Deransart-88]. Chomsky's class 
0 languages Can be defined by logic grammars such as Metamorphosis Grammars 
[Colmerauer-75] or Definite Clause Grammars (DCG) [Pereira-80], which are easily 
compiled into PROLOG programs. 

However, experiences show that a PROLOG translator writer needs to define 
"metastructures" to improve the readability of written translators and to check well- 
formedness conditions. Even during the prototyping phase, efficiency has to be improved 
by a backtracking control and an informed use of unification (taking concatenation 
associativity into account...). The production of more reliable PROLOG programs is made 
easier by using systems which have explicit type definitions. Two-level grammars like 
EAG provide a mean of expression for these metastructures and their relationships with 
PROLOG are well-known [Maluszynski-82a]. 

The main goal of our current research is to support the specification process by 
means ofEAG. J. Maluszynski studied the question of programming with transparent W- 
grammars [Maluszynski-82ab,84] and the first experimental implementation of a logic 
programming language that should support these ideas [Maluszynski-82c,N~islund-87]. 
Then, our purpose is to explore the methodological impact of multiple transfers between 
grammatical and logic programming using EAG instead of transparent W-grammars. 

From a methodological point of view (see Fig. 1), our approach aims to take the 
most of grammatical modelling and logic programming. There are three important 
relations during the life-cycle of a program : the intended relation, (the intended declarative 
semantics), the specified relation (what is stated by the specification) and the computed 
relation (what the programming system computes). A program design method must 
supply systematic design elements for these three relations, in particular help to debug 
computed and specified relations. 

~ Extended 
k~ l~etatt~ j l  GraAfmFm~ars 

Program 

Fig 1 : .4 methodological point of view 

Since programs are considered as translators, the specification method relies on 
techniques borrowed from compiler design (the specified relation is described by an EAG) 
while the relation is computed through logic programming. We also write logic programs 
which do not generate a language (the specified relation is described by Horn clauses and 
the language generated by the underlying grammar is reduced to the empty string). 
Informations can be extracted from these logic programs provided one consider them as 
two-level grammars. 

As a first step towards computer-assisted grammatical modelling, we propose the 
experimental tool AFFLOG. 
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AFFLOG can be considered to be : 

�9 A two-level grammatical formalism. A text is a two-level grammar 
which borrows concepts from extended affix grammars and logic grammars. Thus, such a 
text will generate a language. The AFFLOG formalism aims to bridge the gap between 
the informal specification of a problem and its formal one by enhancing readability (the 
use of strings instead of compound terms). 

�9 An extension of PROLOG. A PROLOG program is a special case of an 
AFFLOG program where a (meta) grammar specifies the structure of the terms and where 
the terminal vocabulary is empty (i.e. its language is reduced to the empty string). 

2 T h e  A F F L O G  P r o g r a m m i n g  T o o l  

2 . 1  A n  o v e r v i e w  

An AFFLOG program mainly consists of a metagrammar (CF-rules describing 
intermediate languages i.e. the syntax of the terms which will be used) and a hyper- 
grammar which is the definition of a context-sensitive grammar. 

Figure 2 illustrates the processing done by the AFFLOG logic programming 
system. 

(  r~176 
Transformations I 
Translation ~ 

H-processor ~Static 
~ ~rheaCkslStion 

AFFLOG 
interpreter 
I PROLOG 

interpreter 

Fig. 2 ." An overview of the AFFLOG two-level grammar processor 
The M-processor compiles the metagrammar when it is well-formed (see w 

2.2.3). The H-processor compiles the hypergrammar provided that the static analysis is 
successful (see w 2.3). 



161 

Let us introduce AFFLOG semantics thanks to a self-explanatory program. We 
consider the question of an environment conslruction in a small programming language. 

E1 (comments  in italic style) 

The metagrammar is : 

DECS <= 

DEC <= 

TYPE <= 
BASIC <= 

IDF <= 

DEC DECS ; EMPTY. 
one DECS is a list of  DEC which may be reduced to EMPTY 
IDF TYPE. 
one DEC is an IDF followed by a TYPE 
"ref" TYPE ; BASIC. 
"int" ; "bool". 
a BASIC is the string ""int" or the string "bool" 
"i" ; "j" ; "k" .  

The hypergrammar is : 

declarations (DEC DECS) 
declaration (IDF TYPE ) 
more_declarations (DECS) 
type (ref TYPE) 
type (BASIC) 

<- declaration (DEC), more_declarations (DECS). 
<- ?IDF, type (TYPE). 
<- ?";", declarations (DECS). 
<- ?"ref",  type (TYPE). 
<- ?BASIC. 

The axiom is S : declarations(DECS). 

?X reads a symbol (PROLOG term) on input and unifies it with X. 

Given the query : <- declarations (DECS 1). 
If the input string is "k bool ; j ref ref int" then the provided answer is 

declarations(k bool j ref ref int), a variable-free instance of the axiom S. 

Let us introduce more precisely AFFLOG semantics. 

2 .2  AFFLOG Semantics 

An AFFLOG text can be considered either as an extended affix grammar or as a 
logic program. We will define its semantics from both points of view. 

Formal definition of AFFLOG grammars 

An AFFLOG grammar is a 8-uple (Mn,Mt,Mr,Hn,Ht,Hr,T,S) 

Here, (Mn,Mt,Mr) is called a m e t a g r a m m a r  where Mn is a finite set of non-  
terminal affixes, M t is a finite set of terminal affixes and M r is a finite set of context-free 
affix rules i.e. a subset of Mn| and M n and M t are assumed to be disjoint. 

A variable is an element of Mn possibly concatenated to a natural number. If Vm 
is the set of variables which are built on the nonterminal m, V is the union of the sets 
V m,  me M n. For all m in M n, the language generated by the CF-grammar 
(Mn,Mt,Mr, m) defines the domain for the variables of Vm. 



162 

Then, Hg=(Hn,Ht,Hr,T,S) is called an hypergrammar. 
Hn is a set of (basic) hypernotions. These hypernotions are built with a functor 

name and parameters which are grammatical terms (sentential forms of a CF-grammar 
(Mn,Mt,MR,m)). We use the following syntax : 

functor_name (el ..... en) where 3mie Mn, m i ~ * e  i (by application of affix rules) 
H t is a set of predicates. The right-hand side of a predicate definition contains 

only PROLOG predicate calls and thus can not generate a language. 
Hr is a finite subset of Hn| called the set of hyperrules. 
T=TTuTM is the terminal alphabet (whose symbols are prefixed by '?') where 

TT is a finite set of terminal symbols which appears in the right-hand side of the 
hyperrules while TM is a finite set of terminal symbols which belong to the domains of 
the variables (terminal affixes which are terminal symbols). For the above example El ,  
T= { ";" ,"ref" } u L(IDF)uL(BASIC). 

S~ Hn is the axiom. 

The uniform replacement rule is the basic mechanism for language production in 
a two-level grammar. Following [Maluszynski-84], an hyperreplacement is any string 
homomorphism 0 on (VuMt)* which replaces variables occurring in the grammati-cal 
terms by legal productions according to the metarules. 

The images of hypernotions under hyperreplacements are called hypernotion 
instances. A ground instance is called a protonotion (a variable-free instance of an hyper- 
notion). The set of protonotions is the nonterminal alphabet of a CF-grammar which 
generates a language : the protogrammar. Considering the extension of hyperreplacements 
to hyperrules (hyperrules instances), the set of ground hyperrules is the possibly infinite 
set of (context-free) rules of the protogrammar. Ground instances of the axiom constitute 
the set of axioms of the protogrammar. 

L(G), the language generated by an AFFLOG grammar G is a set of terminal 
strings whose elements are derived from ground instances of S (using protorules). 

In fact, we work with partially instanciated hypernotions and hyperrules and 
construct a stepwise refinement of hyperrules in order to find derivations in G. Thus, the 
problem of grammatical unification must be solved : how can we compute an hyper- 
replacement 0 such that 0(h)=0(h') where h and h' are hypernotions ? 

When it exists, 0 is called a grammatical unifier for h and h' and is given as a set 
of substitutions. The grammatical unification problem is a kind of string equation 
problem where the domains of variables are context-free languages [Maluszynski-82b]. 
The AFFLOG grammatical unification procedure is presented in w 2.2.3. 

Let us consider a second example, E2, whose axiom is instr (ENV,TYPE). This 
AFFLOG program assigns a type to a simple assignment instruction given an environ- 
ment produced by El.  

E2 Context-free definition Static semantics 

INSTR :: I D ,  ":=" , EXPR. int | int -> int & bool | bool -> bool 
EXPR :: PRIM , "+",EXPR ; int | int ->int 

"(", EXPR, "=", EXPR,")"; bool | bool -> bool & int | hat -> bool 
PRIM. bool -> bool & int -> hat 

PRIM :: ID ;NBR. 
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Metagrammar 
ENV <= ITEM ENV ; EMPTY. 
ITEM <= ID TYPE. 
TYPE <= 'int' ; "ooo1' ; 'ref TYPE.  
PRIM <= I D ; N B R .  
ID <= 'T'; "j"; "k"; .... 
NBR <= "1"; "2"; "3"; .... 

Hypergrammar 
(hl) instr (ENV, TYPE) <- 

?ID, ?':=', type (ID,ENV,TYPE), expr (ENV,TYPE). 
(h2) expr (ENV, 'int') <- 

?PRIM, ?'+' ,  type (PRIM,ENV,'int'), expr (ENV,'int'). 
(h3) expr (ENV,TYPE) <- ?PRIM, type (PRIM,ENV,TYPE). 
(h4) expr (ENV, 'boor) <- 

?'(', expr (ENV,TYPE), ?'=', expr (ENV,TYPE) , ?')'. 
(h5) type (NBR,ENV,'int'). 
(h6) type (ID, ID TYPE ENV, TYPE). 
(h7) type (ID, ID1 TYPE1 ENV, TYPE) <- 

dif (ID,ID1), type (ID,ENV,TYPE). 
Axiom 
S : instr (ENV,TYPE). 

Query : <- type (i int k int, j bool,TYPE) 
If the input string is "j := (i +1 = k)", we get TYPE=bool. 

Grammatical semantics 

The specified relation of a grammar G whose axiom S is the hypernotion 
A(t l  ..... tn) is the set of S instances which can produce some terminal strings of L(G) : 
that is 3coe T* such that A(t'l ..... t 'n)~*co where t'i is an instance of ti. 

Example : 
instr (i int j int, int) belongs to the specified relation for E2 (co = "i:=j"). 

A term t'i may contain variables in which case A(t'l ..... t'n) describes a relation 
where t'i would not be variable-free. Hence, these terms define a subset of the language 
generated by the metagrammar. For example, instr (ID int ID1 int, int) describes the set of 
tuples associated to the generic assignment "ID := ID1 " 

The characteristic relation of G is a binary relation which links the specified 
relation to the generated sentences (coe L(G)). The couple <instr(i int j int, int), "i:=j"> is 
an example of tuples over the characteristic relation defined by E2. 

Thus, one may associate a subset of the specified relation to each sentence of 
L(G). String co is called the control. It allows language-controlled computations of a 
specified relation subset. 

Example : noun Cmal","sing") <- ?"bob" 
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Arguments "mal" and "sing" are the properties of the noun "bob". But "bob" is 
used as a control string which selects the instance noun("mar',sing") among the possible 
instances of noun(tp,nb) (tp~ {"mal,,"fem" }, nbe {"sing","plur "}). 

Operational semantics 

The operational semantics of an AFFLOG program is described by the procedure 
which computes instances of the axiom S for a given goal or query i.e. which computes a 
subset of the characteristic relation. Let us introduce some auxiliary concepts and discuss 
the problem of grammatical unification in AFFLOG. 

We write 01(N) to denote that a grammatical unifier 01 is applied to the hyper- 
notion N ; 01o02 denotes the composition of 01 and 02 ; MGGU denotes the most general 
grammatical unifier for two grammatical terms tl and t2. If 0 is the MGGU of tl and t2, 
then 0 is given as a set of substitution pairs [x/y]. 

N=gN' means that N=A(tl ..... tn) and N'=A(t'I ..... t'n) can be grammatically 

unified. We write that Ne gNs, N~ Hn, Ns=(Hn) + (N grammatically belongs to the set 
Ns) if at least one hypernotion N'E Ns such that N=gN' exists. 

Unification in AFFLOG 

Grammatical unification is the basic mechanism for context transmission. In 
AFFLOG, it works on the syntactic structures of the grammatical terms i.e. trees whose 
nodes are labelled by nonterminal affixes and whose leaves are terminal affixes. These 
representations are abstractions of grammatical terms presented as terms of an initial 
algebra associated to the metagrammar. By considering a CF-grammar as a specification 
whose equation set is empty, the initial algebra operators are defined by the production 
rules of the CF-grammar [Goguen-77] and the mapping between strings and algebraic 
terms is performed by classical parsing technics [Saidi-92a]. 

Hence, we must check that for each grammatical term, there exists a CF-grammar 
(Mn,Mt,Mr,m) which generates it. The unification of two terms produces a set of pairs 
[x~] where x is a variable whose associated nonterminal symbol in the metagrammar 
derives y. The efficiency of the unification algorithm can be improved by user-defined 
modes associated to the hypernotions. The following notations are used : '+' for ground, 
'-' for free and '?' for any (e.g. for E2 inslr(+,-), expr (+,-)...). 

Given the following (meta)grammar and two grammatical terms T1 and T2 

INSTR <= ID, ":=", EXPR. 
EXPR <= PRIM, "+", EXPR ; "(", EXPR, "=", EXPR, ")"; PRIM. 
PRIM <= ID ; NBR. 

T 1 : k := (PRIM = EXPR) 
T2 : ID := (x = j  + 1) 

Tree(T1)= instr(id("k"), ":=", expr("(", expr(prim(PRIM)), "=", expr(EXPR), ")")) 
Tree(T2)= instr(id(ID), ":=", expr ( "(", expr(prim(id("x"))), 

"=" , expr(prim(id("j"))), "+", expr(prim(nbr(" 1"))), ")" ) ) 
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We must perform the following confrontations : ID v. k, id("x") v. PRIM and 
EXPR v. expr(prim(id("j"))), "+", expr(prim(nbr(" 1")))). These are terms of the algebra 
associated to the CF-grammar. 

A function from these terms onto (TuV)* gives the following MGGU : 
0=[I1~4c, PRIM/x, EXPR/j+I] 

In order to compute unifiers, the metagrammar must not contain e-rule and must 
not be "infinitely ambiguous" to enable our non-deterministic parser to find a finite set of 
parse trees [Saidi-92ab]. A well-formed metagrammar is compiled into definite clauses and 
the programmer gets a parser for it. 

Resolution in AFFLOG 

The AFFLOG operational device uses the SLD-resolution whose unification part 
is extended to grammatical unification and a PROLOG-like strategy (~0 (considering 
hypernotions as predicates and hyperrules as definite clauses). 

A query consists of (B,5) where B is the goal and 8 a control string. 

For a program P and a goal B such that S=gB, a SLD-derivation of Pu{B} fol- 
lowing Rconsists of a sequence B, B1 ... of goals, a sequence HI, H2 ... of hyperrules 
from P and a sequence 0, 01... of MGGU such that Bi+l can be derived from Bi and Hi+l 
by using 0i+ 1 according to R 

The first unification between axiom S and goal B (the question) gives 0(B)=0(S) 
where 0 is the MGGU of B and S. The resulting goal is (0(S),5) with 6~ T*. 

Let ~5=o)~ where c o , ~ T * ,  o)=O)l...o) k is the string already parsed while 
~=cq...C~p is the string to be parsed. 

If at step i, we have Bi=0i(A) (A <- A1 ..... Am. AjE (HnuHt)) and the control 
string coct, then we can produce Bi+l=0i+l(A' ) and the control string co'a' from Bi by 
using the MGGU 0i+ 1 via Rby one of the following rules : 

| If AI=?X, X is a variable, ifX and c~1 can be grammatically unified 
and [X/ctl] is the resulting unifier 

then 0i+l=0io[X/al], c0'=COal, w=a2...C~p, A'=A2 ..... Am. 

| If Al=%q, and if the PROLOG predicate q succeeds (the empty string 
is derived) producing 0i+ 1 as resulting unifier 

then (o'=co, ~'=c~, A'=A2 ..... Am. 

| If AI~H n and if H <- H1 ..... Hq. is the hyperrule chosen following R 
and if 0i+l is the MGGU of A1 and H 

then 0i+ 1 (A 1 )=0i+ 1 (H) 
c0'=co, ot'=a, A'=H1 ..... Hq,A2 ...... Am. 
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2 . 3  Check ing  and debugging  A F F L O G  p r o g r a m s  

Construct ion  and use of  a Pattern G r a m m a r  

A parse in an AFFLOG grammar G is directed by a context-free parse of the 
input using a pattern grammar G S such that L(Gs)~L(G ) [Maluszynski-84]. Derivation 
trees in G S could be used when trying to build derivations in the AFFLOG program. Note 
that this process may not terminate. 

Let us call definition hypernotion (resp. application hypernotion ) an hypemotion 
which occurs on the left-hand side (resp. right-hand side) of the hyperrules. Let HD be the 
set of definitions and HA be the set of applications. Clearly Se HA. Let -= be the binary 
relation on H (subset of Hn) defined as follows : 

h - h' if h=gh' and he HD and h'e HA or he HA and h'e HD. 
This relation is called the cross-reference relation and its transitive closure is an 

equivalence relation on H. We denote by [h] the equivalence class of h. 

In order to produce the pattern grammar Gs=(Ns ,T ,Rs ,Ss )  we proceed as 
follows : the set N S of the equivalence classes [hi is computed ; T is the terminal 
alphabet ; SS is the equivalence class [S] and in each hyperrule re Hr, we replace each 
hypernotion he Hn by [h]. Predicate symbols for which the generated language is empty 
are then removed from NS and metarules associated to the variables which occur on the 
right-hand side of the hyperrules (prefixed by '?') are added to R S. Finally, GS is translated 
into a metamorphosis grammar [Colmerauer-75]. 

For E2, we produce the following grammar : 
A :: ID, ' :=',  C ,  B. 
B :: PRIM, '+', C, B. 
B :: PRIM, C. 
B :: '(', B, '=', B, ')'. 
C :: C ;  . 
ID :: ... 
NBR :: ... 
PRIM :: -.. 

where 

Seg  A 

A = {inslx 
B = {expr 
C = {type 

(ENV, TYPE) } 
(ENV,TYPE), expr (ENV,'int'), expr (ENV,'boor)} 
(ID,ENV,TYPE), type (ID, ID TYPE ENV, TYPE)... } 

Note that before looking for a derivation which might produce an instance of S, 
the input string could be parsed according to GS by bottom-up parsing methods [Nilsson- 
86]. 

A special case of AFFLOG program must be reported : if T=~ and S ~ * e  we 
have a PROLOG program for which there is no user-defined language conlrol. Grammatical 
unification enables typed PROLOG programming and in that case every instance of the 
specified relation can be computed. 
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E3 : List concatenation 
L <= EMPTY ; X L. 
X <= symbol. 
conc (EMPTY,L,L). 
conc (X L,L1, X L2) <- conc (L,L1,L2). 
S=conc (L 1,L2,L3). 
The pattern grammar is : A .  

A : : A .  
with A={ conc(EMPTY,L,L), conc(X.L1,L2,X.L3), conc(L1,L2,L3) }, SE g A. 

Pattern grammar construction provides a grammar whose language is a super set 
of the one generated by the original AFFLOG grammar. Experimentations might be done 
to check if a given string belongs to the language generated by the pattern grammar. 
Some special conditions are required to get a one-to-one correspondence between the deri- 
vations in both grammars [Wegner-80]. Another use of the pattern grammar is to enable 
an off-line derivation. One may extract all dependencies between grammatical terms and 
build an equational system to be solved when a derivation is constructed in the pattern 
grammar [Maluszynski-82a, Isakowitz-91]. 

A first check on the hypergrammar consists in considering an application 
hypernotion (h) and looking for some definition hypernotion (h') which is grammatically 
unifiable to h. We check that the axiom is grammatically unifiable with the query before 
the activation of the derivation procedure. If user-defined modes are associated to the 
hypernotions, the above checks take them into account. 

Cons truc t ion  and use of  a Hypernot ion  schematas  

Being given the equivalence classes, an algorithm computes a most specific 
generalizer (MSG) for each of them. This algorithm is a kind of anti-unification algorithm 
[Plotkin-69]. Informally, the MSG for a set of hypernotions is an hypernotion such that 
all the elements of the set are particular instances. 

For E2, we get MSG(A) = instr (ENV, TYPE) 
MSG(B) = expr (ENV,TYPE) 
MSG(C) = type (ID,ENV,TYPE) 

In [Saidi-92b], we propose an algorithm which computes the MSG and gua- 
ranties that for each equivalence class, the MSG is unique under some conditions. We also 
check whether there exists an unique derivation for each member of a given equivalence 
class (starting from the associated MSG). 

This helps the translation of AFFLOG programs into DCGs and may provide the 
transparency condition to EAG (see bellow). 

G r a m m a t i c a l  consequence  and use of  Hypernot ion  s c h e m a t a s  

For an AFFLOG program whose pattern grammar is Gs=(Ns,Rs,T,Ss), the fol- 
lowing sets are built recursively : 

Lo=T 
Ln+l=Lnu {A / (A :: W)E R S, W=w 1 ..... w k , k >0, wi~ (NsuT),wi E L n } 
So, Vn, if AE Ln with n>0 then A~*  x, xE T* 
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The algorithm stops at step k if it does not add any new element to Lk- 1- Thus, 
k is such that Lk=Lk-1, while for n<k, Ln-l*Ln and Ln contains at least one more 
symbol (a nonterminal ~ NS) than Ln-1. Since NS is finite, clearly k is finite and we 
have k < card(Ns). 

XE NS is called a grammatical consequence of P if X~ Lk. This concept is 
naturally extended to every hypemotion occurring in P. 

For E2, we get (see equivalence classes A,B and C previously given) : 
L o = { ID, NBR, PRIM, ":=", "+", "=", "C, ")" } 
L 1 = Lou{C } 
L 2 = L1utB } 
L 3 = L2u{A } 
k=3, SS~ L3. 

ForE3 we get : Lo=O, LI=Lou{A}, k=l, Ss~L1 

The grammatical consequence concept is used to perform some static checks : the 
set L=Lk-L 0 is computed and then used to build a metarule whose right-hand side is the 
disjunction of MSGs associated with the equivalence classes represented by L elements. 
This metarule (called ATOM in [Maluszynski-84]) is very close to the "PREDICATES" 
definitions section in Turbo Prolog [Borland-86]. If the programmer specifies it, the 
consistency between the specified rule and the computed one is checked : the right-hand 
side elements of the specified rule must belong to the computed equivalence classes. 

For E2, having L={A,B,C}, we get : 
ATOM <= instr (ENV, TYPE) ; expr (ENV,TYPE) ; type (ID,ENV,TYPE). 

The construction of the ATOM metarule could provide a transparency condition 
[Maluszynski-84] for AFFLOG grammars provided that the following open problem is 
solved : 

If there is a unique derivation for every equivalence class elements starting from 
the corresponding MSG then the metagrammar whose axiom is ATOM is not ambiguous. 

Static analysis is finished by checking whether all hypernotions can be derived 
from ATOM and whether for each application there exists at least one definition which 
can be grammatically unified with it. The hypergrammar is then translated into PROLOG 
clauses. 

From AFFLOG grammars to Definite Clause Grammars 

AFFLOG grammars can be translated to DCGs if we succeed in computing the 
MSGs. In this case, grammatical terms are replaced by their termal representations which 
are parse trees. MSGs guide this translation since they provide informations about the 
derivation tree roots, that is, functional symbols are known when rewriting strings into 
compound (PROLOG) terms. 

The following DCG is generated for E2 : 
(rl) instr(env(ENV), type(TYPE)) --> 

[ID], [':='], type(prim(id(ID)),env(ENV),type(TYPE)), 
expr(env(ENV),type(TYPE)), {id(ID)}. 
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(12) expr(env(ENV), type(ent)) --> 
[PRIM], ['+'], type(prim(id(PRIM)),env(ENV),type(int)), 
expr(env(ENV),type(int)), {prim(PRIM)}. 

(r3) expr(env(ENV), type(ent)) --> 
[PRIM], ['+'], type(prim(nbr(PRIM)),env(ENV),type(int)), 
expr(env(ENV),type(int)), {prim(PRIM)}. 

(r4) expr(env(ENV), type(TYPE)) --> 
[PRIM], type(prim(id(PRIM)),env(ENV),type(TYPE)), 
{prim(PRIM)}. 

(rS) expr(env(ENV), type(TypE)) --> 
[PRIM], type(prim(nbr (PRIM)),env(ENV),type(TYPE)), 
[prim(PRIM)}. 

(r6) expr(env(ENV), type(bool)) --> 
['('], expr(env(ENV), type(TYPE)), ['='], 
expr(env(ENV), type(TYPE)), [')']. 

(r7) type(prim(nbr(NBR)), env(ENV), type(int)) --> []. 

(rS) type(prim(id(ID)), env([item(id(ID), type(TYPE)), env(ENV)]), 
type(TYPE)) --> []. 

(r9) type(prim(id(ID)), env([item(id(ID1), type(TYPE1)), env(ENV)]), 
type(TYPE)) --> 

{dif(prim(id(ID)), prim(id(ID1)))}, 
type(prim(id(ID)), env(ENV), type(TYPE)). 

id(X) "- X=i; X=j ; X=k. 
dif(X,Y) :- X ~=Y. 
prim(X) :- id(X) ; nbr(X). 
nbr(X) "- X=I ; X=2 ; X=3. 

Note that rules (rl)...(r5) take into account the fact that the H-schemata for type 
(i.e. type(PRIM, ENV, TYPE)) represents all the possible configurations of parse trees 
associated to ID and NBR. These trees have PRIM at their roots and either a number 
(NBR) or an identifier (ID) as their leaves. 

Query example : 
If the input string is "j:=(i+ l=k)" and if the value of ENV is <i int k int j bool>, 
the query instr (ENV, TYPE) is submitted to PROLOG as the following term : 

?- instr(env([item(id(i),type('int')),env([item(id('k'),type('int')), 
env([item(id('j'),type('bool')),env('empty')])])]), 

type(TYPE),[j, :=, '(',i,'+',l,'=',k,')'], []). 

The computed value for TYPE is given by type (TYPE)=type (bool) meaning 
that TYPE value is "bool". 
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3 Conclusion 

We presented some of our current work on AFFLOG programs static analysis. 
The AFFLOG interpreter has been implemented in PROLOG (2500 lines). A grammatical 
unification algorithm as well as a grammatical resolution procedure have been developed. 
The resolution can be controlled by terminal string derivations belonging to the language 
specified by the program. We emphasize the static checks, not only those which are 
related to type-sensitive string unification but also to hypergrammar checking. 

AFFLOG has been designed to study program construction by means of two- 
level grammars (in particular the extended affix grammars). It supports specification 
debugging within a Wide Spectrum Grammatical Programming Framework [Boulicaut- 
92]. These specifications can be used (and transformed) when we want to produce transla- 
tors using the STARLET/GL compiler compiler [Beney-90]. 

Apart from this interpreter, we have also implemented various logic grammar 
processors : Definite Clause Grammars, Metamorphosis Grammars, Definite Clause 
Translation Grammars [Abramson-84] and Gapping Grammars [Dahl-84]. This toolbox is 
used to develop experimental systems in order to study two-level grammar properties from 
both the theoretical and the practical points of view. For instance, partial specification of 
modes and automatic error processing are actually studied. 
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