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Abstract memory hardware is its scalability." 13us'basedsys-
tems (usually with snoopy cache protocols to enforce

Shared virtual memory (SVM) is a virtual memory coherence in mult, iple caches), whid_ solve the prob-
layer with a single address space on top of a distributed lem for a limited number of processors, are restricted
real memory on parallel computers. We examine the by bus bandwidLh. Approaches to tackle this prob-
behavior and performance of SVM running a parallel lem are NUMA-systems (Non-Uniform Access Archi-
program wit.h medium-grained, loop-level parallelism tecturesr e.g., NYU Ultracomputer [Got86], IBM RP3
on top of it. A simulator for the underlying parallel [PDG+85], and BBN TC2000 [Incg0]), where a per-
architecture can be used f,o examine the behavior of f,.,rmance penalty up to an order of magnitude ex-

SVM more deeply. The influence of several pararne- ists for remote accesses, as well as multicache syAems
ters, such as the number of processors, page size, cold [LLG+90], where data is replicated to local caches
or warm sl:art,, and restricted page replication, is stud., and consistency is ensured by special cache protocds
ted. (e.g., directory-b_ed protocols [CF78], [AqtltI88]).

Because of complexity restrictions with hardware im-

plementations, these protocols have to be kept simple.

1 Introduction One way to achieve hardware scalability is to use

distri6ul.ed-memory computers (e.g., Intel's Paragon
Several b_ic models, or paradigms, exist for pro- XP/S, nCUBG's NCUBE 2, or Thinking Machine'::
gramming parallel machines, most of which are re- CM-5). Such computers, however, do not hide dis..

lated to real rr_achine models (e.g., shared-memory tribution of data from the programmer. (An excep-

model, message-passing model, data-flow model, or tion is the array data type in CM-FORTRAN.) Ev-
graph reduct_ion), A relatively simple model for par- cry remote data access has to be programmed explic-
allel programs is the shared-memory model, where ali itly, and automatic compiler generation of correct, and

processors operate on one (flat) shared memory. In efficient communication statement,s to access nonlo-
this model ali processors have the same view of mere- cal data [ZBGH86][CK88] is dit_cult, Other problems
ory: immediately after a write executed by one pro- with this model are process migration and the passing
cessor, ali the other processors can access this mere- of pointers or complex data structures between dis..

ory location with the new value (strong coherence), tinct address spaces.
Mapping this model onto shared-m.emory hardware
would be easy if the hardware ensured proper coher- tIardware scalability and ea.se of programming may
ence efficiently by itself. But the problem with shared- be reconciled by the use of a virtual memory layer

with a single address space on top of a distributed

*'Ibis work was supported by the Applied Mathematic,_' 7ct- real memory (see Figure 1). Such a configuration
ences subprogram of the Officeof Energy fleseaa'ch,U.S, l,ep .ft- gives the user and compiler the appearance of shared
ment of Energ)q trader Contract \V-31-109-Eng-38. memory with a single address space, analogous to the
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I sion, Argonne NationalLaboratory, Argorme, 111. from the programmer. "lhis software layer, which is_j_ja._l"g t
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called shared virtual memory (or SVM) [Li86], repli- by a read operation is always the same as the value
cates memory pages for performance reasons and etl- written by the most recent write operation to the same
sures proper coherence between copies through special address. A relaxation of this is a weak cofierenl scheme

protocols. [DSB86], where memory consistency has to be ensured
only at synchronization points.

I1nqle _dd.t'o,,m ,'paeo

The probleJn of memory coherence first came ti l) with

[_.__L_L___I._I___ by Censier arid F'eautrier [C}"e-78],a bit vector held it,

, ,,,r_ copies of cache lines. In order to reduce xllemory, a
restriction of this scheme was proposed by' Agarwa.1 ct.

_-"i _ _--i_-__ ii. [AStIH88], ,,,here only up to i simultaneous datacopies are allowed and directory pointers refe.," to ac-

di,tributyl at.alm_,_' tual copy holders. If these point,ers are ex}lausted,
copies must be invalidated. Agarwal et al. gave

Figure 1: Page mapping in SVM two variations of this idea: tlm DiriB- and I)iriNt_-
schemes (Dir for Directory), the former invalidating

While fine-.grained parallelism on the statement or ba- ali i copies through a broadca.st message (B for broad-
sic block level is handled more efficiently with super-- cast), the latter sending individual invalidation rees-
scalar or pipelining CPUs, coarse-grained parallelism sages to copy holders (NB for no broadcast). Usually,
(e.g., multitasking on the outer subroutine level) is hardware approaches in such multicache systems are

limited by complexity restrictions enforcing easy pr<>.usually difficult to manage by programmers or by par-
allelizing compilers. In our study we are concerned tocols.

mainly with medium-grained parallelism as, for exam- Another approach to keep caches coherent is to use
ple, expressed in the outer loops of computationally software [CV90] [CKM88]. la'or example, Cheong and
intensive kernels. Veidenbaum proposed a compiler-directed cache lnan-.

In this paper we examine the behavior of software- agement where appropriate cach.e invalidation com-
comrolled memory coherence mechanisms with mands are generated by compilers, t3ut such ap-
mediun>grained parallelism. We consider the influ- proaches are restricted to trmltiprocessors wit.li shared

ence of several parameters, including the mlmber of memory and private caches and thus offer no real solu-
tion in avoiding sharod memory in hardware. Also, inprocessors, page size, cold or warm start, and re-

stricted page replication. _lb overcome the restrictions the absence of exact information, software-controlled
of a concrete hardware, we simulated a simple abstract cache invalidation h_ to be conservative.
paral_lel machine which accepts _L_.input a parallel pro-
gram trace and emulates the memory behavior of an
syM. " 3 Simulation of SVM

The paper is structured ms follows. After giving a brief Examining tile behavior of shared virtual nlelnory c,ll
overview of the memory coherence problem, we de- real machines is restricted to systern paratneters sucl.,scribe our abstract machine model and the simulatior_

as hardware page size or compiler and linker assistance
process. In Section 4 we present our simulation re-

in generating parallel programs. To study tile behav..
sults, in Section 5 we discuss related work, arid ill Sec-

ior of SVM iri detail, we have implemented a sirnulator
tion 6 we offer some concluding remarks about future that models the behavior of SVM on an abstract par-
extensions t.o our work. Mid machine. We have abstracted frorn the concre, e

hardware because we are interested in memory behav-
ior and memory perfl_rrna.nce on the level of reference

2 Memory Coherence counts and page faults rather than cycle times on a
specific hardware implementation. Ilowever, the re-

The b_sic problem in memory systems with possible sulks of our work provide input for work in Illis field,
d_tta replication (e.g., multicache systems, shared vir- too. The machine model we introduce is a g,,od con:-
tual menmry) is keeping memory coherent. A memory promise between simplicity and accuracy, t'!le simula-
ts called stron.qly col_erent [CF78] if the vahle returned tion process is divided into two parts. In the first, step

_-'1 _'_
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(see Figure 2) an appropriate parallel program trace support libraries and generates at execution time a
is generated that is used as input for the sirnulator. In trace of the memory reference behavior interspersed
the second step the simulator takes this trace and ser- with parallelization information. The parallel pro-
eral parameters and simulates the behavior of shared gram trace gives rnemory access information, such a.s

virtual memory on an abstract parallel machine, referenced memory address, access type (read or write
access, access to private or shared location), size of rol-

l _A_.i=:l, erenced location, and a back-reference to the accessedP,_n,!r_og_,_ ,(i)=b(O variable. In this study we have instrumented only sub-1 scripted variables, since most scalar variables usuallyf--:--

/ ltlttflllnemtfi°ltl / call be held ill registers or private lne][_'lory locatio_fls.
Preproc_smr

,f

___. The abstract machine model of our simulated parallel
DOALLi=I,n computer h;_s N units, each with a processor, (un-

A_,o_,t_a _r.... _,) limited) private memory, an MMU (Memory ,Manage..
parallel program r_letvnce t(i)

,',):b(,) l merit Unit), and a communication processor; we call

_. _'_" each of this units a node. One processor is the ro.as-I_-_,,_l,b_ lcr processor executing ali serial code. If ali proces...

compn_ _-_',_,_o_B ]" "_ sors executed the serial code, unnecessary access con-
filets would be generated. Each. processor h,xs an input
queue with memory references to interpret; processor

....,_=_vov,,, steps are performed along the queues in a round-robin

fashion. If the simulator encounters in the memo,:y...... trace the beginning of a parallel loop or parallel sec-

I )__ _..-,_,a,,, tion, the distinct iterations or sections are split to the
input queues of the processors, which are determined

•_p,ov__ with a l)arameterized scheduling algorithm. After each
ro,,al paralM loop or region, a barrier synchronizes all pro-_'_ I cessors that have participated in tile loop. If a pro-

cessor reaches a critical section, all oi.her processors
F'igure 2: Trace generatioa process wishing _o enter' this section are blocked.

The first step in the_ simulation process is to produce We have restricted the input language to loops where
an appropriate memory and parallelism trace of a pro- the number of iterations is known on entry of the lvop;
gram. Generating accurate parallel program traces is jumps out of the loop are prohibited. T.his approach
difficult, as the behavior of these programs often crit- as well as the specific model of how loop iteration
ically depends on the ordering and timing of events are spread over nodes helps us explain the cost model
such that every delay (e.g., for performance informa-, given below, without assumptions about synchroniza-
tion gathering) can influence the overall program be- tion hardware.
havior. Tile traces we gather have no time stamps;

rather, I;he ordering of events a.s memory accesses and Parallel loop iterations and parallel region cases are
parallel events is important and is preserved. In the scheduled statically. 'l"he set of all processors is sub-

absence of exact timed references, these traces are divided into intervals of the form I = [pl,p_] (initially
more suited for regt._]ar problems without racing con- one interval [1, NJ) to which iterations or cases will
ditions, be spread. The loop master processor, the first pro-
To generate a trace, one neeeds a program where par- cessor in an interval (initially the master processor),
allelism is controlled through parallel loops, paral- initiates parallel exe_ution of other processors in the
lel regions, critical sect.ions, and barrier synchroniza-- interval by sending them the interval (e.g., numbers
tion, similar, for example, to t (.,F-I;ortran [Par88] of first and la.st processors) and the number of itera-
or Fortran extensions of several vendors of shared- tions to handle. With this information, ali processors
memory parallel computers. The parallel program in the interval are able to decide which subinterval

is run through a preprocessor [Ber88] wllich goner- they belong to and which iterations they should work
atcs an annotated version of the progrm:. This pro- on, or whether they have no work at. ali (if there are
gram is compiled arm linked with appropriate run..timc, more t)rocessors than iterations). For l iterations and
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N processors, for SVM; rather, we were iaterested in an applica-
tion program with reasonabie memory references as

/(i+ I) × N i ×Nni rn.aa:(1,
1 J - [--7-- j - 1), (1) an input for our simulator. We chose matrix multiply,

t.

because it is memory intensive, with significant data
consecutive processors form subinterval i. With this reuse as well as potential parallelism.

model in mind, the costs of initiating a parallel loop There exist six major versions of matrix nmltiply de-
are the costs of sending the above information from pendent on the loop order [GvL89]. We have chosen
the loop master node to the subinterval. This task the jiL'-version (named after the loop order)such that
can be done in time O(log2(n)) (without broadcast) write references to the result array are on contiguous
until each processor has the information, where n is memory locations. We have specified that loop itera-
the number of participating processors in the subinter- tions be spread in blocks over ali available processors

val. Technically, we distribute these costs a.s if all par- (as opposed, e.g., to interleaved spreading).
ticipating processors immediately get this information
and then synchronize for the given time. Similarly, if
a barrier synchronization has to be done ai. the end DO ALL j=l,n

of a loop or region, the costs on each processor are DO ALL i=l,n
0(2 x log2(n)) after ali processors have reached the
synchronization point (which correspond to posting trap = 0.0
and acknowledging of synchronization in a tree-like DO k=l,n
fashion). Actually, this cost model is conservative, a.s imp = trap + b(:i.,k) * c(k,j)
not ali processors reach the syachronization point at END DO
the same time. Thus, posting could be started earlier, a(i,j) = trap

In our imple.,lentation of SVM, we used an algorithm END DOALL
with a wrile..invalidale-ba._ed l',rotocol and a strong END DOALL
coherence scheme similar to Li's dynamic distributed
scheme [Li86], which itself is based on the Berkeley

Ownership scheme [KEW+85]. In this concept, every Figure 3: Parallel matrix multiply
page has an owner who maintains a copy .,,.t with all

nodes that currently have a read-only copy of the page. The m,.J,,, ,,., space for each array a, b,c is 4096 words;
On a page fault, the faulting page is requested from each it_._,,,_,,,_ c,f the inner parallel loop ha-s a total of

the current owner, who can be reached over a chain of 129 melj_,,r_ references to subscripted variables (128
probable owners. F'or write page faults, the ownership read acce.,._c..,, 1 write access); the whole program has
changes to the requester, who invalidates ali copies 528,384 memory accesses to sub:scripted variables. We
before writing to the page. will use in our simulations between 4 and 1024 proces-

In our model, page faults and invalidation messages sots such that the granularity for a parallel task in the
block the faulting node for a specific time (simulation inner parallel loop will be between 64 x 129 = 8256
parameters two,it and tinval; see below) while serving and 4 x 1.29 = 516 memory references.
nodes (e.g., page owners sending the page to the fault-
ing node) are not blocked a.t all; requests, for inst.ance,

3.2 Simulation Parametersare handled by the communication processor.

As a starting partition of the virtual memory, allmen-> In the following sections, we express ali execntion
or)' pages are spread uniformly over all available nodes tirnes ii,. multiples of memory tli&s, where one memory
such that page p is located on node iv reed N. tick should be seen a.s the cesr; to access one word in

local memory on a r,ode. Although we will not. specify
a concrete _alue, the relation of ali following values to

3.1 Simulation i[npl.lt Program this reference value is sound.

As the input program for our simulations we used a We have chosen a page fault wait time t,,,oit (in nlellv

parallel matrix multiply ms given in Figure 3 for a ory ticks) a.s given in Enuatiol_ 2, wl,zre t/_,,z._ at,
square matrix of size n x n where n = 6,1; the two costs for page fault handling, nco_,v(p)is the number of
outer loops were parallelized. It, was not, our purpose nodes that hold a curret,t copy of pagv p (the fatllting
t.o find a very efficient version of the matrix multiply page), r is the number ot page requests along a chain

, pllI , ,



l;a,_u + (n_opv(P) + 1)tim, at if node is page owner
f.wait = _yaul_ + (r + 1)_sta,.tup + _send X Spate not owner, read fault (2)

tlautt + (neovv(P) + 1)tlnval + (r + 1)tstartup + t,aend(Spa#e + ncopv(P)/2) not owner, write fault

of probable page owners, t_t_,.t_,v are startup costs for exists oil program startup on one node, which has
communication, t_end are costs for sending one word write access to the page and is also owner of it. Ini-

between two nodes, and Spade is the size of a page in tially all pages are distributed uniformly over all nodes
words. If the page is found on the faulting node (e.g., in an interleaved scheme as already described.

write-fault on a node that is owner and has a read-only The second t.ype of initial configuration, which we call
copy of that page), the costs are t/_,,zt. Any invalida- warm star_, is similar to an application where a ker-

tion message sent to another node and waiting to be nel is called inside an application prograln and former
acknowledged has additional costs of 2 x ti,_,,_z;multi- parts of the program have similar data access patterns.
ple invalidations can be pipelined. If the faulting node To get a realistic page distribution, we run the sinmla-
is not the page owner, a page request is sent along the tion twice. The final page distribution of the first run
chain of probable owners; the owner node sends the gives the start distribution for the second run, which
page and on write faults in addition the copy set. We gives the overall result for the warm.start.
assume that two node identifiers can be packed into
one word. During a page fault, the processor waits Further, we distinguish between two simulation types
and in not able to, say, synchronize, with arrays of different dimension. In the first type,

64 x 64 simulations are done with properly dimen-

Loop startup costs are log2(n) x L,v,_; barrier synchro- stoned arrays. In the second type, 65 x 65 simulations
nization costs after a loop finishes are 2 x 1o92(n) x are done with arrays that are dimensioned 65 x 65 but
t,v,_ , where n is the number of participating nodes, for which only the upper 64 x 64 submatrices are used.
We distinguish between an unlimited number of read

The results, as shown in the next sections, are given
page copies and a restriction to a fixed limit after

in a log-log scale. Each line represents one data setwhich page copies have to be invalidated before a fur-
ther page copy can be send. 'We ran the simulations for a specific page size (in words). We refer to results
for N = 4, 16, 64,256, and 1024 processors. Table 1 given in the next section as the base case.
shows tlm actual parameter values we have chosen in

our simulations. 4.1 Variation in Page Size

Table 1: Basic parameter values. Page size is a critical parameter in the design of a
memory system; if this size is t,,o large, contention

t/_n 50 ticks fault startup time effects and false sharing prohibit good performance.
t,,,_tuj, 50 ticks startup time for send On the other hand, page fault latencies and comnmni-
t.... _ 2 ticks time to send one word cation startup costs mostly dominate page-fault han-
*_,_,,e 60 ticks page invalidation time dling in software-controlled memory systems. Thus
t,y,,, 60 ticks basic synchr, time a fair compromise has to be chosen between reduc-

sva_ 4-1024 page size in words ing contention and avoiding unnecessary page faults.
N 4,16,64,256,1024 number of nodes While page fault latency and overhead are system

parameters and usually independent of an applica-
tion, contention and false sharing problems critically
depend on given access patterns. Figure 4 shows

4 Simulation Results speedups' for several page sizes and number of pro-
cessors for given pararneter values and input program.

We distinguish between two types of initial page and Most of the execution time with small page sizes in the
data distributions. The first, type, which we call cold cold-start model is spent in getting pages the first time
._tart, resembles the behavior of applications without

1Speedup vMues are total e:.ecution times (in memory ticks)
any predistribution of data or programs with very of the parallel version related to memory ticks of the sequen-
different types of data access pattern between distinct tim version, which is the number of memory references to sub-

program phases. In this type of simulation each page scripted variables.
-
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Figure 4: Base case

(high number of startup overheads), because the ini- preventing higher speedups are c ntention and false-
tial data distribution, uniformly spread over all nodes, sharing for write-array a, as wei_ as synchronization
is dift'erent from the initial demand of data on nodes, overhead on start and exit of parallel loops. While

Since the working set for matrix multiply is relatively synchronization overhead is due to the abstract, ma-
small because of reuse of data, cold-start effects would chine model we have chosen, the other problems are
get even worse for larger working sets and an increas- affected by large page sizes.

ing number of processors. While small page sizes have For the 65 × 65-dimensioned matrix, unnecessary false-

this cold-start effect, large page sizes (1024 words) sharing occurs, since matrix columns are not aligned
have con_ention problems as the number of processors on page boundaries. For pages with 256 words arid
increases, larger, write array a shares a page with read array

b such that on every write to this page, copies areIn the warm-starl_ model, speedup re_,ult,s are up to
invalidated on nodes that access affected parts of array

23 times higher than cold-start results. The reason
is that, since ali nodes already have read-copies of b.

rh,' b- and c-arrays (final page distribution of the pre- Figure 5 shc,ws th_, relative amount of time (accumu-
,,_,,), thesc pages do not need to be fetched. Problems lated per-proce .... , _imes) spent in different simulation

6
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Figure 5: Relative arnount of time for different states with sp,ge = 1.6 (b_e case)

states for a page size of 16 words; time types are ex- For the cold-start model and for a moderate number of

plained iii Table 2. In the cold-start model, page-fault processors, the effects are small, since synchronization
wait times consume a significant portion of the to- time (startup costs for loop initiation, barrier synchro-
tal time; in the warm-start model, however, the work nization at loop exit) is small compared to page fault
time, dominating for a small number of nodes, is (rela- times and total execution time. But for a large num-
tively) reduced by synchronization and idle times. Idle ber of processors and small page sizes, speedup values
times arise if more than 64 processors are available nearly doubled as the relative anaount of synchroniza-
at program start, while the outer loop gives work for tion time increased in the base case.

only 64 processors. Processors that are not involved The limitation for even higher speedups is startup
in running the outer loop are idle until the outer loop costs for loop initiation. The total execution time on

is spread over 64 processors and work starts for the each of the 1024 proceasors with a page size of 4 words
inner parallel loop. (the best speedup reached) in the warm-start model

is 1,356 memory ticks (compared with 528,384 mere-

Table 2: Time types for different states ory ticks in the serial case), of which 38% are working
time while the rest is spent in loop startups. With

[-ts-_pe [ description our parallel execution model (parallel loop initiation

[work I handling memory references, time of O(Iog n) with n participating nodes) and clio-

page fault wait times.

idle times, sen parameter values, these costs cannot be further
loop startup costs and barrier synchronization, reduced.

4.3 Different Access Order
4.2 No Postloop Synchronization

In the base case (loop order ji_:), write accesses to ar-
As can be seen in Figure 5, one slowdown in the pro- ray a are done in subsequent order in memory under
gram is barrier synchronization after a parallel loop Fortran memory mapping of arrays. As loop itera-
ends. This problem can be avoided with our paral- tions are spread in blocks over available processors,
lel matrix-multiply algorithm. As a consequence, we blocks of memory are written by the same processor
have specified in a different algorithm version that no such that write-sharing of pages is reduced. For an ijk
barrier syn&ronization has to be executed on exit of loop order, written memory locations are accessed in

a parallel loop Figure 6 show speedups for execution smaller blocks (dependent on the number of nodes) in
without postloop synchronization, an interleaved fashion, and thus write-sharing of pages

_
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Figure 6" Without barrier synchronization

occurs more often. Figure 7 shows speedups for loop iterations of the outer loop are spread over distinct

order ijk. nodes and subsequent memory locations are written
by different processors.In cold-start simulation, only medium to large page

sizes with a small number of nodes show a significant Although, in matrix multiply, nodes share write pages
performance reduction compared with the base case.
Otherwise, speedup numbers are greater thai'. 60% of but no single memory location, nearly every write ac-
the base case. Although more often write acce_jes in tess with loop order ijk and a large number of nodes

• results in a write page fault. One possible solution
loop order ;jk are page misses as write page-sharing is
enhanced, costs for write faults do not dominate total to this problem is a strategy shown .'_, Myria.s ina-
costs; total costs are mainly caused by initial page chines [Cor90]: distinct processors write to private

page copies, which are later merged to one final page. 2
distribution, as shown already for the base case.

For warm-start simulations, 6,1-node speedups show
a significant performance degradation for medium to

small page sizes (large page sizes do not, perform well - 2Crucial to this idea is that page merging can be done eftl-
in the base case, too). The reason is that now ali ciently even with a large number of pages.

'1 8
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Figure 7' Different access order

4.4 Restriction of Page Copies copy is chosen randomly for invalidation. Simulations
with different limitation values show similar effects.

So far, we have kept track of all page copies. The space The results show that, for our implementation of naa.-

complexity for full information, as it would be imple- tri× multiply and with a straightforward implemen-
mented in a straightforward bit-vector approach with (;li ion of the DiriNB-scheme, the limitation of read
a bit-vector part, of each page descriptor, is O(MN) copies means a severe restriction, as all nodes need
bits on each node, where M is the number of pages and partial copies of read arrays b and c. Three sections

N is the number of processors. For a whole system this can be seen in the figures. In the first section the
mean:s a quadratic increase with the number of pro- number of nodes (and tlle number of requests for page
cessors. As already noted, .Agarwal et al. [ASHH88] copies) is smaller than the copy limit. Thus there is no
proposed with their DiriNB.. and DiriB-schemes a difference from the base case. As soon "-asthe number

limitation of copies, thus restricting the information to of nodes is larger than the copy limit, however, the
be kept on each node; after this limit is reached, copies system is blocked with invalidating pag.:s, as pages
have to be invalidated. Figure 8 shows speedups for are shared heavily between nodes. In tte _tlird sec-

a res_:riction to 32 copies; after this limit is reached, a tion, with a large number of nodes, page sharing is
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Figure 8' Restrict_ion of page copies

reduced, since only smaller portions of the whole data Several other approaches allow any number of read
are needed on every node. In general, restriction to copies without inv,'lidations and without the space

a limited number of copies penalizes access patterns complexity of a bit vector in each page descriptor;
where many processors share a read copy, accessing these ideas were originally proposed for scalable mul-
data several times, ticache systems. Primarily, the differences lie in the

data structures and operations used. In the Scalable

As a copy set is needed only on page owner nodes, Coherent InleTface [JLGS90] double-linked lists tcp-
most of the bit vectors in the straightforward imple- resent copy holders of cache blocks, while the S_an-

mentation of page tables are not used. While dynamic ford Distributed-Direc_.ory Protocol [TD90] is based
allocation of memory is difficult with hardware con- on single-linked lists of distributed directories. Maa,

trollers, programs are able to allocate space for bi Pradhan, and Thiebaut [MFT91] proposed a tree di-

vectors on demand. In our implementation, a bit vec- rectory and a hierarchical fulL.map directory to keep
tor is allocated if a node gets page ownership and is track of copy holders.
released on losing ownership. With this :olution, the
total space complexity is reduced from .9(MN 2) to
O(M_V).
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5 Related Work synchronization costs limit even better performance
on a large number of nodes.

Li [Li86] [LtI89] discussed the b_ic concepts for cen- For chosen system parameter values, there is no over-
tralized and distributed algorithms with a strong co- all preference for a particular page size. For a small
herence sdleme arid showed the practical applications to medium number of nodes, medium page sizes show
of l,is ideas in prototype implementations on a ring of good performance; on the other hand, small page sizes
workstal, ions and on a hypercube parallel computer, are favorable with a large number of nodes. The rea.-
He implemented a variation of the Berkeley Owner- sons are that contention effects are reduced and that,
ship Protocol [KEW+85]. with smaller granularities of parallel tasks, smaller

Bennett, Carter, and Zwaenepoel [BCZ90] give aclas- portions of memory are accessed by each task.

sification for objects in distributed memory in order A severe restriction for the parallel matrix-multiply
to handle them efficiently. In addition to the usual program is a limitation for read copies as proposed in
classes of type private and general read.write, they DiriNB- and DiriB-schemes. The remson is that with

distinguished between frequencies (write once, mos*ly a heavy reuse of data and simultaneous accesses of

read, etc.) and special concurrency types (synchro- parallel tasks to the same memory regions the de:nand
nizalion). For each cl_s they had a special coherence of page copies exceeds the number of possible copies
treatment, which, in turn, results iri trashing.

Myrias [Cor90], a computer manufacturer now out of Two possible extensions to our research are first to
business, implemented on their parallel machines a examine a broader range of applications with diffe:.nt
software layer r,imulating a single address space. At, and irregular access behavior, and second to incorpo-
the beginning of a parallel loop or section, child pro- rate weak coherence schemes, especially for applica-
cesses are generated with their own private memory, tions with different access patterns.
initially a copy of the memory of the father process.
At the end of the parallel loop, child memories are
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