
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tutorial notes: reasoning about logic programs

Citation for published version:
Bundy, A 1992, Tutorial notes: reasoning about logic programs. in Logic Programming in Action: Second
International Logic Programming Summer School, LPSS '92 Zurich, Switzerland, September 7–11, 1992
Proceedings. Lecture Notes in Computer Science, vol. 636, Springer Berlin Heidelberg, pp. 252-277.
https://doi.org/10.1007/3-540-55930-2_18

Digital Object Identifier (DOI):
10.1007/3-540-55930-2_18

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Logic Programming in Action

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 26. Apr. 2024

https://doi.org/10.1007/3-540-55930-2_18
https://doi.org/10.1007/3-540-55930-2_18
https://www.research.ed.ac.uk/en/publications/e27588e2-47d4-4e56-8aac-4fb3adfd871c


Tutorial Notes: Reasoning about 
Logic Programs 

Alan Bundy 

DAI Research Paper No. 602 

September 17, 1992 

To appear in the proceedings of LPSS-92. 

Department of Artificial Intelligence 
University of Edinburgh 

80 South Bridge 
Edinburgh EM! 1HN 

Scotland 

® Alan Bundy 



Tutorial Notes: Reasoning about Logic Programs * 

Alan Bundy 

Abstract 

These are tutorial notes for LPSS-92: the Logic Programming Summer School organised 
by the CompuLog Esprit Network of Excellence in September 1992. They are an introduction 
to the techniques of reasoning about logic programs, in particular for synthesizing, verifying, 
transforming and proving termination of logic programs. 

Key words and phrases. Logic programming, synthesis, transformation, verification, termin-
ation, abstraction. 

1 Introduction 

In this tutorial we will describe techniques for reasoning about logic programs 

Why should we want to reason about logic programs? 

We will see that reasoning about programs is an important software engineering tool. It can be 
used to improve the efficiency and reliability of computer programs. Such reasoning is particularly 
well suited to logic programs. In fact, the ease of reasoning with logic programs is one of their 
main advantages over programs in other languages. 

The kind of reasoning tasks we will consider are as follows. 

Verification: to verify that a program meets a specification of its behaviour. 

Synthesis: to synthesise a program that meets a specification. 

Transformation: to transform a program into a more efficient program meeting the same spe-
cification. 

Termination: to show that a run of a program will always terminate. 

Abstraction: to abstract from the program information about the types of its input/output, its 
modes of use, etc. 

In conventional, imperative, programming languages these five tasks are very different, but in 
logic programming some of them merge together. The reason is that specifications are usually 
written as logical formulae. As such, they can be interpreted as logic programs. They may be 
very inefficient and they may not always terminate, but they can often be used as a prototype of 
the desired program. This means that synthesis and transformation are not different in kind, but 
only in degree. Moreover, synthesis can be seen as verification of a partially specified program. 
All this imparts a simplicity and unity to reasoning with logic programs. 

'1 would like to thank the members of the mathematical reasoning group at Edinburgh and members of the 
CompuLog Network for helpful advice and feedback on these notes. In particular, Inn Kraan, Andrew Ireland, 
Helen Lowe, Danny Dc Schreye and Michael Maher were especially helpful. Some of the research reported in this 
paper was supported by Esprit BRA grant 3012 (CompuLog). 



1.1 Semantics of Logic Programs 

To reason formally about a computer program we must have a method of turning a question about 
programs into a mathematical conjecture. The program reasoning task can then be converted 
into a theorem proving task. The usual way to do this is to associate a semantics with the 
programming language. By 'semantics' we mean an assignment of a mathematical expression to 
each program statement. The mathematical expression is often thought of as the meaning of the 
program statement. 

To a first approximation it is unnecessary to give a semantics to a logic program; it is already 
a mathematical expression, namely a clause in first-order logic. Unfortunately, this is only true 
of pure logic programs. In practice, logic programs, e.g. Prolog programs, often contain impure 
features, e.g. negation as failure, assert/retract, var, the cut operator, the search strategy, 
etc. These cannot be directly interpreted in logical terms. 

There are (at least) three solutions to this problem. 

1. Provide a semantics for the particular logic programming language, e.g. Prolog, in which 
both the pure and impure features of the language are assigned a mathematical interpreta-
tion. 

2. Work only within a pure subset of the language. Implement a logic programming language 
based on this pure subset. 

3. Reason about specifications of logic programs. Introduce the impure features as necessary 
during a final compilation of the specification into your logic programming language of 
choice. 

We will discuss the tradeoffs between these approaches in §2. 

1.2 Specifications of Logic Programs 

Specifications of programs are usually given as logical relations between input and output. For 
instance, a sort program takes in a list and outputs another list in which the same elements 
are put in order, i.e. the output is an ordered permutation of the input. This program can be 
specified by the relation': 

perm(IL, OL) & ordered(OL) 

where IL is the input list, OL is the output list and penrt and ordered are defined appropriately. 
- Suppose sorti is a logic program for sorting lists, then to verify sot-ti we must prove as a 
theorem: 

VILE Ust, VOL € list. sorU(IL,OL) — perm(IL,OL) & ordered(OL) 	(I) 

This specification of sot-ti can itself be readily 'compiled' into a prototype sorting program 
sort2. For instance, in Prolog we could write: 

sort2(IL,OL) 	porm(IL,OL), ordered(OL). 

The program sort2 would be very inefficient - it would generate each permutation in turn and 
then test to see if it was ordered - but it would work. Now the proof of theorem (1) can be 
re-interpreted as a process of transformation of a very inefficient sorting program, sort2 into a 
more efficient program sot-ti meeting the same specification. 

1 We will adopt the convention of using typewriter font for programs and maths font for specifications. 



By a specification of a program we will mean a formula of the form: 

VArgs € tijpes. head(Args) .-. bodj(Args) 

where: 

. head is the name of the program being specified; 

• Xji is some sequence of distinct variables and types is a pairwise corresponding sequence 
of their types; and 

• body(Xi) is an arbitrary first-order logic formula, with no defined functions, whose free 
variables are in Xij. 

In the interests of readability we will sometimes reduce clutter by omitting the vA 	e tppes 
part. 

The condition excluding defined functions from the body means that only undefined or con-
structor functions are allowed. That is, we can use functions to form data-structures, e.g. s(0) 
or [HdjTI], but not to define relations between objects, e.g. x + Ij. 

1.3 Partial Evaluation of Logic Programs 

This process of verifying/transforming logic programs can be regarded in two ways 

• as the proof of a mathematical theorem (e.g. (1)) using the definitions of the programs and 
specifications as axioms; or 

• the symbolic and partial execution of the logic program. 

Because of the second interpretation this process is often called partial evaluation. We will see 
that to reason with recursive logic programs we will have to add mathematical induction to 
partial evaluation. Because we use induction we must work with a typed logic, cf. theorem (1) 
above in which VIL € list means for all objects, IL, of type list. 

1.4 Abstract Interpretation of Logic Programs 

It is also possible to reason with abstractions of logic programs, i.e. with programs in which 
some details of the program are generalised. For instance, we can reason with an abstraction in 
which the parameters to each procedure are replaced with labels representing their types or with 
their input/output mode, [Bruynooghe & De Schreye, 1988]. The purpose of such reasoning is to 
deduce the implied type or mode of some parameters from others. For instance, suppose we know 
that the parameters of our sort2 program are both of type list. Its definition can be abstracted 
to: 

sort2(list,list) :-perm(list,list), ordered(list). 

From which we can deduce that the parameters of penn and ordered are also all lists (or some 
more general type). 

The method of reasoning with abstract programs is the same as that used for concrete pro-
grams, e.g. partial evaluation, but the reasoning tends to be simpler because of the loss of detail 
caused by abstraction. 



2 What Shall we Reason About? 

In this section we discuss the tradeoffs between reasoning with impure programs, pure programs 
or specifications. There are advantages and disadvantages with each approach. 

2.1 Incomplete Information 

A disadvantage of reasoning directly with either pure or impure logic programs is that their 
declarative meaning does not quite correspond with their intended meaning. To see why not 
consider, for instance, the Prolog test for list membership, member/2. 

member(E1, [Elm]). 
member(El.[HdIT1]) :- nember(El.fl). 

Note that this program says nothing about the case when the list is empty. If you try to find out 
about this case by calling the goal: 

?- member(I,D). 

then you will find that it fails. The standard interpretation of this failure is to say that member (I, 0) 
is false for all I. But this is to go beyond the declarative meaning of the member/2 program. It is 
to adopt the closed world assumption: anything that is not provable is false. 

One way to formalise this assumption is to say that the meaning of a logic program is not 
the immediate declarative meaning of its clauses, but the Clark completion. To form the Clark 
completion of the set of clauses defining a predicate we replace them all with a single equivalence. 
This equivalence states that a program head is true if and only if its body is true. For instance, 
the Clark completion of the membor/2 program is 2 : 

mentber(El, L) -. (311. 1.. = [EljTt]) V 
(3Rd, 11. L = [HdITt] & member(El, 11)) 

Note the following general properties of Clark completions. 

All the clauses for member/2 are replaced with one equivalence. Each of the old clauses 
corresponds to one disjunct in the body of this new equivalence. 

The head of the new equivalence consists of the predicate with distinct variables as its 
arguments. The head arguments in the old clauses are represented by equalities in each 
disjunct between these old arguments and the new variables, e.g. L = [Etilli. 

• Each variable that appears in the body of the equivalence but not the head is existentially 
quantified in the body, e.g. Rd and 11. 

When reasoning about logic programs it is sometimes necessary to use this missing information. 
It is, therefore, more convenient to reason directly with the Clark completions than with the 
programs themselves. 

A further piece of missing information is the types of the expressions in the programs. Consider 
the goal clause: 

7— znember(X,42). 

2 Maths font is used here because we intend to use typed versions of Clark completions as the specifications of 
the programs they complete. 



We normally want to regard this call, not as false, but as ill-formed. Furthermore, if we want to 
reason using mathematical induction it will be vital to circumscribe the types of argument that 
a program can take. To do this we must add type declarations to our language. For instance, we 
might declare the type of member as: 

member E Type x tist(Type) 

This is to be read as saying that member can take objects of any type as its first argument but 
must take lists of objects of this type as its second argument. 

The types of the variables in an equivalence can be declared as Obj E  Type statements within 
the quantifier declarations. For instance, we can enrich the Clark completion of member/2 as 
follows. 

VEt€ Tppe,L€ list(Type). 
member(Et, L) .-. (311€ list(Tppe). L = [Etill]) V 

(3Rd E  Type, TIE U.st(Type). L = [Rdfll] & ntember(El, TI)) 

Note that this extended version of the Clark completion of momber/2 fits the logical form of 
a program specification as defined in §1.2. In fact, we can use an extended Clark completion 
as the specification of the program it completes. We can reason directly with extended Clark 
completions, compiling them into their corresponding programs when the reasoning is complete. 
In this way we can reason with complete information and only 'forget' it when it is no longer 
required. This provides an argument for reasoning at the specification level. 

Notation Henceforth, we will use the term completion to mean extended Clark completion. 

2.2 What does 'Equivalent' Mean? 

The simplest kind of reasoning with programs is to transform one program into an equivalent 
one. Unfortunately, there are many rival senses of 'equivalent'. A transformation that is legal 
under one sense of 'equivalent' may be illegal under another. 

2.2.1 Impure Logic Programs 

Consider, for instance, the Prolog clauses: 

p1(x) :- q(X), r(X). 
p2(t) :- r(I), q(X). 
q(a). 
r(b) :- r(X). 
r(a). 

The programs p1 and p2 differ only in the order of the two literals in their body. Logically these 
literals are conjoined. Thus logically the two programs are equivalent. Unfortunately, they have 
very different operational behaviour. The goal p1(x) will succeed with Ira and stop, but the goal 
p2(x) will loop for ever with no success. Thus p1 and p2 are logically equivalent but operationally 
different. 

The operational differences are due to the Prolog search strategy. It always evaluates literals 
left to right and applies clauses top to bottom. If it evaluated clauses bottom to top then p2(I) 
would also succeed with X=a, but would then backtrack and loop for ever. If it evaluated literals 
right to left then it would be p2(x) that would succeed with I=a and p1(x) that would loop for 
ever. 



The most popular form of program transformation is partial evaluation. For instance, we can 
transform the program p1 by partially evaluating the goal p1(X). We resolve the literal q(X) with 
the unit clause q(a) and then the literal r(a) with the unit clause r(a). This transforms the 
clause p1  (1) - q(X), r(X). into the logically and operationally equivalent clause p1(a). We 
can apply the same process to the program p2 to transform clause p2(X) :— r(X), q(X). into 
p2(a). However, in this case we get a clause that is logically but not operationally equivalent. 
For instance, p2(x) will not now loop for ever. 

If we want to preserve the operational behaviour of Prolog programs then we must restrict 
partial evaluation to use the same search strategy as Prolog. This will permit the above partial 
evaluation of p1 but prevent the one of p2. To partially evaluate the clause for p2 we must resolve 
the literals in its body in left/right order. The literal r(X) can be resolved with either of the two 
clauses for r. This produces the partially evaluated clauses: 

p2(b) 	r(X), q(b). 
p2(a) :— q(a). 

If we continue to partially evaluate the first clause then we will get into a loop, so we should stop 
now. The second clause can be further partially evaluated to p2(a). 

Such a restriction throws away a major reason for using logic programs: their logical semantics. 
It also makes the reasoning machinery dependent on the details of the Prolog interpreter. Small 
'enhancements' of the interpreter might render the reasoning machinery obsolete. 

2.2.2 Pure Logic Programs 

One reaction to this problem is to define conditions that a pure logic programming language must 
fulfil and then assume these conditions are met when designing reasoning machinery. One such 
condition is to insist on a fairsearch strategy, i.e. that each node in the search space is considered 
at some point during search. Prolog's search strategy is not fair; it can easily get trapped down 
an infinite branch of the search space and never return, cf. p2(1) above. This means that we 
must reject Prolog as an implementation of logic programming and confine ourselves to more 
restrictive implementations. 

Unfortunately, even if we restrict ourselves to pure logic programs, there are still rival notions 
of equivalence. For instance, [Maher, 1981  considers ten different definitions of equivalence and 
shows that only two pairs of these give the same notion. This leaves eight distinct notions of 
equivalence. Consider, for instance, the following pure logic programs 3  from [Maher, 1987]. 

cvenl(0) 
evenl(s(s(N))) — eveml(N) 

oddi (s(0)) 
oddl(s(s(N))) — oddl(N) 

even2(0) 

even2(s(N)) — odd2(N) 	 (2) 
oddl(s(N)) — even2(N) 

At first sight the definitions of eveni/oddi and even2/odd2 look like alternative, but equivalent 
programs for testing for even and odd numbers. [The natural numbers are represented in unary 
notation, where, for instance, 3 is represented by s(s(s(0))).] 

3 We will use maths font for pure logic programs. 



However, these programs are not logically equivalent, i.e. it is not the case that: 

evenl(N) - cvem2(N) 

oddl(N) - odd2(N) 

To see this consider the clause: 

even2(s(0)) — odd2(0) 	 (3) 

This clause is a logical consequence of the definitions of even2/odd2 - it is an instance of clause 
(2) above. If the two programs were equivalent then the implication: 

evenl(s(0)) - oddl(0) 	 (4) 

would also be a logical consequence of the definitions - but it is not. To see this consider the 
non-standard model in which evenl(N) is true for all even numbers N, but oddl(N) is true for 
all numbers, both odd and even. In this model all the clauses of the program are true, but clause 
(4) is false. 

However, there is a notion of equivalence in which these two definitions are equivalent: their 
completions are logically equivalent 4 . 

evenl(N) — N = 0 V 3M Gnat. N = s(s(M)) & evenl(M) 

oddl(N) .-. N = s(0) V 3M € nat. N = s(s(M)) & oddl(M) 

even2(N) — N = 0v 3M E mat. N = s(M) & oddl(M) 

odd2(N) — 3M E mat. N = s(M) & even2(M) 	 C. 

Both clauses (3) and (4) are logical consequences of this definition because oddi (0) - odd2(0)  
false. 	 - 

Thus, whether we regard these two programs as equivalent depends on whether we take logical - 	C 
equivalence of programs, logical equivalence of completions or one of the other six rival notions, 
as the definition of equivalence. 

2.3 Summary 

We can summarise these different tradeoffs as follows. 

2.3.1 Impure Programs 

Pros it is possible to reason directly with existing programs. 

Cons There are a wide variety of different transformation schemes depending on which proper-
ties of the program it is desired to preserve. A different semantics is required to define each kind 
of preservation and to justify the corresponding transformations. These transformations are very 
complex and restricted. The semantics and the transformations are sensitive to small changes in 
the definition of the programming language. 

4 ou use of 'logically equivalent' is non-standard in that we use more than just rules of logic in proofs of 
equivalence; we also use mathematical induction. 



2.3.2 Pure Programs 

Pros The kinds of transformation are general across a wide range of programming languages. 

Cons Practically useful impure features are excluded from language. There are still several 
different notions of program equivalence and, hence, several different transformation schemes. 
These transformations do not preserve the operational behaviour of impure programs, e.g. Prolog 
programs. The logical and intended meaning of the program do not coincide. This means that 
some information required to reason with the programs is not represented directly. 

2.3.3 Specifications 

Pros There is only one notion of equivalence. The logical and intended meaning of the specific-
ation coincide. 

Cons Specifications of programs must be available for transformation. A specification can be 
'compiled' into alternative programs which are not operationally equivalent. 

2.3.4 Conclusion 

It seems to me that the benefits of logic programs can best be realised by a combination of 
reasoning with specifications and with impure programs. The basic algorithm is best determined 
by reasoning at the specification level, where the notion of equivalence is unambiguous and the 
reasoning invariant under changes in programming language. However, various implementational 
aspects can only be dealt with at the programming language level, so some tuning transformations 
at this level must also be catered for. The rest of these tutorial notes will assume this viewpoint. 

3 Logic Specifications and Programs 

Adopting this viewpoint makes it vital that we can translate freely between specifications and 
the programs they specify. In this section we describe two algorithms: one for lifting programs 
into specifications and one for compiling specifications into programs. 

3.1 From Programs to Specifications 

In this section we describe an algorithm for translating a logic program into a specification of 
itself. We will call this the Clark completion algorithm. It works by constructing the program's 
completion and using this as the specification. 

Definition 1 (The Clark Completion Algorithm) The algorithm consists of four stages. 

1. Rewrite the program into logical notation, e.g. for Prolog clauses turn :- into —s, 
commas into &s, semi-colons into vs, negation as failure into -'s, provide definitions 
for system predicates, etc. 

2. Make the head arguments into distinct variables. This is done by replacing each clause 
of the form: 

p(si .....s.)—bodw 

with the clause: 

p(Xi ..... Xn)Xi=si&...&X,,=s,,.&bodw 



S 	 where the Xj are new variables. The same Xjs are used for each clause for p. 

Note that if sj is already a variable distinct from sj for j < I then rather than add 
Xi = St to the body we can just let Xi be st  In practice, we will adopt this option when 
possible, since it will lead to simpler completions. 

3. Ezistentially quantify each variable which occurs in the body but not in the head. 
Replace each clause of the form: 

p(Xi .....X)—bodj(Y1 ..... 

where X ?6 Y5, for all i and), andYj occurs in bodv(Yj .....Y), with the clause: 

p(Xj ..... X r.) i3Yi  Et1 .....JYm Etm.bOdu(Yi .....Yin) 

where tj is the type of Yt. We postpone the problem of discovering these types to J9. 

4. Combine the clauses for each predicate into a single equivalence. Suppose there are it 
clauses defining p, each of the form: 

p(X .....X fl )—bodtjt 

We replace these k clauses with: 

p(Xi .....X fl)—bodlJlV...Vbodtjk 

If there are no clauses for a predicate, p/n, mentioned in the program (i.e. k = 0) 
then its Clark Completion is: 

p(Xi .....X) — false. 

In addition, we assume various axioms defining the predicate = used in Clark Completions as 
syntactic identity. These include the usual equality axioms of reflexivity, symmetry, transitivity 
and substitutvity. In addition, we assume axioms that ensure that no equations hold between 
non-identical terms, i.e. f(Xj ,..., X) # g(Yt,..., '4)  if f and g are not identical, X 0 t if t 
does not contain X, and the inverse of substitutivity: 

f(X) ,...,X)f(Yi .....Y)Xi=Y1& ... 

This algorithm is adapted from [Lloyd, 1987[14], in which further details may be found. 

Example: Constructing the completion of subset 

Here is a simple example of the algorithm. Consider the following program for subset/2. 

subset(D .3). 
subset([RdIT1],3) :- member(Hd,3), subset(t1,3). 

A goal of the form subset (1,3) succeeds if I is a subset of 3, where sets are represented as lists. 
The first stage of the algorithm is to rewrite the program into logical notation. 

subset([}, J) 

subset([F{dJTl], J) - member(Hd, J) & subset(TI, J) 

9 



The second stage is to make the head arguments into distinct variables. 

subset(I,J) - I = [] 

subset(l, J) - I = l-tcflTl] & member(Hd, J) & subset(11,J) 

Note that in both clauses we exercised our option not to replace J. 
The third stage is to existentially quantify each variable which occurs in the body but not in 

the head. 

subset(I,J) - 1= [] 

subset(I,J) - 3Rd E Ttjpe,RTIE ttst(Tppe). 

= [Mdlii] & member(Hd, J) & subset(Tl, J) 

The fourth stage is to combine these two clauses into a single equivalence. 

subsct(I, J) - I = [] v 
3Rd E Tpe,Tt  E Rst(Ttjpe). 

= [Mdlii] & mentber(Rd, J) & subset(fl, J) 

3.2 From Specifications to Programs 

In this section we describe an algorithm for compiling a specification into the logic program it 
directly specifies. 

One way to make such a compilation algorithm would be to reverse the Clark completion 
algorithm. Unfortunately, this would not be a general-purpose compilation algorithm. This is 
because the class of specifications is much larger than the class of completions. For instance, the 
equivalence: 

subset(I, J) .-. (VU E Ttjpe. meinber(U,I) -. member(E1,J)) 	 (5) 

is a specification, but is not a completion. Our algorithm must cover these non-completions too. 
Our algorithm will compile any specification. We will call it the Lloyd-Topor compilation 

algorithm. 

Definition 2 (The Lloyd-Topor Compilation Algorithm) The key idea of the algorithm 
is to put the specification into clausal form. It consists of three stages. 

1. Turn the main '-. into a—. 

2. Put the specification into clausal form using the Lloyd-Topor rides. They are too 
complicated to give in full here. We have illustrated the general idea by giving some 
examples in figure 5.2. The complete set is given in [Lloyd, 1987][pll3]. 

S. Turn the logical symbols into program symbols, i.e. invert stage I of the Clark com-
pletion algorithm. 

We can now see the need for the restriction, given in §1.2, to exclude defined functions from 
specifications. There is no provision in the Lloyd-Topor algorithm to turn these defined functions 
into predicate definitions. Consider, for instance: 

plu.s(X,Y,Z).-.(X0& Z = Y)v 

3X' € nat. X = s(X') & Z = s(X' + Y) 

Lloyd-Topor compiles this into the Prolog program: 

10 



Name Input Clause Output Clause(s) 
3 heud—...&3etbod&... head—...&bodtj&... 

V head—... &(aVb)& ... head—... &a& 
head—...&b&... 

V head—...&VEtbody&... head—...&-'3Et-.bodu&... 

13 head—... &-'3etbody& ... head—... &-'q(Y1 ..... 
q(Yi ..... Yk)—bodlJ 

In the last nile, q is a new predicate symbol and the Yi are the free variables in 
3g€T. body. 

These n.zles are applied as rewrite rides to the specification until no more apply. 
The specification is then in clausal form. 

Figure 1: Selected Lloyd-Topor Ttansformation Rules 

plus(X,Y,Z) 	X=O, Z=Y. 
plus(I,Y,Z) :- Xs(X'), Z=s(X'+Y). 

But this program will fail for non-zero X because X'+Y is undefined. There is no provision in 
Prolog to define it as a function nor in Lloyd-Topor to compile it into a predicate. This problem 	 ,.. 

could be solved by a suitable modification of the Lloyd-Topor algorithm. 
The Lloyd-Thpor algorithm is a near inverse of the Clark completion algorithm. 

• Stage 4 of Clark completion is inverted by Stage 1 and rule V of Lloyd-Topor. 

• Stage 3 of Clark completion is inverted by rule B of Lloyd-Topor. 

Stage 1 of Clark completion is inverted by stage 3 of Lloyd-Topor. 

We could also invert stage 2 of Clark completion by introducing an additional rule into stage 2 
of Lloyd-Topor which removed X1 = Si literals from the body be replacing Xj by si in the head. 
Unfortunately, it would be impossible to prevent this rule from removing Xj literals that were 
present in the original program. Similarly, rule V can remove disjunctions that were present in 
the original program, if the programming language allows them. 

Note that Clark completion is not an inverse of Lloyd-Topor, since the original specification 
may not be a completion. 

Example: Translating a subset specification into a program 

We will illustrate the Lloyd-Topor algorithm on the specification of subset, (5) above. The first 
stage is to turn the - into a -. 

subset(l, J) - (VU e Type. member(Et, 1) -.. ntember(Et, J)) 

The second stage is to use the Lloyd-Thpor compilation to put this into clausal form. The rules 
from figure 3.2 apply as follows: 

11 



subset(I, J) - -'BEt € Type. -'(ntember(Et, I) -+ meinber(Et, J)) 

subset(I, J) - -'noLsubset(1, J) 
noLsubset(I, J) - -'(member(Et, I) - member(Et, J)) 

subset(l, J) - -'noLsubset(l, J) 
noLsubset(I, J) - member(El, I) & -'member(EI, J) 

The third stage is to rewrite the clauses into program notation. 

subset(I,J) :- not not_subset(I,J). 
not_subset(I,J) :- member(Ei,I), not membor(E1,.J). 

4 Equivalence of Specifications 

The problem we will consider in this section is how to prove that two logic program specifications 
are equivalent. That is, suppose Speci and Spec2 are two logic program specifications. We will 
consider how to prove: 

VArgs E T%jpes. Spec1 - Spec2 	 (6) 

In the interests of readability we will sometimes omit the VArgs E Tupes part. 
We saw in §3 that each of these two specifications compiles directly into a logic program. 

Some of these logic programs are more practical than others. Suppose Frog1 is the logic program 
corresponding to Speci and Fro92 to Spec2. If Fr092  is an impractical program and Frog1 is a 
practical program then we can view the proof of equivalence (6) as verification of Progi in terms 
of Spec2. U both Frog1 and Fro92 are practical programs then we can view this proof as the 
transformation of Fr092  into Frog1. Typically, Frog1 will be more efficient than Fro92. 

Thus, when reasoning at the level of specifications, the processes of verification and trans-
formation coalesce; they differ in degree not kind. Of course, the real challenge in transformation 
is to be given an inefficient program, Fro92, and to construct a more efficient program, Frog1. 
This is essentially the same problem as synthesising a practical program, Frogj, which meets a 
given specification, SpeC2. We will tackle this joint problem in §5 below. 

Example: Equivalence of two subset definitions 

Here is a simple example. Consider the verification theorem: 

VI € Ust(Tppe), J € list(Tppe). 	 (7) 
subset(I, J) - (VEt E  Ttjpe. member(El, I) - mentber(El, I)) 

where subset and member are defined by the specifications: 

subset(I,J) —.1 = (] v 
3Rd € Ttjpe, TIE tist(Tijpe). 

I = (Fid (It] & member(Rd, J) & subset(11, J) 
ntember(EI, L) - ( 3Rd € Tijpe, TIE list(Tppe). L = [EtIfl]) V 

(3Rd E Type, TI € tist(Type). L = [HdITLI & member(EI, It)) 

The quantification of the outer universal variables has been omitted to reduce clutter. 
Using the Lloyd-Topor compilation, the left and right hand sides of equivalence (7) compile 

into the two Prolog programs: 

12 



subset_i(D .3). 
subset_i([RdJfl],J) 	member(Bd,3), subset_i(T1,i). 

subset_2(I,i) :- not not_subset(I,i). 
not_subsot(I,J) 	member(E1,I), not member(E1,i). 

The details of these compilations were given in §3. Program subset_i will run in any input mode, 
but subset.2 will flounder in all input modes except subseti(+,+). The proof of equivalence 
(7) can thus be regarded as an exercise in verification of subset_i. 

To prove (7) we must use induction on the recursive structure of lists with I as the induction 
variable. This generates a base case and a step case. 

The base case is obtained from (7) by substituting the empty list for 1. 

subset([], J) .-. (VU E Tupe. member(Et, []) - member(EL, J)) 

Applying the definitions of subset and member this reduces to the problem of proving: 

true - (YEt E Ttjpe. fal.se  -. member(EL, J)) 

which further reduces to true, using the rules of predicate logic. 
The step case consists of an induction conclusion which can be proved with the aid of an induc-

tion hypothesis. The induction hypothesis and conclusion are obtained from (7) by substituting 
tt and [h.dItt], respectively, for I. 

subset(tt, J) - (VEt e Type. mentber(Et, ti) -. member(U, J)) 

I- subset([hdltt]j) - (VU € Type. member(EL, h4Itt]) -. member(Et,j)) 

The turnstile symbol I- indicates that the induction hypothesis on the left can be assumed when 
proving the induction conclusion on the right. Note that the universal variable j  in the induction 
hypothesis can be instantiated, if necessary, whereas it should not be instantiated in the induction 
conclusion. We have ensured this by representing J by a free variable (upper case) on the left and 
a constant 3 (lower case) on the right. 

Using the definitions of subset and member the induction conclusion can be reduced to: 

mentber(h.d, 3) & subset(tt, 3) 
- (VU € Type. (EL = hdVmember(Et,tt)) -. membcr(Et,9) 

which, using the rules of predicate logic, can be rewritten as follows: 

membei-(ltd, 3) & subset(tt, 3) - (VEt € Type. (EL = Kd— member(Et, 3)) & 
(member(Et,tL) -. membe -r(EL,J))) 

member(hd, 3) & subset(tL, 3) - ((VU € Ttjpe. EL = lid -. ntembei-(Et,fl) & 
(VU e Type. member(Et, tt) -. mentber(EL, 3))) 

member(hd, 3) - ((VEt € Type. EL = lid - member(EL, 3)) 
member(lid,j) .-. member(hd,j) 

true 

This completes - the proof of the step case. The whole of equivalence (7) is now proved. 

13 



5 Synthesis of Specifications 

The problem we will consider in this section is how, given an initial specification, we can synthesise 
an equivalent new one. That is, suppose we are given a specification Spec2, how can we construct 
a specification Speci such that: 

VArgs E Types. Specj .-. Spec2 

As discussed in §4 above, this will enable us to synthesise a practical program, Frog1, from a 
specification Spec2 and/or to transform an inefficient program, Fro92, into an efficient program, 
Progi. 

The essential idea underlying our solution to this problem will be to proceed with the proof 
of the equivalence theorem as if Specj were known, and to pick up clues as to its definition as we 
proceed. This is best illustrated with an example. 

Example: Synthesis of subset 

We will repeat the proof of equivalence (7), given in §4 above, but with subset left undefined. 
This will leave us with some unprovable subgoals, which we can use to form the definition of 
subset. 

We repeat below the equivalence to be proved. 

subset(l, J) +.-. (VEt E Tjpe. ntember(El, 1) - member(El, J)) 

Many of the steps in the previous proof of this equivalence can be repeated, but the proof cannot 
be completed due to the absence of the definition of subset. The residue of subgoals is: 

subset(f], J) t-' true 

subset([hdItt], J) - membcr(hd, J) & subset(tt, J) 

This residue can be used to suggest a definition of subset. We regard the residue as a logic program 
and take its completion, which we then adopt as the definition. In this case the definition this 
suggests is: 

subset(I, J) ..-. I = [] v 
JHd E Ippe, It € .ttst(Tpe). 

I = [F{dTtj & member(Hd, J) & subset(Tl, J) 

as required. The residue of subgoals can be readily proved from this definition, so the proof is 
completed. 

6 Automated Theorem Proving 

The equivalences between specifications are usually straightforward to prove. However, it does 
require some facility with mathematical ideas to find these proofs. It is desirable to automate 
this proof discovery process as much as possible to reduce the burden on the program developer. 
In this section we discuss how this can be done. 

The main technical problem in automated theorem proving is guiding the search for a proof. It 
is easy to represent the theorem and the rules for manipulating it. It is particularly easy in a logic 
programming language since the necessary data-structures are provided directly. It is also easy to 
write a program to apply these rules exhaustively until the required proof is found. Unfortunately, 

14 



for all but trivial theorems, this process rapidly becomes bogged down in an explosion of partially 
generated proofis. This phenomenon is called the combinatorial erplosion. 

To defeat the combinatorial explosion we ned to use heuristic methods to guide the proof 
building process along the most promising paths. To illustrate such heuristic methods, consider 
the problem of rewriting the induction conclusion so that the induction hypothesis may be applied 
to it. The form of the step case of an inductive proof is: 

P(tl) I- P( [hall!] I') 
Note that the induction conclusion on the right differs from the induction hypothesis on the left 
by inclusion of the induction term [hal .. j. We have emphasised this by drawing a box around 
the induction term and underlining the induction variable, U inside it. We call this boxed sub-
expression a wave-front. The arrow, T. represents the direction of movement of the wave-front: 
upwards (or outwards depending on your point of view) through the induction conclusion. 

The presence of this wave-front prevents us from using the induction hypothesis to prove the 
induction conclusion. To enable the induction hypothesis to be used we ned to move the wave-
front to the outside of the induction conclusion, i.e. we need to rewrite the induction conclusion 
into the form: 

P(tt) F j Q(hd, tl,P(U)) 

so that the induction hypothesis can be used, giving: 

P(tl) I- Q(hd, ti., true) 

We call this rewriting process rippling. It consists of applying rewrite rules which move the 
wave-fronts outwards but leave the rest of the induction conclusion unchanged. Rewrite rules of 
this form are called wave-rules. They have the form: 

Some examples are given in figure 6. For more information about rippling see [Bundy et al, 1991]. 

Example: Rippling in the subset proof 

To illustrate rippling consider the proof of equivalence (7) from §4. We start by putting a wave-
front around each occurrence of the induction term and then we ripple these outwards. 

15 



subset1 ( [HdQ 1,1) 
J_member(l-td, J) & subset1 

member(Et,J [HdIIg 
1) 	

El = Hd V member(EL, 111 

V V - C => (A - C) & (B - C) 

YX E T.IA&_B] 1  *IVX_6 T.A& YX E T.Bi 

&j)J -I(2 & !z. I 1  H(a1 - A2) & 	6 2 )1 1  

lithe left-hand side of a wave-rule matches a sub-expression of a goal then this 
sub-expression can be replaced by the instantiated right-hand side of the wave-
rule. In this match the wave-fronts in the nile and the goal must be aligned. 
Note that this causes the wave-front to move outwards through the goal leaving 
the rest of the goal unchanged. 

Wave-rules can be derived from the step parts of recursive definitions, e.g. the 
subset and member rules above. They can also come from distributive laws, e.g. 
the other three rules above, from associative laws, substitution laws and many 
other sources. Our proofs run backwards from the theorem to the axioms. Thus, 
in wave-rules based on implications, the direction of rewriting is opposite to the 
direction of implication, cf. the last rule above. 

Figure 2: Wave-Rules for the subset Example 

subsetcl[hdftiiI,J) - 

(VU € Type. mentber(EL.( [hdftjJ IT) -. member(Et,j)) 

subset(fhdljJJ,j) — 

(VEt € Type. EL = MV ntember(Et, tiYj T  -. mentber(EtJ)) 

P"dLthi,i) — 
(VEt E  Type. I EL = ltd -. member(EL, j) & member(Et, Ii) - member(Et, )I) 

meinber(hd, j) & subset(tL, j) 	- 

VEt € Type. EL = ltd -. menber(Et, j) & VEt e Type. member(Et, tt) - member(Et. 9 

member(hd,j) .-' VEt € Type. El = ltd — membet(El,j) & -- 

subset(tt, 9 -. VEt € Type. member(EL, U) - member(EL, 9 

The wave-rules that enable this rewriting are given in figure 6. 

16 



Rippling is now complete and a copy of the induction hypothesis is embedded within the 
induction conclusion. The induction hypothesis can now be used to replace this copy with true. 
This leaves the subgoal: 

ntember(Kd, J) — VEt € Type. EL = ltd - inember(Et. J) 	& true 

which is readily proved. This completes the step case. 
There are many other search control problems in inductive inference, i.e. choosing an in-

duction rule, guiding the base case, deciding on case splits, constructing witnesses of existential 
variables, generalising the induction formula, conjecturing suitable lemmas. Rippling is often the 
key to solving these problems. For instance, an induction rule can be chosen by a look-ahead 
mechanism to see which choice will most facilitate subsequent rippling. Unfortunately, there 
is insufficient space to explore these issues further here. The interested reader is referred to 
[Bundy et a!, 1990]. 

7 Termination of Logic Programs 

The problem we will consider in this section is how to prove that a logic program terminates. To 
solve this problem we must reason about programs rather than specifications. This is because 
whether a program terminates depends on both the code and the interpreter, that is, we must 
consider how the search strategy evaluates the code. There is a wider variation of interpreters in 
logic programming than in other kinds of programming. This factor makes termination a more 
complicated problem for logic programs than it is for other kinds of programs. 

Another complication is caused by the relational nature of logic programs, i.e. the fact that 
they work in different input modes and that they can return alternative outputs on backtracking. 
Termination is no longer a simple concept. A program may terminate in some input modes, but 
not in others. Hence, whether a program terminates depends on the goal. A program may return 
one or more outputs, but then fail to terminate on backtracking. We must define different kinds 
of non-termination. 

Universal termination: the search space is finite. 

Existential termination: if the search space is infinite, then it has success branches at finite 
depth. 

Note that existential termination includes universal termination as a special case. 
Whether a search space is finite depends, among other things, on the order in which subgoals 

are solved. For instance, consider the clause defining p2 below: 

p2(X) r(X) & q(X). 

q(a). 

r(b) - r(X). 

r( a). 

If r(X) is solved before q(X) then the search space will be infinite, but if q(X) is solved first then 
the search space is finite. 

In the discussion below we will describe a simple termination technique that establishes uni-
versal termination of definite programs 5  Our technique is to associate a well-founded measure 
with each procedure call and to show that this strictly decreases as computation proceeds. A 

I. e. those without negation as failure. 

17 



well-founded measure is one that cannot decrease for ever. This ensures that the computation 
cannot proceed for ever. An example of a well-founded measure is the natural numbers 6  ordered 
by >. This is well-founded because there is no infinite sequence of the form: n, > t2 > it3 > 
Eventually, one of the n i  would be 0, and there is no natural number smaller than that. This 
natural number, well-founded measure will suffice for our purposes. To prove termination we will 
associate a natural number with each procedure call and show that the number associated with 
the current procedure call strictly decreases as the computation proceeds. 

Example: The Termination of subset 

A simple example will illustrate this technique. 
Consider the pure logic subset program in input mode subset(+, +). 

subsct([],J). 	 (8) 
subset([FIdITI], J) — member(Hd, J) & subset(Tl, J). 	 (9) 

member(E1, [EtIn]). 	 (10) 
member(Et,[HdITt)) — member(E1,11). 	 (11) 

We will define a measure on procedure calls of the form subset(J, J) and membe-r(E1, J), where 
both I and J are ground. 

Definition 3 (List length norm) The list length norm is a function from a list, L, to a 
natural number, len(L), defined recursively as: 

= 0 	ten([Hd(Tt]) = ten(fl)+ 1 

Definition 4 (procedure call measure) The procedure call measure is a function, I ... I, 
from a literal, subset(I, J) or mentber(Et, J), where I and J are ground, to a natural number 
defined as: 

Isubset(l. DI = ten(I) + Ieit(J) 
Irnember(El, J)j = ten(J) 

We now show that the procedure call measure is strictly decreased as the computation pro-
ceeds. Each step of the computation is a resolution with one of the clauses (8) - (11). Each 
resolution replaces a call of the head literal with calls to each of the body literals. We show that 
the measure of the head literal is strictly greater than the measure of each of the body literals. 
In the case of the clauses (8) and (10) this is trivial, since their bodies contain no literals. In the 
case of clauses (9) and (11) the following calculations establish our claim. 

IsubsetUudllt]. DI 

jsubset([HdITII, Dl 

Imember(El. [Fidlilpi 

= len([HcIITI])+ ten(J) 
> 	len(J) 
= Ien([HdjTt])+ ten(J) 
> 	tem(Tt) + lzTt(J) 
= 	len([ftdlll)) 
> 	lem(11) 

= ten.(Tt)+ 1 + Ien(J) 
= Imembr(Hd, J)j 
= ten(TI) + 1  + len(J) 
= Jsubset(TLJ)I 
= l.en(Tt)+1 
= lmember(Et,11)l 

i.e. the non-negative integers; 0,1,2,... 

18 



Note that this argument breaks down if any of the lists in the procedure call arguments 
are non-ground. Indeed, a procedure call member(a, L), for instance, will not terminate in the 
universal sense. It will return an infinite number of results of the form: 

bill). [Hdl,ajll), [l-tdl,Hd2,aiTli. 

Similar remarks hold for subset(!, J) where either I or J is non-ground. These are examples of 
existential termination. 

An introduction to more elaborate techniques for proving termination can be found in [Hogger, 1990][Theme 
59) and [De Schreye & Verschaetse, 1992]. 

8 Thning Impure Programs 

Suppose we have specified a logic program, transformed this into an equivalent specification and 
then compiled this new specification into a Prolog program using the Lloyd-Topor algorithm. 
We have seen that the completion of this Prolog program is logically equivalent to the original 
specification. Unfortunately, due to the impure aspects of Prolog, this program may not behave 
operationally as desired. For instance, 

. It may not terminate in its intended input mode. 

. Some of its uses of negation as failure may flounder. 

. Its side effects may occur in the wrong order. 

For a complete list of the possible problems see [Deville, 1990)[p240]. 
Sometimes these problems can be fixed by tuning the program. 

Examples: Reordering clauses and literals 

We can illustrate this with some examples. 
Consider the following clauses for rh: 

r(b) :- r(X). 
r(a). 

These clauses do not existentially terminate in input mode r(-). This problem can be readily 
fixed by reordering the two clauses to: 

r(a). 
r(b) 	r(I). 

This gives a logically equivalent,but operationally different program. The program for ni now 
existentially terminates. 

Now consider the following clauses: 

p2(1) 	r(X), q(X). 
q(a). 
r(a). 
r(b) :- r(X). 

The program for p2/1 existentially terminates in input mode p2(-). We can transform this into 
a program that universally terminates by reordering the literals in the p2 clause to give: 

p2(1) :- q(X), r(X). 

4 

a 

19 



As we have seen, in §2.2.1, this clause can be partially evaluated to the logically and operationally 
equivalent clause: 

p2(a). 

9 Abstract Interpretation of Logic Programs 

The techniques we have discussed above can be used not only to reason with programs in their 
original form, but also with abstractions of these programs. For instance, we can infer mode 
and type information about programs, or we can discover whether variables are independent or 
aliasing during execution. This information can be used, for instance, to optirnise programs. Such 
abstract reasoning can be automated and incorporated into optimising compilers. The potential 
for abstract reasoning goes far beyond simple optimization, but is only now beginning to be 
explored. 

To apply abstract reasoning to a logic program we must define the abstraction as follows. 

Abstract the domain: We must describe the objects that can appear as arguments to the 
program. For instance, for reasoning with modes we will want objects to represent a free 
variable and an instantiated variable. We might also want objects for various degrees of 
instantiation, e.g. totally ground vs partially instantiated. For reasoning about types we 
will choose abstract objects to represent the various types of concrete objects, e.g. numbers, 
strings, lists, etc. 

In addition, to these basic abstract objects we must usually specify how to form the least 
upper bound of any two objects. This is because finding the least upper bound is often used 
to combine different instantiations of the same variable. This is usually done by putting 
the objects in a lattice with a top element, e.g. any mode, any type, etc. 

Abstract the programs: We must describe how the program operates on this abstract domain. 
For instance, we must define the built-in predicates over the abstract domain. We must 
adapt the interpreter, as necessary. For instance, if a variable is instantiated in different 
ways on different branches of the search space these values might be combined into one by 
taking the least upper bound. We must describe how to unify abstract objects. 

Non-termination is far more common with abstract programs, because distinct concrete 
procedure calls are often identical when abstracted. Therefore, it is usually necessary to 
modify the interpreter to trap looping and ensure that an output is returned. 

Example: Inferring the Types of Predicates 

We will illustrate these ideas by the use of a simple example: the inference of the types of a whole 
program, given some partial information about types. 

Our abstract domain will consist of the simple lattice of types given in figure 3. 
Suppose we want to infer the types of subset and member as defined by the clauses: 

subset(Q .3). 
subset([SdJfl],J) 	member(Rd,3), subset(fl,3). 

member(E1, [E1IT1]). 
member(E1(RdIfl]) 	member(E1,T1). 

given that the type of the first argument of subset is known to be Iist(number), say. 
To infer the remaining types we partially evaluate the procedure call: 

20 



any 

number 	list(number) 

Figure 3: Simple Lattice of Types 

?- subset(ljst(number) .X). 

If we resolve this goal against the first clause for subset then we must unify list (number) with 
0 and X J. We should define abstract unification so that these unifications both succeed, but this 
resolution does not tell us more than we already knew. 

More interesting is the resolution against the second clause for subset. We should define 
abstract unification so that unifying iist(number) and (Rd Ifl] succeeds, instantiating Rd to 
number and Ti to list (number). The new procedure calls are: 

?- member(number,X), subset(list(number),x). 

We can now repeat this process for the member(number,I) procedure call. This gives us two 
instantiations of I, both of which are list(nurnber). The new procedure call generated by the 
second clause is: 

?- member(number,list(number)). 

but this is subsumed by the earlier call, so can tell us nothing new. Our loop detection mechanism 
should note this and terminate this call. 

Thetemaining procedure call is: 

?- subset(iist(ninber),ljst(number)) 

which is also subsumed by an earlier call and should also be terminated. 
The abstract interpretation is now complete. We have inferred the types of our predicates to 

be: 

subset(list (number) ,].ist(number)) 
member(nunber , iist(number)) 

10 Conclusion 

In these notes we have outlined various techniques for reasoning about logic programs. These 
techniques can be combined in various ways to form a methodology for logic program develop-
ment. Ideally, for the reasons summarised in §2.3, this methodology should take logic program 
specifications as its central representation. The original description of the desired program should 
take the form of a specification, as defined in §1.2. 

This specification can be used to synthesise a more efficient specification using the techniques 
of §5. It may seem odd to discuss the 'efficiency' of a specification. One way to measure this is to 

e 	 21 



compile the specification into a logic program using the Lloyd-Thpor algorithm (see §3.2) and then 
to measure the efficiency of this program. However, there are some aspects of efficiency that are 
independent of the particular target programming language, e.g. the complexity associated with 
any forms of recursion used in the specification. These aspects can be measured more directly. 

Having synthesised an acceptable specification, this can be compiled into a program using the 
Lloyd-Topor algorithm. The termination, mode and similar properties of this program can be 
analysed using the techniques of §7 and 9. If necessary, the program can then be tuned using the 
techniques of §8. 

If a program, rather than a specification, is available, then this can be lifted into a specification 
using the Clark completion algorithm, §31. The above methodology is then applicable. 

All these techniques can be automated to a greater or lesser extent. Automation makes possible 
machine aids to program development that remove some of the tedium and error from the proof, 
compilation and analysis steps. 

Recommended Reading 

In these notes it has only been possible to give a rough outline of the range and complexity of the 
techniques available. If you want to find out more, here are some suggestions for further reading. 

Elementary and very readable introductions to the ideas outlined in these notes can be found in 
the two books by Chris Hogger, [Hogger, 1984, Hogger, 1990]. John Lloyd's book, [Lloyd 1  1987], 
is the standard reference for the theoretical background on logic programming. A more de-
tailed account of verification and synthesis of logic programs can be found in Yves Deville's book 
[Deville, 1990]. Deville adopts the same position that we have on reasoning with specifications, 
wherever possible, rather than with programs. A discussion of the different notions of logic pro-
gram equivalence can be found in the paper by Michael Maher, [Maher, 1981. An introductory 
survey of termination proving techniques can be found in the tutorial notes by Danny Dc Schreye 
and Kristof Verschaetse, [De Schreye & Verschaetse, 1992], and a similar survey of work on ab-
straction can be found in the tutorial notes by Maurice Bruynooghe and Danny De Schreye, 
[Bruynooghe & Dc Schreye, 1988]. 

References - 

[Bruynooghe & Dc Schreye, 1988] Bruynooghe, M. and Dc Schreye, D. (1988). Tutorial notes 
for: abstract interpretation in logic programming. Thch-
nical report, Department of Computer Science, Katholieke 
tJniversiteit Leuven, Belgium, Tutorial given at ICLP-88, 
Seattle. Notes available from the authors. Department of Com-
puter Science, Katholieke Universiteit Leuven, Celestijnen-
laaan 200A, 3001 Heverlee, Belgium. 

[Bundy et al, 1990] 	 Bundy, A., Smaill, A. and Hesketh, J. (1990). Turning eureka 
steps into calculations in automatic program synthesis. In 
Clarke, S.L.H., (ed.), Proceedings of UK IT 90, pages 221-6. 
Also available from Edinburgh as DAI Research Paper 448. 

[Bundy et al, 1991] 	 Bundy, A., Stevens, A., van Harmelen, F., Ireland, A. and 
Smaill, A. (1991). Rippling: A heuristic for guiding inductive 
proofs. Research Paper 567, Dept. of Artificial Intelligence, 
Edinburgh, To appear in Artificial Intelligence. 

22 



I 

[De Schreye & Verschaetse, 1992] De Schreye, D. and Verschaetse, K. 	(1992). Termination of 
logic programs: Tutorial notes. Technical Report CW-report 
148, Department of Computer Science, Katholieke Universiteit 
Leuven, Belgium, To appear in the proceedings of Meta-92. 

[Deville, 19901 Deville, Y. (1990). Logic programming: systematic program 
development. Addison-Wesley Pub. Co. 

[Hogger, 1984] Hogger, C.J. 	(1984). 	Introduction to logic programming. 
Academic Press. 

[Hogger, 1990] Hogger, C.J. (1990). Essentials of Logic Programming. Ox- 
ford University Press. 

[Lloyd, 1987) Lloyd, J.W. 	(1987). Foundations of Logic Programming. 
Symbolic Computation. Springer-Verlag, Second, extended 
edition. 

[Maher, 1987] Maher, M.J. 	(1987). 	Equivalences of logic programs. 	In 
Minker, 3., (ed), Foundations of Deductive Databases and 
Logic Programming. Morgan K aufmann. 

4.  

23 


