Skip to main content

Towards acquiring spatio-temporal knowledge from sensor data

  • Technical Papers
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 639))

Abstract

This paper presents an architecture for acquiring spatio-temporal knowledge. This architecture uses two different algorithms — generalization to interval (GTI) method and feature construction method — for learning from sensory/perceptual information. These methods generalize over positive/negative examples of target knowledge, and output a constraint program that can be used declaratively as a learned concept about spatio-temporal patterns, and procedurally as a method for reasoning about spatio-temporal relations. Thus our methods transform numeric spatio-temporal patterns to symbolic declarative/procedural representations. We have implemented these two algorithms with acorn, a system that acquires spatio-temporal knowledge by observing examples. In this paper, we give two examples from different domains -layout problems and robot-commands learning — to demonstrate the ability of the system and the flexibility of constraint programs for knowledge representation.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aha, D.W., Kibler, D. and Albert, M.K.: Instance-based learning algorithms, Machine Learning, 6, 37–66, 1991.

    Google Scholar 

  • Borning, A.: The programming language aspects of ThingLab: A constraint-oriented simulation laboratory. ACM Transactions on Programming Languages and Systems, 3, 353–387, 1981.

    Google Scholar 

  • Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J.: Classification and Regression Trees, Wadsworth International Group, 1984.

    Google Scholar 

  • Connell, J. H. and Brady, M.: Generating and generalizing models of visual objects, Artificial Intelligence, 31, 159–183, 1987.

    Google Scholar 

  • Dincbas, M., Van Hentenryck, P., Simmonis, H., Aggoum, A., Graf, T. and Berthier, F.: The constraint logic programming language CHIP, In Proc. of the International Conference on Fifth Generation Computer Systems, 693–702, 1988.

    Google Scholar 

  • Fikes, R. E. and Nilson, N. J.: STRIPS: A new approach to the application of theorem proving to problem solving, Artificial Intelligence, 2, 1971.

    Google Scholar 

  • Haar, R. L.: Sketching: Estimating object position from relational descriptions, Computer Graphics and Image Processing, 19, 227–247, 1982.

    Google Scholar 

  • Hiraki, K., Gennari, J., Yamamoto, Y., and Anzai, Y.: Learning Spatial Relations bom Images, In Proc. of Eighth International Machine Learning Workshop ML'91, 407–411, 1991.

    Google Scholar 

  • Hiraki, K., Gennari, J., Yamamoto, Y., and Anzai, Y.: Encoding Images into Constraint Expressions, In Proc. of Thirteenth Annual Conference of Cognitive Science Society, 31–36, 1991

    Google Scholar 

  • Jaffar, J. and Lassez, J.: From unification to constraints, In Furukawa, K., Tanaka, H. and Fujisaki, T. (eds.), Logic Programming '87, Lecture Notes in Computer Science, Springer, 1987.

    Google Scholar 

  • Lassez, C.: Constraint logic programming and option trading, IBM Technical Report, 1987.

    Google Scholar 

  • Leler, W.: Constraint Programming Languages: Their Specification and Generation, Addison-Wesley, 1988.

    Google Scholar 

  • Matheus, C.J.; The Need for Constructive Induction, In Proc. of Eighth International Machine Learning Workshop ML'91, 173–177, 1991.

    Google Scholar 

  • Michalski, R.: A theory and methodology of inductive learning, In Michalski, R., Carbonell, J. and Mitchell, T. (eds.), Machine Leaning: An Artificial Intelligence Approach. Los Altos, CA: Morgan Kaufmann, 1983.

    Google Scholar 

  • Newell, A. and Simon, H. A.: GPS, A program that simulates human thought, In Feigenbaum, E.A and Feldman, J. (eds.), Computers and Thought, McGraw-Hill, New York, 1963.

    Google Scholar 

  • Nishizawa, T., Hiraki, K. and Anzai, Y.: EPOCH: A constraint logic programming language with goal constraint description, Journal of Japanese Society for Artificial Intelligence, 7, No. 3, 105–113, May, 1989.

    Google Scholar 

  • Quinlan, J. R.: Simplifing decision trees, Int. Journal Man-Machine Studies, 27, 221–234, 1987.

    Google Scholar 

  • Schilimmer, J.C.: Incremental adjustment of representations in learning, In Proc. of the 4th International Workshop on Machine Learning, 79–90,1987.

    Google Scholar 

  • Sussman, G. J. and Steel, G. L.: CONSTRAINTS — A language for expressing almost-hierarchical descriptions, Artificial Intelligence, 14, 1–39, 1980.

    Google Scholar 

  • Winston, P.H.: Learning structural descriptions from examples, In Winston, P.H. (ed.), The Psychology of Computer Vision, McGraw-Hill, 1975.

    Google Scholar 

  • Yamada, A., Amitani, K., Hoshino, T., Nishida, T., Doshita, S.,: The analysis of the spatial description in natural language and the reconstruction of the scene, Journal of Information Processing Society of Japan, 31, No.5, 660–672, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

A. U. Frank I. Campari U. Formentini

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hiraki, K., Anzai, Y. (1992). Towards acquiring spatio-temporal knowledge from sensor data. In: Frank, A.U., Campari, I., Formentini, U. (eds) Theories and Methods of Spatio-Temporal Reasoning in Geographic Space. Lecture Notes in Computer Science, vol 639. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-55966-3_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-55966-3_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55966-5

  • Online ISBN: 978-3-540-47333-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics