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Abstract. This paper describes a tool for the transformation of attributed trees using pat- 
tern matching. The trees to be processed are defined by a formalism based on context- 
free grammars. Operations for trees such as composition and decomposition are provid- 
ed. The approach can be characterized as an amalgaraation of trees or terms including 
pattern matching, with recursion, attribute grammars, and imperative programming. 
Transformations can either modify the input trees or map them to arbitrary output. Possi- 
ble applications are the various transformation tasks in compilers such as semantic 
analysis, optimization, or the generation of intermediate representations. The design 
goals have been to combine an expressive and high level technique for transformation 
with flexibility, efficiency, and practical usability. A reliable development style is sup- 
ported by static typing and checks for the single assignment property of variables. We 
give some example transformations and describe the input language of our tool called 
puma. The relationship to similar work is discussed. Finally, experimental results are 
presented that demonstrate the efficiency of our approach. 
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1 Introduction 
The transformation of trees using pattern matching becomes an accepted technique. 
Several tools have been constructed recently that follow this principle [CoPg0, HeS91, 
LMW89, Volgl]. Tools for code generation successfully use the same technique, too 
[AGT89, ESL89]. We present a new tool called puma and its input language for the 
transformation and manipulation of attributed trees and graphs [Gro91a]. Puma stands for 
pattern matching and unification. Its intended application areas are the various transfor- 
mation tasks in a compiler operating on abstract syntax trees or arbitrary graph structures. 
This includes semantic analysis, optimization, intermediate code generation, 
source-to-source translation, and eventually machine code generation. 

The trees that are subject to pattern matching are described by a formalism based on 
context-free grammars. The tree nodes may be associated with attributes of arbitrary 
types. Node types are used to specify the properties of tree nodes. An extension mechan- 
ism induces a subtype relation among the node types. Pattern matching is-extended to 
handle subtypes and attributes, too. Operations for the composition and decomposition of 
trees are supported by a concise notation. 

The building blocks for a transformation are recursive subroutines, classified as 
procedures, functions, and predicates, with an arbitrary number of input and output 
parameters. The bodies of the subroutines consist of rules which are made up of patterns, 
conditions, statements, and expressions. The first two components control the applicabil- 
ity of a rule. The statements determine what has to be done whenever a rule is applicable. 



The expressions provide values for the output parameters and the function result. 

Static type checking with respect to trees is provided. Variables are declared impli- 
citly and they are checked for the single assignment property. There is read and write 
access to attributes stored in the tree which allows the construction of attribute evaluators. 
In all places it is possible to escape to hand-written code which provides the power and 
flexibility of the imperative programming style. 

The output of the generator is a source module in one of the target languages C or 
Modula-2. This module allows for easy integration and cooperation with other modules, 
either hand-written or generated ones. The pattern matching is local and considers a 
region at the top of the current subtree, only. It is implemented by direct code and there- 
fore efficient. 

Our approach can be regarded from several points of view: From the point of view 
of imperative programming it is an extension by statically typed, attributed trees, con- 
structs for composition and decomposition, and pattern matching. From the point of view 
of logic programming it omits backtracking and restricts pattern matching to one of the 
two terms being a ground term. It adds attributes which are stored in the terms (trees), 
static typing, input and output modes for parameters, and an easy escape to imperative 
features. From the point of view of functional programming it offers the simple style of 
functional programming which has always been present in imperative languages having 
functions and recursion. It adds the pattern matching facility. From the point of view of 
attribute grammars it allows the specification of attribute evaluation with explicit control 
of the evaluation order or visit sequences. This eases the use of  global attributes and gives 
full control on side-effects. 

The intended use of this tool proceeds in three steps: First, a tree is constructed 
either by a parser, a previous transformation phase, or whatever is appropriate. Second, 
the attributes in the tree are evaluated either using an attribute grammar based tool, by a 
puma specified tree traversal and attribute computations, or by hand-written code. Third, 
the attributed tree is transformed or mapped to another data structure by a puma generated 
transformation module. These steps can be executed one after the other or more or less 
simultaneously. Besides trees, puma can handle attributed graphs as well, even cyclic 
ones. Of course the cycles have to be detected in order to avoid infinite loops. A possible 
solution uses attributes as marks for nodes already visited. 

A transformer module can make use of attributes in the following ways: If attribute 
values have been computed by a preceding attribute evaluator and are accessed in read 
only mode then this corresponds to the three step model explained above. A puma gen- 
erated module can also evaluate attributes on its own. A further possibility is that an attri- 
bute evaluator can call puma subroutines in order to compute attributes. This is especially 
of interest when attributes depend on tree-valued arguments. 

The tool supports two classes of tree transformations: mappings and modifications. 
Tree mappings map an input tree to arbitrary output data. The input tree is accessed in 
read only mode and left unchanged. Tree modifications change a tree by e. g. computing 
and storing attributes at tree nodes or by changing the tree structure. In this case the tree 
data structure serves as input as well as output and it is accessed in read and write mode. 

The first class covers applications like the generation of intermediate languages or 
machine code. Trees are mapped to arbitrary output like source code, assembly code, 
binary machine code, linearized intermediate languages like P-Code, or another tree struc- 
ture. A further variant of mapping is to emit a sequence of procedure calls which are 



handled by an abstract dam type. 

The second class covers applications like semantic analysis or optimization. Trees 
are decorated with attribute values, properties of the trees corresponding to context condi- 
tions are checked, or trees are changed in order to reflect optimizing transformations. 

Puma is part of the Karlsruhe Toolbox for Compiler Construction [GrE90]. In par- 
ticular it cooperates with the generator for abstract syntax trees ast [Gro91b] and the attri- 
bute evaluator generator ag [Gro89]. The attributed trees are defined and managed by a 
module generated with ast. A second module generated by puma creates and handles 
these trees. This way all the powerful operations for trees and graphs provided by ast are 
available such as reader and writer procedures or the interactive browser. For sake of 
simplicity we will deviate from reality in this paper and treat the definition of the tree 
structure as part of puma. 

The rest of this paper is organized as follows: Section 2 presents a few simple 
examples of how to describe transformations with puma. Section 3 describes the input 
language of the tool. Section 4 sketches the implementation of the generated transformer 
module. Section 5 compares our approach with related work. Section 6 presents experi- 
mental results. Section 7 contains concluding remarks. 

2 Tree Transformation by Pattern Matching 
The probably easiest way to get an impression of our approach can be obtained by having 
a look at a few introductory examples. We will use the abstract syntax of simple arith- 
metic expressions as input data structure. Besides a few intrinsic attributes describing e. g. 
the values of constants we use an attribute called Type. It describes the type of every 
subexpression. Its domain are trees, too. The tree definition based on a context-free gram- 
mar shown in Example 1 specifies the structure of expressions and types. 

Example 1: Tree Definition 

Expr = Type < 

Plus = Lop: Expr Rop: Expr . 

Minus = Lop: Expr Rop: Expr . 

Const = [Value] . 

Adr = < 

Index = Adr Expr . 

Select = Adr [Ident: tIdent] 

Ident = [Ident: tIdent] 
>. 

>. 

Type = < 

Int = 

Real = 

Bool = 

Array = [Lwb] [Upb] Type . 

Record = Fields . 
>. 

Fields = < 

NoField = 

Field = [Ident: tIdent] Type Fields . 
>. 

The names before the character '=' can be regarded both as rule names or nontermi- 
nals. The possible right-hand sides for one nonterminal are enclosed in angle brackets '<' 
and '>'. Non-tree valued attributes are enclosed in square brackets '[' and ']'. The attri- 
butes Lwb, Upb, and Value are of the default type int. The attribute Ident is of the user- 



defined type tldent. The tree-valued attribute Type of the rule named Expr is written like 
every other right-hand side nonterminal. The selector names Lop and Rop used in the 
rules called Plus and Minus allow symbolic access to fight-hand side elements having the 
same type. 

The association of an attribute such as Type with a nonterminal like Expr adds this 
attribute to every right-hand side belonging to this nonterminal. Hence the rules Plus and 
Minus have three right-hand side elements. 

Example 2: Generation of P-Code 

PROCEDURE P Code (Tree) 

Plus (Int (), Lop, Rop) :- P_Code (Lop); P_Code 
Plus (Real (), Lop, ROp) :- P Code (Lop); P Code 
Minus (Int (), Lop, Rop) :- P-Code (Lop); P-Code 
Minus (Real (), Lop, Rop) :- P Code (Lop); P_Code 

(Rop); Emit (ADDI); . 
(Rop); Emit (ADDR); . 
(Rop); Emit (SUBI); . 
(Rop); Emit (SUBR); . 

PREDICATE IsCompatible ([Type, Fields], 

Int () Int () 
Real () Real () 
Bool () Bool () 
Array (Lwb, Upb, TI) Array (Lwb, Upb, 
Record (FI) Record (F2) 
Field ( , TI, FI) Field ( , T2, F2) 

[Type, Fields]) 

T2) :- IsCompatible (TI, T2); . 
:- IsCompatible (FI, F2); . 
:- IsCompatible (TI, T2); 

IsCompatible (FI, F2); . 

Example 4 presents the predicate lsCompatible which can be seen as a boolean 
function. It operates on two parameters of types Type or Fields. Accordingly, every rule 
has two patterns for matching against the two arguments. The first three rules lead to a 

The subroutine specification presented in Example 2 describes part of a transforma- 
tion of expression trees to P-Code [NAJ76]. The procedure P_Code performs a recursive 
tree traversal. Its body consists of a sequence of rules. Every rule is made up of a pattern 
and a list of statements separated by ".-'. Whenever a pattern matches against the input 
parameter of the subroutine, the associated statement list is executed. The parameter of 
the procedure P Code is of type Tree which means that every tree according to the tree 
definition is a legal argument. The procedure Emit is supposed to be an external subrou- 
tine that performs output, 

Example 3: Computation of Type Sizes 

FUNCTION TypeSize ([Type, Fields]) int 

Int () RETURN 4 . 
Real () RETURN 4 . 
Bool () RETURN 1 . 
Array (Lwb, Upb, T) RETURN (Upb - Lwb + i) * TypeSize (T) 
Record (F) RETURN TypeSize (F) . 
Field ( , T, F) RETURN TypeSize (T) + TypeSize (F) . 
NoField () RETURN 0 . 

The function TypeSize in Example 3 transforms or maps trees to integer values. It is 
defined to operate on trees of types Type and Fields and it returns a value of a type named 
int. Again this subroutine performs a recursive tree traversal. Instead of producing a 
side-effect like in the previous example it represents a pure functional mapping and 
demonstrates the arithmetic expression capabilities of puma. The character '_' denotes a 
so-called don't care pattern. 

Example 4: Testing two Types for Compatibility 



return value of true if both patterns match both arguments. The fourth rule returns true if 
the attributes Lwb and Upb of the two argument trees match(have the same value) and if 
the recursive call IsCompatible returns true for the two types T1 and T2 of  the array ele- 
ments. If none of the rules matches the predicate returns false. 

Example 5: Procedure with Input and Output Parameters 

PROCEDURE ResultType (Type, Type, Operator: int = >  Type) 

Int () , Int () , { opPlus } => Int () . 

Real () , Real () , { opPlus } => Real () . 

Int () , Int () , { opMinus } => Int () 

Real () , Real () , { opMinus } => Real () . 

The subroutine given in Example 5 has three input and one output parameter. It 
computes the result type of a binary expression which depends on the types of the 
operands and on the operator. The third pattern of every rule is enclosed in curly brackets 
"{ and ' ] ' .  This represents so-called target code which is more or less passed unchanged 
and unchecked to the generated module. In this case opPlus and opMinus are named con- 
stants encoding operators. Without the curly brackets they would be treated as pattern 
variables. The expression after the symbol '=>' describes the value of the output parame- 
ter in case of a successful match. It consists of a tree constructor which creates a tree hav- 
ing one node. 

3 Specification Language 
The description of a tree transformation consists of the definition of  attributed trees and a 
set of  subroutines. 

3.1 Tree  Structure 

The structure of attributed trees or (directed) graphs is specified by a formalism based on 
context-free grammars. However, we primarily use the terminology of trees and types, 
here. A tree consists of nodes. A node may be related to other nodes in a so-called 
parent-child relation. Then the first node is called a parent node and the latter nodes are 
called child nodes. Nodes without a parent node are usually called root nodes, nodes 
without children are called leaf nodes. 

The structure and the properties of nodes are described by node types. Every node 
belongs to a node type. A specification of a tree describes a finite number of node types. 
A node type specifies the names of the child nodes and the associated node types as well 
as the names of the attributes and the associated attribute types. 

Children are distinguished by selector names which have to be unambiguous within 
one node type. The children are of a certain node type. Example: 

Plus = Lop: Expr Rop: Expr . 

Index = Adr : Adr Expr : Expr . 

The example introduces two node types called Plus and Index. A node of type Plus has 
two children which are selected by the names Lop and Rop. Both children are of the node 
type Expr. If a selector name is equal to the associated name of the node type it can be 
omitted. Therefore, the node type Index can be abbreviated as follows: 

Index = Adr Expr . 

As well as children, every node type can specify an arbitrary number of attributes 
of  arbitrary types. Like children, attributes are characterized by a selector name and a 



certain type. The descriptions of attributes are enclosed in brackets '[' and ']'. The attri- 
bute types are given by names taken from the target language. Missing attribute types are 
assumed to be int or INTEGER depending on the target language (C or Modula-2). Chil- 
dren and attributes can be given in any order (see Example 1). 

To allow several alternatives for the types of children an extension mechanism is 
used. A node type may be associated with several other node types enclosed in angle 
brackets '<' and '>'. Then this node type is called base or super type and the associated 
types are called derived types or subtypes. A derived type can in turn be extended with no 
limitation of the nesting depth. The extension mechanism induces a subtype relation 
between node types denoted by the symbol c .  This relation is transitive. Where a node 
of a certain node type is required, either a node of this node type or a node of a subtype 
thereof is legal. 

In Example 1 Expr is a base type describing nodes with one child called Type. The 
node type Expr has four derived types called Plus, Minus, Const, and Adr. The node type 
Adr is in turn extended by three derived types called Index, Select, and Ident. Where a 
node of type Expr is required, all mentioned node types are legal. Where a node of type 
Adr is required, nodes of the types Index, Select, or Ident are legal. Where a node of type 
Index is required, nodes of type Index are legal, only. The subtype relation is the transitive 
and reflexive closure of: Plus c Expr, Minus c_ Expr, Const c_ Expr, Adr c Expr, Index 
Adr, Select c_ Adr, Ident ~ Adr. 

Besides extending the set of legal node types, the extension mec~hanism has the pro- 
perty of extending the children and attributes of the base type. The derived types possess 
the children and attributes of the base type. They may define additional children and attri- 
butes. In other words they inherit the structure of the base type. The selector names of all 
children and atlributes in an extension hierarchy have to be distinct. The syntax has been 
designed this way in order to allow single inheritance, only. 

In Example 1 nodes of type Expr have one child selected by the name Type. Nodes 
of type Plus have three children with the selector names Type, Lop, and Rop. 

3.2 Subroutines 
A set of subroutines constitutes the main building blocks of a transformation. Like in pro- 
gramming languages, subroutines are parameterized abstractions of statements or expres- 
sions. There are three kinds of subroutines: 

procedure : a subroutine acting as a statement 
function : a subroutine acting as an expression and returning a value 
predicate : a boolean function 

Subroutines are specified according to the following syntax: 
Subroutine = Header { Rule } 
Header = PROCEDURE Ident ( [ Parameters ] [ => Parameters ] ) 

[ FUNCTION Ident ( [ Parameters ] [ => Parameters ] ) Type 
f PREDICATE Ident ( [ Parameters ] [ => Parameters ] ) 

Parameters = [ Ident : ] Type { , [ Ident : ] Type } 

A subroutine consists of a header and a sequence of rules. The header specifies the kind 
of the subroutine, its name, and its parameters. In case of a function, the type of the result 

' >' It suffices value is added. Input and output parameters are separated by the symbol = . 
to give the type of a parameter. A name for the formal parameter is optional. 



3.3 Types 

Types are either predefined in the target language like int and INTEGER, or user-defined 
like MyType, or they are tree types like Expr. A tree type is described by the name of a 
tree definition, a single node type, or a list of node types enclosed in brackets '[' and '] ' .  
In case of ambiguities the latter two kinds may be qualified by preceding the name of the 
tree definition. 

Type = TreeType I UserType 

TreeType = Ident I [ Ident . ] Ident I [ Ident . ] ' [' Idents ']' 

UserType = Ident 

Idents = Ident { , Ident } 

3.4 Rules 

A rule behaves like a branch in a case or switch statement. It consists of a list of patterns, 
a list of expressions, a return expression in case of a function, and a list of statements. 

Rule = [ Patterns ] [ => Exprs ] [ RETURN Expr ] :- { Statement ; } . 

Patterns = Pattern { , Pattern } 

Exprs = Expr { , Expr } 

The semantics of a rule is as follows: A rule may succeed or fail. It succeeds if all 
its patterns, statements, and expressions succeed - otherwise it fails. The patterns, state- 
ments, and expressions are checked for success in the following order: First, the patterns 
are checked from left to fight. A pattern succeeds if it matches its corresponding input 
parameter as described below. Second, the statements are executed in sequence as long 
as they succeed. The success of statements is defined below. Third, the expressions are 
evaluated from left to fight and their results are passed to the corresponding output param- 
eters. In case of a function, additionally the expression after RETURN is evaluated and 
its result is returned as value of the function call. The success of expressions is defined 
below, too. If all elements of a rule succeed then the rule succeeds and the subroutine 
returns. If one element of a rule fails the process described above stops and causes the 
rule to fail. Then the next rule is tried. This search process continues until either a suc- 
cessful rule is found or the end of the list is reached. In the latter case the behaviour 
depends on the kind of the subroutine: A procedure does nothing, a predicate returns 
false, and a function signals a runtime error. There is one exception to this definition of 
the semantics which is explained later. 

3.5 Patterns 

A pattern describes the shape at the top or root of a subtree. A pattern can be a decompo- 
sition of a tree, the keyword NIL, a label or a variable, one of the don't care symbols '_ '  
or ' . . ' ,  or an expression. A decomposition is written as a node type followed by a list of 
patterns in parenthesis '( '  and ')'. It may be optionally preceded by a label. 
Pattern = [ Ident : ] Ident ( [ Patterns ] ) I NIL I Ident I _ I .. I Expr 

The match between a pattern and a value is defined recursively depending on the kind of 
the pattern: 

A decomposition with a node type t matches a tree u with a root node of type s if s 
is a subtype of t (s c t) and all subpatterns of t match their corresponding subtrees or attri- 
butes of u. If the node type is preceded by a label 1 then a binding is established between 1 
and u which defines the label I to refer to the tree u. 



The first occurrence of a label 1 in a rule matches an arbitrary subtree or attribute 
value u. All further occurrences of the label I within patterns of this rule match a subtree 
or an attribute value v only if u is equal to v. The equality for trees is defined in the se,se 
of structural equivalence. Two attributes are equal if they have the same values. A bind- 
ing is established between 1 and u which defines the label 1 to refer to the value u. The 
label can be used later to access the associated value. 

The pattern NIL matches the values NULL or NIL. The don't care symbol '_'  
matches one arbitrary subtree or attribute value. The don't care symbol ' . . '  matches any 
number of arbitrary subtrees or attribute values. An expression matches a parameter or an 
attribute if both have the same values. 

3.6 Expressions 

Expressions denote the computation of values or the construction of trees. Binary and 
unary operations as well as calls of external functions are written as in the target 
language. Calls of puma functions and predicates distinguish between input and output 
arguments. The syntax for tree composition is similar to the syntax of patterns. 

Expr = Ident ( [ Exprs ] ) I NIL I Ident I _ I .. 
f Ident ( [ Exprs ] [ => Patterns ] ) 

The semantics of the different kinds of expressions is as follows: 

A node type creates a tree node and provides the children and attributes of this node 
with the values given in parenthesis. NIL represents the value NULL or NIL. A label 
refers to the expression it was bound to upon its definition. 

A function or predicate call must be compatible with the corresponding definition in 
terms of the numbers of expressions and patterns as well as their types. A function call 
evaluates the expressions corresponding to input parameters, passes the results to the 
function, and executes the function. Upon return from the function the result value of the 
function determines the result of this expression. The values of the output parameters that 
the function retums are matched against the actual patterns of the function call. If one 
pair does not match the call fails. Labels in the patterns may establish bindings that 
enable to refer to the output parameters or subtrees thereof. 

The don't care symbols specify that no computation should be executed, either for 
one or for several expressions. The result values are undefined. The binary and unary 
operators (prefix and postfix) of the target language as well as array indexing, 
parentheses, numbers, and strings are known to puma. They are passed unchanged to the 
output. 

In case of node types, labels for tree values, and functions returning tree values, 
puma does type checking. For user types, target code expressions, or target operators no 
type checking is done by puma but later by the compiler. An expression that does not con- 
tain calls of puma functions or predicates always succeeds. An expression containing 
those calls succeeds if all the calls succeed - otherwise it fails. 

3.7 Statements 
Statements are used to describe conditions, to perform output, to assign values to attri- 
butes, and to control the execution of the transformer via recursive subroutine calls. A 
statement is either a condition denoted by an expression, a call of a procedure, an assign- 
ment, one of the keywords REJECT or FAIL, or a target code statement. Every kind of 
statement may succeed or fail as described below. 



Statement = Expr I Ident ( [ Exprs ] [ => Patterns ] ) I 
I REJECT ] FAIL ; [ Declarations ] TargetCode 

Declarations = Parameters 

Ident := Expr 

Conditions are denoted by expressions and can be used to determine properties that 
can not be expressed with pattern matching alone. Patterns describe either shapes of a 
fixed size of a tree or the equality between two values. Properties of trees of unlimited 
size and relations like '<',  '<=' etc. have to be checked with conditions. The expression 
has to be of type boolean or the call of a predicate. A condition succeeds if the expression 
evaluates to true - otherwise it fails. 

For a procedure call the same rules as for a function call apply. It succeeds if the 
values of all output parameters are matched by the corresponding patterns - otherwise it 
fails. 

An assignment statement evaluates its expression and stores this value at the entity 
denoted by the identifier on the left-hand side. The identifier can denote a global or a local 
variable, an input or an output parameter, as well as a label for an attribute or a subtree. 
An assignment statement succeeds if the expression succeeds - otherwise it fails. 

The statement REJECT does nothing but fail. This way the execution of the current 
rule terminates and control is passed to the next rule. The statement FAIL causes the exe- 
cution of the current subroutine to terminate. This statement is allowed in procedures and 
predicates, only. Depending on the kind of subroutine the following happens: A pro- 
cedure terminates and a predicate returns false. 

A target code statement which is enclosed in curly brackets '{'  and '}'  is executed 
as in the target language. It can be used to define labels by means of implementation 
language code or calls of external subroutines. In this case the names of the labels and 
their types have to be defined explicitly. This is done by declarations written in the syntax 
of a parameter list that precede the target code statement. A target code statement always 
succeeds. 

Note, statements and expressions may cause side effects by changing e. g. global 
variables, local variables, the input lyee, or by producing output. Those side effects are not 
undone when a rule fails. 

Further features such as various possibilities concerning the use of hand-written tar- 
get code, named patterns instead of positional ones, or the definition of the equality or 
matching operation between attributes by a macro mechanism are omitted for the sake of 
brevity. 

4 Implementation 
From a given specification, puma generates a program module in one of the target 
languages C or Modula-2 implementing the desired transformation. The subroutines in the 
sense of puma are mapped to subroutines in the target language. Procedures yield pro- 
cedures, functions yield functions that return a value, and predicates yield boolean func- 
tions. These subroutines can be called from other modules using the usual subroutine call 
syntax of the target language provided they are exported: All arguments are separated by 
commas - the symbol '=>' as separator between input and output arguments is only 
required in calls processed by puma. 

The types of the parameters are treated as follows: Predefined types or user defined 
types remain unchanged. Node types or sets of node types are replaced by the name of the 
corresponding tree type. This is a pointer to a union of record types. Input parameters are 
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passed by value and output parameters are passed by reference. 

The rules of a subroutine are treated like a comfortable case or switch statement. 
The code generated for pattern matching is relatively simple. A naive implementation 
would just use a sequence of if statements. This kind of code showed to be already rather 
efficient, puma optimizes the code with respect to the elimination of common tests for 
patterns and the clever use of switch statements. Furthermore, tail recursion can be turned 
into iteration. Labels are replaced by access paths to the associated values. The code for 
the construction of tree nodes is inserted in-line. It is therefore efficient because no pro- 
cedure calls are necessary for the creation of tree nodes. 

5 Related Research 
In this section we compare our approach with several programming paradigms and similar 
tools. The intention is to provide further insight in the nature of our tool by looking at 
styles or work the reader might be familiar with. 

5.1 Imperative Programming 
Our approach can be regarded as an extension of imperative languages by a type con- 
structor for trees. Operations on trees for the composition and decomposition are provided 
using a concise term notation. The storage management for trees is completely automatic. 
Intermediate variables for output parameters of subroutines are declared implicitly and 
checked for the single assignment property. Pattern matching represents a comfortable 
kind of case or switch statement tailored towards processing of trees. This imperative 
view is reflected best by the implementation of the generator puma. It can be seen as a 
preprocessor that provides attributed trees and pattern matching for imperative languages. 

5.2 Logic Programming 
From the stand point of logic programming languages such as Prolog [C1M84] our 
approach is relatively restricted and therefore one cannot classify puma as a logic pro- 
gramming language. Puma has no backtracking, no logic variables, and nothing like 
assert and retract. The unification is unidirectional and restricted to one of the two terms 
being a ground term. Similar are the syntax and the presence of predicates. Puma retains 
the "imperative subset" of Prolog. It turns out that this subset can be implemented 
efficiently and it suffices to specify most of the transformation problems in compilers 
[Paa89]. 

Compared to Prolog the following features have been added: Besides predicates 
there are procedures, functions, and customary expressions. This allows for recursive 
functions and easy calls of puma subroutines from hand-written code. Attributes can be 
stored in the tree and accessed in read and write mode. The terms or trees are statically 
typed. For parameters the modes input and output are distinguished. Pattern matching is 
extended to cope with subtypes and attributes. The modification of input terms is possi- 
ble. Easy escape to hand-written code and cooperation with other modules, either 
hand-written or generated, gives great flexibility and "imperative power". The transformer 
modules including the pattern matching are translated to direct code and therefore 
efficient. 

5.3 Functional Programming 
Compared to modern functional programming languages such as Hope [BMS80], ML 
[Mi185], or Miranda [Tur85] our approach can of course not claim to be functional. There 
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is nothing like under or over supply of functions or higher-order functions. It just supports 
the restricted kind of functional programming that can be found in imperative languages 
having functions and recursion like e. g. C or Pascal. Even the function results are res- 
tricted to simple data types and pointers. However, the latter allow functions to return 
trees and graphs. With respect to the traditional functional language Lisp [MAE65] our 
approach might be worth to be compared. Whereas Lisp supports binary trees only, puma 
provides tree nodes with an arbitrary number of subtrees and attributes. Dynamic typing 
and binding have been replaced by their static counterparts. The pattern matching facility 
has been added. 

5.4 Attribute Grammars 

Our technique is related to attribute grammars [Knu68] in several ways. Compared to 
pure attribute grammar processors such as [Gro89, JoP00, KHZ82] there are some restric- 
tions. In pure attribute grammar systems the attribute computations are written in a func- 
tional notation. Knowing the dependencies among the attributes allows the automatic 
(implicit) determination of an evaluation order for the attributes (visit sequences). Furth- 
ermore it is possible to check an attribute grammar for completeness and non-circularity. 
Our approach is based on an explicit evaluation order using hand-written visit sequences. 
Three kinds of data can be regarded as attributes: The "real" attributes stored in the tree, 
the parameters of the subroutines, and global variables. This classification of the attributes 
is done by the user. Whereas pure attribute grammars allow only computations local to a 
grammar rule, the pattern matching facility makes computations on larger tree regions of 
fixed size feasible. Considering attributes of the kind parameter and non-nested patterns 
only, our approach is similar to affix grammars [Kos71, Kos77] or extended affix gram- 
mars [War74]. This holds from the syntactic as well as from the semantic point of view. 
A puma generated module can contribute to attribute evaluation in several ways: First, the 
evaluation can be carried out completely by a transformation module itself using one or 
more subroutines for traversing the tree. Second, puma subroutines can be called as 
external subroutines from an attribute evaluator to compute attributes - especially those 
depending on tree-valued arguments. The imperative or sequential style of puma allows 
simple control on side effects and easy production of arbitrary output. 

5.5 Optran 

The transformation tool Optran [LMW89] has been designed for optimizing transforma- 
tions. It is based on an attribute grammar and modifies an input tree according to a given 
set of rules. A rule consists of a pattern, conditions, and action statements. The actions can 
replace the tree part matched by the pattern (where the unmatched subtrees might be 
reused) and compute new attribute values. Optran emphasizes the automatic reevaluation 
of attributes [LMO88] in order to arrive at attribute values consistent with the specified 
attribute grammar. As the goals of Optran are rather ambitious they pose several prob- 
lems: In which order will the rules be applied and how to find the locations in the tree 
where a pattern matches? When will the reevaluation of attributes be carded out? The 
latter question is interesting because in the worst case it will be necessary to recompute 
many attributes in a large part of the tree and therefore consume a considerable amount of 
run time. 

Our technique groups rules into an arbitrary number of subroutines. Every routine 
may perform pattern matching on an arbitrary number of trees supplied as arguments not 
just one. We explicitly control the execution order thus gaining an efficient and detailed 
way to describe where and when what should happen. Puma is not concerned with 
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reevaluation of attributes. Besides modification of the input tree it also allows for map- 
pings that produce arbitrary output. 

5.6 Trafola 
The functional language Trafola-H [HeS91] was designed to be a specification language 
for program transformations. Besides all the features one would expect from a modem 
functional language it has powerful constructs for pattern matching. For example pattern 
matching is extended to cope with tuples and sequences. This introduces nondeterminism 
which is handled using backtracking. The language is statically typed and offers type 
polymorphism. Pattern matching is implemented by a table-driven bottom up tree auto- 
mata or by a backtracking algorithm. The functional constructs are usually implemented 
by interpretation of an internal abstract machine. Our approach does not aim to be func- 
tional but it retains the flexibility and efficiency of imperative programming. Whereas the 
Trafola type constructor for sequences allows the grammar for legal trees to be written in 
extended BNF, puma supports pure BNF, only. Both approaches allow so-called non 
linear patterns where a variable occurs more than once in a pattern. Puma has extended 
pattern matching to handle subtypes. 

5.7 Codegenerator-Generators 
Tools for the generation of code generators such as Twig [AGT89] or Beg [ESL89] often 
use tree pattern matching, too. In addition to a pattern, a condition, and an action a rule is 
associated with costs. Pattern matching usually performs a global match on the complete 
input tree in order to find a complete cover of the tree where the sum of all participating 
rules is of minimal cost. Algorithms based on dynamic programming have proved to yield 
satisfactory results. These tools are oriented towards code selection by transforming a 
tree-like intermediate representation into machine code. Therefore there is de facto only 
one subroutine with one tree-valued argument. Beg provides support for register alloca- 
tion, has a fixed traversal scheme (post order), and generates directly coded 
code-generators. Twig allows for the modification of the input tree, supports arbitrary 
traversal strategies, and generates table-driven code-generators. 

5.8 Txi 
The tree transformation tool txl [CaC91, COP90] processes concrete syntax. It comprises a 
parser and an Unparser for input and output of trees and.allows the generation of 
source-to-source translators. The tree transformation is described by a set of rules consist- 
ing of a pattern, a condition, and a replacement. Usually the user does not have to take 
care about the order or location of rule applications. Rules are applied as long as there is 
one that matches. Thereby the tree is modified. There are means to describe which set of 
rules should be applied to which subtrees. Patterns are not written in a nested fashion but 
as strings containing nonterminals. The tool parses these strings in order to recognize the 
nesting structure. As puma is oriented towards abstract trees, the transformers are 
independent of parsing or unparsing. Besides tree modifications puma allows for tree 
mappings producing arbitrary output. Another difference is the explicit control of the 
execution order which allows an efficient implementation of the generated transformers. 

6 Experiences  
In a first real world application, puma was successfully used to generate a code-generator 
in a compiler for the robot control language IRL [IRL92]. The front-end of this compiler 



13 

constructs an abstract syntax tree which is decorated with attributes during the semantic 
analysis phase. The code-generator maps this attributed tree to the standardized robot con- 
trol code IRDATA [IRD91] which is comparable to assembly code. The strongly typed 
nature of IRDATA makes code-generation harder than one would expect. For instance it 
is impossible to implement record variables other than by turning every field into a 
separate variable. More complex types such as arrays with elements of a record type have 
to be transformed into records containing arrays. Nevertheless these nontrivial problems 
could be solved relatively easy with appropriate transformation rules. The code-generator 
uses a two phase scheme in order to deal with forward references. The first phase selects 
IRDATA instructions and stores them in memory. The second phase replaces symbolic 
labels by absolute ones, encodes the instructions, and writes the final code to an output 
file. The data structure for storing the instructions in memory is managed by a module 
generated by the tool ast. The development time was three months. 

Table 1: Sizes of the Code-Generator Parts 

Specification C Code Binary Code 
[lines] [lines] [KB] 

code selection (puma) 3032 8600 111 
instruction storage (ast) 165 3430 36 
output (hand-written) 700 7 
total 3197 12730 154 

The parts of the code-generator have the sizes listed in Table 1. The figures stem 
from measurements on a SPARC station ELC. The complete compiler runs at speed of 
1000 lines per second. The run time is distributed among the phases as follows: Scanning 
and parsing takes 21%, semantic analysis 10 %, code-generation 18 %, and output of the 
generated code 51%. The huge share for the output comes from the voluminous nature of 
IRDATA. The output reaches four times the size of the source program. 

7 Conclusions 
We presented a tool for the transformation of attributed trees using pattern matching. It is 
based on the definition, composition, and decomposition of trees in combination with 
recursion and pattern matching for trees as well as for attributes. It supports the mapping 
of trees to arbitrary output as well as the modification of trees. Moreover it can be used to 
construct attribute evaluators. The easy escape to an imperative programming language 
assures flexibility and practical usability. The tool has been designed to provide an 
expressive technique that can be implemented efficiently. 

The tool puma and its predecessor called Gentle [WGS89] have been used success- 
fully in several real world projects. At our institution a front-end for a C compiler and a 
compiler for a functional language have been generated. An industrial company makes 
use of it for a language implementation project, too. All applications report their satisfac- 
tion with this approach and relative short development times. The interesting question is 
where does this success come from? The final paragraphs give the author's subjective 
opinion. 

First, there are several aspects that support a high level programming style. The 
data type tree including operations for composition and decomposition replaces the han- 
tiling of pointers, records, and dynamic storage allocation. Pattern matching offers a com- 
fortable kind of case statement. Once it is understood and accepted then recursion seems 
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to be easier to deal with then iteration. The implicit declaration of variables simplifies 
coding. The check for the single assignment property catches errors such as missing or 
multiple computations. A concise syntactic notation is probably more profitable than one 
would imagine. (Many of the the mentioned arguments have contributed to the success of 
Lisp and Prolog.) The approach supports an incremental development style: Initially, rules 
for the most general form are supplied and later rules for special cases are added in order 
to improve performance. Furthermore static typing discovers many errors during genera- 
tion time. 

Second, the approach is designed to be very flexible and open. Every combination 
of attribute processing from mere reading and matching of attributes to complete evalua- 
tion can be expressed. The method allows tree modifications as well as mappings that 
produce arbitrary output. The explicit description of execution order gives full control on 
side effects. The escape to imperative programming and the easy integration with exter- 
nal subroutines are essential loopholes. The tool as well as the generated code are 
efficient and can be used in production projects. It is probably the combination of all the 
mentioned properties and reasons that we regard this approach to be very promising. 
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