
Transformation of Attributed Trees Using Pattern Matching

Josef Grosch

GMD Forschungsstelle an dex Universi~t Karlsruhe
Vincenz-Priegnitz-Str. 1, D-7500 Karlsruhe, Germany

+721-662226
grosch@karlsruhe.gmd.de

Abstract. This paper describes a tool for the transformation of attributed trees using pat-
tern matching. The trees to be processed are defined by a formalism based on context-
free grammars. Operations for trees such as composition and decomposition are provid-
ed. The approach can be characterized as an amalgaraation of trees or terms including
pattern matching, with recursion, attribute grammars, and imperative programming.
Transformations can either modify the input trees or map them to arbitrary output. Possi-
ble applications are the various transformation tasks in compilers such as semantic
analysis, optimization, or the generation of intermediate representations. The design
goals have been to combine an expressive and high level technique for transformation
with flexibility, efficiency, and practical usability. A reliable development style is sup-
ported by static typing and checks for the single assignment property of variables. We
give some example transformations and describe the input language of our tool called
puma. The relationship to similar work is discussed. Finally, experimental results are
presented that demonstrate the efficiency of our approach.

Keywords. transformation, attributed trees, pattern matching

1 Introduction
The transformation of trees using pattern matching becomes an accepted technique.
Several tools have been constructed recently that follow this principle [CoPg0, HeS91,
LMW89, Volgl]. Tools for code generation successfully use the same technique, too
[AGT89, ESL89]. We present a new tool called puma and its input language for the
transformation and manipulation of attributed trees and graphs [Gro91a]. Puma stands for
pattern matching and unification. Its intended application areas are the various transfor-
mation tasks in a compiler operating on abstract syntax trees or arbitrary graph structures.
This includes semantic analysis, optimization, intermediate code generation,
source-to-source translation, and eventually machine code generation.

The trees that are subject to pattern matching are described by a formalism based on
context-free grammars. The tree nodes may be associated with attributes of arbitrary
types. Node types are used to specify the properties of tree nodes. An extension mechan-
ism induces a subtype relation among the node types. Pattern matching is-extended to
handle subtypes and attributes, too. Operations for the composition and decomposition of
trees are supported by a concise notation.

The building blocks for a transformation are recursive subroutines, classified as
procedures, functions, and predicates, with an arbitrary number of input and output
parameters. The bodies of the subroutines consist of rules which are made up of patterns,
conditions, statements, and expressions. The first two components control the applicabil-
ity of a rule. The statements determine what has to be done whenever a rule is applicable.

The expressions provide values for the output parameters and the function result.

Static type checking with respect to trees is provided. Variables are declared impli-
citly and they are checked for the single assignment property. There is read and write
access to attributes stored in the tree which allows the construction of attribute evaluators.
In all places it is possible to escape to hand-written code which provides the power and
flexibility of the imperative programming style.

The output of the generator is a source module in one of the target languages C or
Modula-2. This module allows for easy integration and cooperation with other modules,
either hand-written or generated ones. The pattern matching is local and considers a
region at the top of the current subtree, only. It is implemented by direct code and there-
fore efficient.

Our approach can be regarded from several points of view: From the point of view
of imperative programming it is an extension by statically typed, attributed trees, con-
structs for composition and decomposition, and pattern matching. From the point of view
of logic programming it omits backtracking and restricts pattern matching to one of the
two terms being a ground term. It adds attributes which are stored in the terms (trees),
static typing, input and output modes for parameters, and an easy escape to imperative
features. From the point of view of functional programming it offers the simple style of
functional programming which has always been present in imperative languages having
functions and recursion. It adds the pattern matching facility. From the point of view of
attribute grammars it allows the specification of attribute evaluation with explicit control
of the evaluation order or visit sequences. This eases the use of global attributes and gives
full control on side-effects.

The intended use of this tool proceeds in three steps: First, a tree is constructed
either by a parser, a previous transformation phase, or whatever is appropriate. Second,
the attributes in the tree are evaluated either using an attribute grammar based tool, by a
puma specified tree traversal and attribute computations, or by hand-written code. Third,
the attributed tree is transformed or mapped to another data structure by a puma generated
transformation module. These steps can be executed one after the other or more or less
simultaneously. Besides trees, puma can handle attributed graphs as well, even cyclic
ones. Of course the cycles have to be detected in order to avoid infinite loops. A possible
solution uses attributes as marks for nodes already visited.

A transformer module can make use of attributes in the following ways: If attribute
values have been computed by a preceding attribute evaluator and are accessed in read
only mode then this corresponds to the three step model explained above. A puma gen-
erated module can also evaluate attributes on its own. A further possibility is that an attri-
bute evaluator can call puma subroutines in order to compute attributes. This is especially
of interest when attributes depend on tree-valued arguments.

The tool supports two classes of tree transformations: mappings and modifications.
Tree mappings map an input tree to arbitrary output data. The input tree is accessed in
read only mode and left unchanged. Tree modifications change a tree by e. g. computing
and storing attributes at tree nodes or by changing the tree structure. In this case the tree
data structure serves as input as well as output and it is accessed in read and write mode.

The first class covers applications like the generation of intermediate languages or
machine code. Trees are mapped to arbitrary output like source code, assembly code,
binary machine code, linearized intermediate languages like P-Code, or another tree struc-
ture. A further variant of mapping is to emit a sequence of procedure calls which are

handled by an abstract dam type.

The second class covers applications like semantic analysis or optimization. Trees
are decorated with attribute values, properties of the trees corresponding to context condi-
tions are checked, or trees are changed in order to reflect optimizing transformations.

Puma is part of the Karlsruhe Toolbox for Compiler Construction [GrE90]. In par-
ticular it cooperates with the generator for abstract syntax trees ast [Gro91b] and the attri-
bute evaluator generator ag [Gro89]. The attributed trees are defined and managed by a
module generated with ast. A second module generated by puma creates and handles
these trees. This way all the powerful operations for trees and graphs provided by ast are
available such as reader and writer procedures or the interactive browser. For sake of
simplicity we will deviate from reality in this paper and treat the definition of the tree
structure as part of puma.

The rest of this paper is organized as follows: Section 2 presents a few simple
examples of how to describe transformations with puma. Section 3 describes the input
language of the tool. Section 4 sketches the implementation of the generated transformer
module. Section 5 compares our approach with related work. Section 6 presents experi-
mental results. Section 7 contains concluding remarks.

2 Tree Transformation by Pattern Matching
The probably easiest way to get an impression of our approach can be obtained by having
a look at a few introductory examples. We will use the abstract syntax of simple arith-
metic expressions as input data structure. Besides a few intrinsic attributes describing e. g.
the values of constants we use an attribute called Type. It describes the type of every
subexpression. Its domain are trees, too. The tree definition based on a context-free gram-
mar shown in Example 1 specifies the structure of expressions and types.

Example 1: Tree Definition

Expr = Type <

Plus = Lop: Expr Rop: Expr .

Minus = Lop: Expr Rop: Expr .

Const = [Value] .

Adr = <

Index = Adr Expr .

Select = Adr [Ident: tIdent]

Ident = [Ident: tIdent]
>.

>.

Type = <

Int =

Real =

Bool =

Array = [Lwb] [Upb] Type .

Record = Fields .
>.

Fields = <

NoField =

Field = [Ident: tIdent] Type Fields .
>.

The names before the character '=' can be regarded both as rule names or nontermi-
nals. The possible right-hand sides for one nonterminal are enclosed in angle brackets '<'
and '>'. Non-tree valued attributes are enclosed in square brackets '[' and ']'. The attri-
butes Lwb, Upb, and Value are of the default type int. The attribute Ident is of the user-

defined type tldent. The tree-valued attribute Type of the rule named Expr is written like
every other right-hand side nonterminal. The selector names Lop and Rop used in the
rules called Plus and Minus allow symbolic access to fight-hand side elements having the
same type.

The association of an attribute such as Type with a nonterminal like Expr adds this
attribute to every right-hand side belonging to this nonterminal. Hence the rules Plus and
Minus have three right-hand side elements.

Example 2: Generation of P-Code

PROCEDURE P Code (Tree)

Plus (Int (), Lop, Rop) :- P_Code (Lop); P_Code
Plus (Real (), Lop, ROp) :- P Code (Lop); P Code
Minus (Int (), Lop, Rop) :- P-Code (Lop); P-Code
Minus (Real (), Lop, Rop) :- P Code (Lop); P_Code

(Rop); Emit (ADDI); .
(Rop); Emit (ADDR); .
(Rop); Emit (SUBI); .
(Rop); Emit (SUBR); .

PREDICATE IsCompatible ([Type, Fields],

Int () Int ()
Real () Real ()
Bool () Bool ()
Array (Lwb, Upb, TI) Array (Lwb, Upb,
Record (FI) Record (F2)
Field (, TI, FI) Field (, T2, F2)

[Type, Fields])

T2) :- IsCompatible (TI, T2); .
:- IsCompatible (FI, F2); .
:- IsCompatible (TI, T2);

IsCompatible (FI, F2); .

Example 4 presents the predicate lsCompatible which can be seen as a boolean
function. It operates on two parameters of types Type or Fields. Accordingly, every rule
has two patterns for matching against the two arguments. The first three rules lead to a

The subroutine specification presented in Example 2 describes part of a transforma-
tion of expression trees to P-Code [NAJ76]. The procedure P_Code performs a recursive
tree traversal. Its body consists of a sequence of rules. Every rule is made up of a pattern
and a list of statements separated by ".-'. Whenever a pattern matches against the input
parameter of the subroutine, the associated statement list is executed. The parameter of
the procedure P Code is of type Tree which means that every tree according to the tree
definition is a legal argument. The procedure Emit is supposed to be an external subrou-
tine that performs output,

Example 3: Computation of Type Sizes

FUNCTION TypeSize ([Type, Fields]) int

Int () RETURN 4 .
Real () RETURN 4 .
Bool () RETURN 1 .
Array (Lwb, Upb, T) RETURN (Upb - Lwb + i) * TypeSize (T)
Record (F) RETURN TypeSize (F) .
Field (, T, F) RETURN TypeSize (T) + TypeSize (F) .
NoField () RETURN 0 .

The function TypeSize in Example 3 transforms or maps trees to integer values. It is
defined to operate on trees of types Type and Fields and it returns a value of a type named
int. Again this subroutine performs a recursive tree traversal. Instead of producing a
side-effect like in the previous example it represents a pure functional mapping and
demonstrates the arithmetic expression capabilities of puma. The character '_' denotes a
so-called don't care pattern.

Example 4: Testing two Types for Compatibility

return value of true if both patterns match both arguments. The fourth rule returns true if
the attributes Lwb and Upb of the two argument trees match(have the same value) and if
the recursive call IsCompatible returns true for the two types T1 and T2 of the array ele-
ments. If none of the rules matches the predicate returns false.

Example 5: Procedure with Input and Output Parameters

PROCEDURE ResultType (Type, Type, Operator: int = > Type)

Int () , Int () , { opPlus } => Int () .

Real () , Real () , { opPlus } => Real () .

Int () , Int () , { opMinus } => Int ()

Real () , Real () , { opMinus } => Real () .

The subroutine given in Example 5 has three input and one output parameter. It
computes the result type of a binary expression which depends on the types of the
operands and on the operator. The third pattern of every rule is enclosed in curly brackets
"{ and '] ' . This represents so-called target code which is more or less passed unchanged
and unchecked to the generated module. In this case opPlus and opMinus are named con-
stants encoding operators. Without the curly brackets they would be treated as pattern
variables. The expression after the symbol '=>' describes the value of the output parame-
ter in case of a successful match. It consists of a tree constructor which creates a tree hav-
ing one node.

3 Specification Language
The description of a tree transformation consists of the definition of attributed trees and a
set of subroutines.

3.1 Tree Structure

The structure of attributed trees or (directed) graphs is specified by a formalism based on
context-free grammars. However, we primarily use the terminology of trees and types,
here. A tree consists of nodes. A node may be related to other nodes in a so-called
parent-child relation. Then the first node is called a parent node and the latter nodes are
called child nodes. Nodes without a parent node are usually called root nodes, nodes
without children are called leaf nodes.

The structure and the properties of nodes are described by node types. Every node
belongs to a node type. A specification of a tree describes a finite number of node types.
A node type specifies the names of the child nodes and the associated node types as well
as the names of the attributes and the associated attribute types.

Children are distinguished by selector names which have to be unambiguous within
one node type. The children are of a certain node type. Example:

Plus = Lop: Expr Rop: Expr .

Index = Adr : Adr Expr : Expr .

The example introduces two node types called Plus and Index. A node of type Plus has
two children which are selected by the names Lop and Rop. Both children are of the node
type Expr. If a selector name is equal to the associated name of the node type it can be
omitted. Therefore, the node type Index can be abbreviated as follows:

Index = Adr Expr .

As well as children, every node type can specify an arbitrary number of attributes
of arbitrary types. Like children, attributes are characterized by a selector name and a

certain type. The descriptions of attributes are enclosed in brackets '[' and ']'. The attri-
bute types are given by names taken from the target language. Missing attribute types are
assumed to be int or INTEGER depending on the target language (C or Modula-2). Chil-
dren and attributes can be given in any order (see Example 1).

To allow several alternatives for the types of children an extension mechanism is
used. A node type may be associated with several other node types enclosed in angle
brackets '<' and '>'. Then this node type is called base or super type and the associated
types are called derived types or subtypes. A derived type can in turn be extended with no
limitation of the nesting depth. The extension mechanism induces a subtype relation
between node types denoted by the symbol c . This relation is transitive. Where a node
of a certain node type is required, either a node of this node type or a node of a subtype
thereof is legal.

In Example 1 Expr is a base type describing nodes with one child called Type. The
node type Expr has four derived types called Plus, Minus, Const, and Adr. The node type
Adr is in turn extended by three derived types called Index, Select, and Ident. Where a
node of type Expr is required, all mentioned node types are legal. Where a node of type
Adr is required, nodes of the types Index, Select, or Ident are legal. Where a node of type
Index is required, nodes of type Index are legal, only. The subtype relation is the transitive
and reflexive closure of: Plus c Expr, Minus c_ Expr, Const c_ Expr, Adr c Expr, Index
Adr, Select c_ Adr, Ident ~ Adr.

Besides extending the set of legal node types, the extension mec~hanism has the pro-
perty of extending the children and attributes of the base type. The derived types possess
the children and attributes of the base type. They may define additional children and attri-
butes. In other words they inherit the structure of the base type. The selector names of all
children and atlributes in an extension hierarchy have to be distinct. The syntax has been
designed this way in order to allow single inheritance, only.

In Example 1 nodes of type Expr have one child selected by the name Type. Nodes
of type Plus have three children with the selector names Type, Lop, and Rop.

3.2 Subroutines
A set of subroutines constitutes the main building blocks of a transformation. Like in pro-
gramming languages, subroutines are parameterized abstractions of statements or expres-
sions. There are three kinds of subroutines:

procedure : a subroutine acting as a statement
function : a subroutine acting as an expression and returning a value
predicate : a boolean function

Subroutines are specified according to the following syntax:
Subroutine = Header { Rule }
Header = PROCEDURE Ident ([Parameters] [=> Parameters])

[FUNCTION Ident ([Parameters] [=> Parameters]) Type
f PREDICATE Ident ([Parameters] [=> Parameters])

Parameters = [Ident :] Type { , [Ident :] Type }

A subroutine consists of a header and a sequence of rules. The header specifies the kind
of the subroutine, its name, and its parameters. In case of a function, the type of the result

' >' It suffices value is added. Input and output parameters are separated by the symbol = .
to give the type of a parameter. A name for the formal parameter is optional.

3.3 Types

Types are either predefined in the target language like int and INTEGER, or user-defined
like MyType, or they are tree types like Expr. A tree type is described by the name of a
tree definition, a single node type, or a list of node types enclosed in brackets '[' and '] ' .
In case of ambiguities the latter two kinds may be qualified by preceding the name of the
tree definition.

Type = TreeType I UserType

TreeType = Ident I [Ident .] Ident I [Ident .] ' [' Idents ']'

UserType = Ident

Idents = Ident { , Ident }

3.4 Rules

A rule behaves like a branch in a case or switch statement. It consists of a list of patterns,
a list of expressions, a return expression in case of a function, and a list of statements.

Rule = [Patterns] [=> Exprs] [RETURN Expr] :- { Statement ; } .

Patterns = Pattern { , Pattern }

Exprs = Expr { , Expr }

The semantics of a rule is as follows: A rule may succeed or fail. It succeeds if all
its patterns, statements, and expressions succeed - otherwise it fails. The patterns, state-
ments, and expressions are checked for success in the following order: First, the patterns
are checked from left to fight. A pattern succeeds if it matches its corresponding input
parameter as described below. Second, the statements are executed in sequence as long
as they succeed. The success of statements is defined below. Third, the expressions are
evaluated from left to fight and their results are passed to the corresponding output param-
eters. In case of a function, additionally the expression after RETURN is evaluated and
its result is returned as value of the function call. The success of expressions is defined
below, too. If all elements of a rule succeed then the rule succeeds and the subroutine
returns. If one element of a rule fails the process described above stops and causes the
rule to fail. Then the next rule is tried. This search process continues until either a suc-
cessful rule is found or the end of the list is reached. In the latter case the behaviour
depends on the kind of the subroutine: A procedure does nothing, a predicate returns
false, and a function signals a runtime error. There is one exception to this definition of
the semantics which is explained later.

3.5 Patterns

A pattern describes the shape at the top or root of a subtree. A pattern can be a decompo-
sition of a tree, the keyword NIL, a label or a variable, one of the don't care symbols '_ '
or ' . . ' , or an expression. A decomposition is written as a node type followed by a list of
patterns in parenthesis '(' and ')'. It may be optionally preceded by a label.
Pattern = [Ident :] Ident ([Patterns]) I NIL I Ident I _ I .. I Expr

The match between a pattern and a value is defined recursively depending on the kind of
the pattern:

A decomposition with a node type t matches a tree u with a root node of type s if s
is a subtype of t (s c t) and all subpatterns of t match their corresponding subtrees or attri-
butes of u. If the node type is preceded by a label 1 then a binding is established between 1
and u which defines the label I to refer to the tree u.

The first occurrence of a label 1 in a rule matches an arbitrary subtree or attribute
value u. All further occurrences of the label I within patterns of this rule match a subtree
or an attribute value v only if u is equal to v. The equality for trees is defined in the se,se
of structural equivalence. Two attributes are equal if they have the same values. A bind-
ing is established between 1 and u which defines the label 1 to refer to the value u. The
label can be used later to access the associated value.

The pattern NIL matches the values NULL or NIL. The don't care symbol '_'
matches one arbitrary subtree or attribute value. The don't care symbol ' . . ' matches any
number of arbitrary subtrees or attribute values. An expression matches a parameter or an
attribute if both have the same values.

3.6 Expressions

Expressions denote the computation of values or the construction of trees. Binary and
unary operations as well as calls of external functions are written as in the target
language. Calls of puma functions and predicates distinguish between input and output
arguments. The syntax for tree composition is similar to the syntax of patterns.

Expr = Ident ([Exprs]) I NIL I Ident I _ I ..
f Ident ([Exprs] [=> Patterns])

The semantics of the different kinds of expressions is as follows:

A node type creates a tree node and provides the children and attributes of this node
with the values given in parenthesis. NIL represents the value NULL or NIL. A label
refers to the expression it was bound to upon its definition.

A function or predicate call must be compatible with the corresponding definition in
terms of the numbers of expressions and patterns as well as their types. A function call
evaluates the expressions corresponding to input parameters, passes the results to the
function, and executes the function. Upon return from the function the result value of the
function determines the result of this expression. The values of the output parameters that
the function retums are matched against the actual patterns of the function call. If one
pair does not match the call fails. Labels in the patterns may establish bindings that
enable to refer to the output parameters or subtrees thereof.

The don't care symbols specify that no computation should be executed, either for
one or for several expressions. The result values are undefined. The binary and unary
operators (prefix and postfix) of the target language as well as array indexing,
parentheses, numbers, and strings are known to puma. They are passed unchanged to the
output.

In case of node types, labels for tree values, and functions returning tree values,
puma does type checking. For user types, target code expressions, or target operators no
type checking is done by puma but later by the compiler. An expression that does not con-
tain calls of puma functions or predicates always succeeds. An expression containing
those calls succeeds if all the calls succeed - otherwise it fails.

3.7 Statements
Statements are used to describe conditions, to perform output, to assign values to attri-
butes, and to control the execution of the transformer via recursive subroutine calls. A
statement is either a condition denoted by an expression, a call of a procedure, an assign-
ment, one of the keywords REJECT or FAIL, or a target code statement. Every kind of
statement may succeed or fail as described below.

Statement = Expr I Ident ([Exprs] [=> Patterns]) I
I REJECT] FAIL ; [Declarations] TargetCode

Declarations = Parameters

Ident := Expr

Conditions are denoted by expressions and can be used to determine properties that
can not be expressed with pattern matching alone. Patterns describe either shapes of a
fixed size of a tree or the equality between two values. Properties of trees of unlimited
size and relations like '<', '<=' etc. have to be checked with conditions. The expression
has to be of type boolean or the call of a predicate. A condition succeeds if the expression
evaluates to true - otherwise it fails.

For a procedure call the same rules as for a function call apply. It succeeds if the
values of all output parameters are matched by the corresponding patterns - otherwise it
fails.

An assignment statement evaluates its expression and stores this value at the entity
denoted by the identifier on the left-hand side. The identifier can denote a global or a local
variable, an input or an output parameter, as well as a label for an attribute or a subtree.
An assignment statement succeeds if the expression succeeds - otherwise it fails.

The statement REJECT does nothing but fail. This way the execution of the current
rule terminates and control is passed to the next rule. The statement FAIL causes the exe-
cution of the current subroutine to terminate. This statement is allowed in procedures and
predicates, only. Depending on the kind of subroutine the following happens: A pro-
cedure terminates and a predicate returns false.

A target code statement which is enclosed in curly brackets '{' and '}' is executed
as in the target language. It can be used to define labels by means of implementation
language code or calls of external subroutines. In this case the names of the labels and
their types have to be defined explicitly. This is done by declarations written in the syntax
of a parameter list that precede the target code statement. A target code statement always
succeeds.

Note, statements and expressions may cause side effects by changing e. g. global
variables, local variables, the input lyee, or by producing output. Those side effects are not
undone when a rule fails.

Further features such as various possibilities concerning the use of hand-written tar-
get code, named patterns instead of positional ones, or the definition of the equality or
matching operation between attributes by a macro mechanism are omitted for the sake of
brevity.

4 Implementation
From a given specification, puma generates a program module in one of the target
languages C or Modula-2 implementing the desired transformation. The subroutines in the
sense of puma are mapped to subroutines in the target language. Procedures yield pro-
cedures, functions yield functions that return a value, and predicates yield boolean func-
tions. These subroutines can be called from other modules using the usual subroutine call
syntax of the target language provided they are exported: All arguments are separated by
commas - the symbol '=>' as separator between input and output arguments is only
required in calls processed by puma.

The types of the parameters are treated as follows: Predefined types or user defined
types remain unchanged. Node types or sets of node types are replaced by the name of the
corresponding tree type. This is a pointer to a union of record types. Input parameters are

10

passed by value and output parameters are passed by reference.

The rules of a subroutine are treated like a comfortable case or switch statement.
The code generated for pattern matching is relatively simple. A naive implementation
would just use a sequence of if statements. This kind of code showed to be already rather
efficient, puma optimizes the code with respect to the elimination of common tests for
patterns and the clever use of switch statements. Furthermore, tail recursion can be turned
into iteration. Labels are replaced by access paths to the associated values. The code for
the construction of tree nodes is inserted in-line. It is therefore efficient because no pro-
cedure calls are necessary for the creation of tree nodes.

5 Related Research
In this section we compare our approach with several programming paradigms and similar
tools. The intention is to provide further insight in the nature of our tool by looking at
styles or work the reader might be familiar with.

5.1 Imperative Programming
Our approach can be regarded as an extension of imperative languages by a type con-
structor for trees. Operations on trees for the composition and decomposition are provided
using a concise term notation. The storage management for trees is completely automatic.
Intermediate variables for output parameters of subroutines are declared implicitly and
checked for the single assignment property. Pattern matching represents a comfortable
kind of case or switch statement tailored towards processing of trees. This imperative
view is reflected best by the implementation of the generator puma. It can be seen as a
preprocessor that provides attributed trees and pattern matching for imperative languages.

5.2 Logic Programming
From the stand point of logic programming languages such as Prolog [C1M84] our
approach is relatively restricted and therefore one cannot classify puma as a logic pro-
gramming language. Puma has no backtracking, no logic variables, and nothing like
assert and retract. The unification is unidirectional and restricted to one of the two terms
being a ground term. Similar are the syntax and the presence of predicates. Puma retains
the "imperative subset" of Prolog. It turns out that this subset can be implemented
efficiently and it suffices to specify most of the transformation problems in compilers
[Paa89].

Compared to Prolog the following features have been added: Besides predicates
there are procedures, functions, and customary expressions. This allows for recursive
functions and easy calls of puma subroutines from hand-written code. Attributes can be
stored in the tree and accessed in read and write mode. The terms or trees are statically
typed. For parameters the modes input and output are distinguished. Pattern matching is
extended to cope with subtypes and attributes. The modification of input terms is possi-
ble. Easy escape to hand-written code and cooperation with other modules, either
hand-written or generated, gives great flexibility and "imperative power". The transformer
modules including the pattern matching are translated to direct code and therefore
efficient.

5.3 Functional Programming
Compared to modern functional programming languages such as Hope [BMS80], ML
[Mi185], or Miranda [Tur85] our approach can of course not claim to be functional. There

11

is nothing like under or over supply of functions or higher-order functions. It just supports
the restricted kind of functional programming that can be found in imperative languages
having functions and recursion like e. g. C or Pascal. Even the function results are res-
tricted to simple data types and pointers. However, the latter allow functions to return
trees and graphs. With respect to the traditional functional language Lisp [MAE65] our
approach might be worth to be compared. Whereas Lisp supports binary trees only, puma
provides tree nodes with an arbitrary number of subtrees and attributes. Dynamic typing
and binding have been replaced by their static counterparts. The pattern matching facility
has been added.

5.4 Attribute Grammars

Our technique is related to attribute grammars [Knu68] in several ways. Compared to
pure attribute grammar processors such as [Gro89, JoP00, KHZ82] there are some restric-
tions. In pure attribute grammar systems the attribute computations are written in a func-
tional notation. Knowing the dependencies among the attributes allows the automatic
(implicit) determination of an evaluation order for the attributes (visit sequences). Furth-
ermore it is possible to check an attribute grammar for completeness and non-circularity.
Our approach is based on an explicit evaluation order using hand-written visit sequences.
Three kinds of data can be regarded as attributes: The "real" attributes stored in the tree,
the parameters of the subroutines, and global variables. This classification of the attributes
is done by the user. Whereas pure attribute grammars allow only computations local to a
grammar rule, the pattern matching facility makes computations on larger tree regions of
fixed size feasible. Considering attributes of the kind parameter and non-nested patterns
only, our approach is similar to affix grammars [Kos71, Kos77] or extended affix gram-
mars [War74]. This holds from the syntactic as well as from the semantic point of view.
A puma generated module can contribute to attribute evaluation in several ways: First, the
evaluation can be carried out completely by a transformation module itself using one or
more subroutines for traversing the tree. Second, puma subroutines can be called as
external subroutines from an attribute evaluator to compute attributes - especially those
depending on tree-valued arguments. The imperative or sequential style of puma allows
simple control on side effects and easy production of arbitrary output.

5.5 Optran

The transformation tool Optran [LMW89] has been designed for optimizing transforma-
tions. It is based on an attribute grammar and modifies an input tree according to a given
set of rules. A rule consists of a pattern, conditions, and action statements. The actions can
replace the tree part matched by the pattern (where the unmatched subtrees might be
reused) and compute new attribute values. Optran emphasizes the automatic reevaluation
of attributes [LMO88] in order to arrive at attribute values consistent with the specified
attribute grammar. As the goals of Optran are rather ambitious they pose several prob-
lems: In which order will the rules be applied and how to find the locations in the tree
where a pattern matches? When will the reevaluation of attributes be carded out? The
latter question is interesting because in the worst case it will be necessary to recompute
many attributes in a large part of the tree and therefore consume a considerable amount of
run time.

Our technique groups rules into an arbitrary number of subroutines. Every routine
may perform pattern matching on an arbitrary number of trees supplied as arguments not
just one. We explicitly control the execution order thus gaining an efficient and detailed
way to describe where and when what should happen. Puma is not concerned with

12

reevaluation of attributes. Besides modification of the input tree it also allows for map-
pings that produce arbitrary output.

5.6 Trafola
The functional language Trafola-H [HeS91] was designed to be a specification language
for program transformations. Besides all the features one would expect from a modem
functional language it has powerful constructs for pattern matching. For example pattern
matching is extended to cope with tuples and sequences. This introduces nondeterminism
which is handled using backtracking. The language is statically typed and offers type
polymorphism. Pattern matching is implemented by a table-driven bottom up tree auto-
mata or by a backtracking algorithm. The functional constructs are usually implemented
by interpretation of an internal abstract machine. Our approach does not aim to be func-
tional but it retains the flexibility and efficiency of imperative programming. Whereas the
Trafola type constructor for sequences allows the grammar for legal trees to be written in
extended BNF, puma supports pure BNF, only. Both approaches allow so-called non
linear patterns where a variable occurs more than once in a pattern. Puma has extended
pattern matching to handle subtypes.

5.7 Codegenerator-Generators
Tools for the generation of code generators such as Twig [AGT89] or Beg [ESL89] often
use tree pattern matching, too. In addition to a pattern, a condition, and an action a rule is
associated with costs. Pattern matching usually performs a global match on the complete
input tree in order to find a complete cover of the tree where the sum of all participating
rules is of minimal cost. Algorithms based on dynamic programming have proved to yield
satisfactory results. These tools are oriented towards code selection by transforming a
tree-like intermediate representation into machine code. Therefore there is de facto only
one subroutine with one tree-valued argument. Beg provides support for register alloca-
tion, has a fixed traversal scheme (post order), and generates directly coded
code-generators. Twig allows for the modification of the input tree, supports arbitrary
traversal strategies, and generates table-driven code-generators.

5.8 Txi
The tree transformation tool txl [CaC91, COP90] processes concrete syntax. It comprises a
parser and an Unparser for input and output of trees and.allows the generation of
source-to-source translators. The tree transformation is described by a set of rules consist-
ing of a pattern, a condition, and a replacement. Usually the user does not have to take
care about the order or location of rule applications. Rules are applied as long as there is
one that matches. Thereby the tree is modified. There are means to describe which set of
rules should be applied to which subtrees. Patterns are not written in a nested fashion but
as strings containing nonterminals. The tool parses these strings in order to recognize the
nesting structure. As puma is oriented towards abstract trees, the transformers are
independent of parsing or unparsing. Besides tree modifications puma allows for tree
mappings producing arbitrary output. Another difference is the explicit control of the
execution order which allows an efficient implementation of the generated transformers.

6 Experiences
In a first real world application, puma was successfully used to generate a code-generator
in a compiler for the robot control language IRL [IRL92]. The front-end of this compiler

13

constructs an abstract syntax tree which is decorated with attributes during the semantic
analysis phase. The code-generator maps this attributed tree to the standardized robot con-
trol code IRDATA [IRD91] which is comparable to assembly code. The strongly typed
nature of IRDATA makes code-generation harder than one would expect. For instance it
is impossible to implement record variables other than by turning every field into a
separate variable. More complex types such as arrays with elements of a record type have
to be transformed into records containing arrays. Nevertheless these nontrivial problems
could be solved relatively easy with appropriate transformation rules. The code-generator
uses a two phase scheme in order to deal with forward references. The first phase selects
IRDATA instructions and stores them in memory. The second phase replaces symbolic
labels by absolute ones, encodes the instructions, and writes the final code to an output
file. The data structure for storing the instructions in memory is managed by a module
generated by the tool ast. The development time was three months.

Table 1: Sizes of the Code-Generator Parts

Specification C Code Binary Code
[lines] [lines] [KB]

code selection (puma) 3032 8600 111
instruction storage (ast) 165 3430 36
output (hand-written) 700 7
total 3197 12730 154

The parts of the code-generator have the sizes listed in Table 1. The figures stem
from measurements on a SPARC station ELC. The complete compiler runs at speed of
1000 lines per second. The run time is distributed among the phases as follows: Scanning
and parsing takes 21%, semantic analysis 10 %, code-generation 18 %, and output of the
generated code 51%. The huge share for the output comes from the voluminous nature of
IRDATA. The output reaches four times the size of the source program.

7 Conclusions
We presented a tool for the transformation of attributed trees using pattern matching. It is
based on the definition, composition, and decomposition of trees in combination with
recursion and pattern matching for trees as well as for attributes. It supports the mapping
of trees to arbitrary output as well as the modification of trees. Moreover it can be used to
construct attribute evaluators. The easy escape to an imperative programming language
assures flexibility and practical usability. The tool has been designed to provide an
expressive technique that can be implemented efficiently.

The tool puma and its predecessor called Gentle [WGS89] have been used success-
fully in several real world projects. At our institution a front-end for a C compiler and a
compiler for a functional language have been generated. An industrial company makes
use of it for a language implementation project, too. All applications report their satisfac-
tion with this approach and relative short development times. The interesting question is
where does this success come from? The final paragraphs give the author's subjective
opinion.

First, there are several aspects that support a high level programming style. The
data type tree including operations for composition and decomposition replaces the han-
tiling of pointers, records, and dynamic storage allocation. Pattern matching offers a com-
fortable kind of case statement. Once it is understood and accepted then recursion seems

14

to be easier to deal with then iteration. The implicit declaration of variables simplifies
coding. The check for the single assignment property catches errors such as missing or
multiple computations. A concise syntactic notation is probably more profitable than one
would imagine. (Many of the the mentioned arguments have contributed to the success of
Lisp and Prolog.) The approach supports an incremental development style: Initially, rules
for the most general form are supplied and later rules for special cases are added in order
to improve performance. Furthermore static typing discovers many errors during genera-
tion time.

Second, the approach is designed to be very flexible and open. Every combination
of attribute processing from mere reading and matching of attributes to complete evalua-
tion can be expressed. The method allows tree modifications as well as mappings that
produce arbitrary output. The explicit description of execution order gives full control on
side effects. The escape to imperative programming and the easy integration with exter-
nal subroutines are essential loopholes. The tool as well as the generated code are
efficient and can be used in production projects. It is probably the combination of all the
mentioned properties and reasons that we regard this approach to be very promising.

References
[AGT89] A.V. Aho, M. Ganapathi and S. W. K. Tjiang, Code Generation Using Tree

Matching and Dynamic Programming, ACM Trans. Prog. Lang. and Systems
11, 4 (Oct. 1989), 491-516.

[BMS80] R. Burstall, D. MacQueen and D. Sannella, HOPE: An Experimental
Applicative Language, Report CSR-62-80, Computer Science Department,
Edinburgh, 1980.

[CaCgl] I .H. Carmichael and J. R. Cordy, TXL - Tree Transformation Language,
Syntax and Informal Semantics, Dept. of Computing and Information
Sciences, Queens's Univeristy, Kingston, Apr. 1991.

[CIM84] W.F. Clocksin and C. S. Mellish, Programming in Prolog, Springer Verlag,
Berlin, 1984.

[CoPg0] J . R . Cordy and E. Promislow, Specification and Automatic Prototype
Implementation of Polymorphic Objects in TURING using the TXL Dialect
Processor, Proc. IEEE 1990 International Conference on Computer
Languages, New Orleans, Mar. 1990, 145-154.

[ESL89] H. Emmelmann, F. W. Schr'6er and R. Landwehr, BEG - a Generator for
Efficient Back Ends, SIGPLANNotices 24, 7 0uly 1989), 227-237.

[Gro89] J. Grosch, Ag - An Attribute Evaluator Generator, Compiler Generation
Report No. 16, GMD Forschungsstelle an der Universit~t Karlsruhe, Aug.
1989.

[GrE90] J. Grosch and H. Emmelmann, A Tool Box for Compiler Construction, LNCS
477, (Oct. 1990), 106-116, Springer Verlag.

[Gro91a] J. Grosch, Puma - A Generator for the Transformation of Attributed Trees,
Compiler Generation Report No. 26, GMD Forschungsstelle an der
Universit~t Karlsruhe, July 1991.

[Gro91b] J. Grosch, Tool Support for Data Structures, Structured Programming 12,
(1991), 31-38.

15

[HeS91]

[IRD91]

[IRL92]

[JoP90]

[KHZ821

[Knu68]

[Kos71]

[Kos77]

[LMO88]

[LMW89]

[MAE65]

[Mi185]

[NAJ76]

[Paa89]

[Tur85]

[Vo191]

[WGS89]

[Wat74]

R. Heckmann and G. Sander, Trafola-H Reference Manual, Prospectra
Project Report, Universith't des Saarlandes, Saarbriicken, 1991.

IRDATA, Industrial Robot Data, DIN 66313, Beuth-Verlag, Berlin, 1991.

IRL, Industrial Robot Language, DIN 66312, Beuth-Verlag, Berlin, to
appear, 1992.

M. Jourdan and D. Parigot, Application Development with the FNC-2
Attribute Grammar System, LNCS 477, (Oct. 1990), 11-25, Springer Verlag.

U. Kastens, B. Hutt and E. Zimmermann, GAG: A Practical Compiler
Generator, Springer Verlag, Heidelberg, 1982.

D. E. Knuth, Semantics of Context-Free Languages, Mathematical Systems
Theory 2, 2 (June 1968), 127-146.

C. H. A. Koster, Affix Grammars, in ALGOL 68 Implementation, J. E. L.
Peck (ed.), North Holland, Amsterdam, 1971, 95-109.

C. H. A. Koster, CDL: A Compiler Implementation Language, LNCS 47,
(1977), 341-351, Springer Verlag.

P. Lipps, U. M6ncke, M. Olk and R. Wilhelm, Attribute (Re)evaluation in
OPTRAN, Acta Inf. 26, (1988), 213-239.

P. Lipps, U. M6ncke and R. Wilhelm, OPTRAN - A Language/System for
the Specification of Program Transformations, System Overview and
Experiences, LNCS 371, (1989), 52-65, Springer Verlag.

J. McCarthy, P. W. Abrahams, D. J. Edwards, T. R. Hart and M. I. Levin,
Lisp 1.5 Programmer's Manual, MIT Press, Cambridge, MA, 1965.

R. Milner, The Standard ML Core Language, Polymorphism 2, 2 (1985),.

K. V. Nori, U. Ammann, K. Jensen, H. H. N~igeli and C. Jacobi, The Pascal-P
Compiler: Implementation Notes, Bericht 10, EidgenSssische Technische
Hochschule, Zfirich, July 1976.

J. Paakki, A Prolog-Based Compiler Writing Tool, in Proceedings of the
Workshop on Compiler Compiler and High Speed Compilation, D. Hammer
(ed.), Berlin, GDR, 1989, 107-117.

D. A. Turner, Miranda: A Nonstrict Functional Language with Polymorphic
Types, LNCS 201, (1985), 1-16, Springer Verlag.

J. VoUmer, The Compiler Construction System GENTLE, GMD-
Arbeitspapier Nr. 508, GMD Forschungsstelle an tier Universit~t Karlsruhe,
Feb. 1991.

W. M. Waite, J. Grosch and F. W. Schr6er, Three Compiler Specifications,
GMD-Studie Nr. 166, GMD Forschungsstelle an der Universiffit Karlsruhe,
Aug. 1989.

D. A. Watt, Analysis Oriented Two Level Grammars, Ph. D. thesis,
University of Glasgow, Glasgow, 1974.

