
The LDL - Language Development
Laboratory

Giinter Riedewald

Universitat Rostock, Fachbereich Informatik
A.-Einstein-Str. 21, 0-2500 Rostock, Germany

E-mail: riedewald@informatik.uni-rostock.dbp.de

Abs t r ac t . LDL is a system supporting the design of proced-
ural programming languages and generating interpreters for
prototyping purposes. Moreover, test sets for testing inter-
preters/compilers of the developed language can be generated.
LDL is based on GSFs - a kind of attribute grammars - and uses
the denotational approach for semantics definition. For the
prototype interpreter its correctness can be proved.

1 Introduction

It is an old dream of compiler designers that formal specifications
can at the same time serve as programming language definit ions
and as compiler specifications. The goal is to generate automat-
ically realistic compilers from formal language specif icat ions. A
good survey about some older attempts based on either language
definitions with denotational semantics or algebraic language
definitions is represented in [J 80]. E.g. the systems of Jones/
Schmidt and Mosses are based on denotational semantics,
whereas Morris and Gaudel prefer the algebraic approach.
Newer papers or projects are described in e.g. [A 86], [W 86], [BP
89], [BA 90], [FL 90]. Although the final goal is to generate
realistic compilers at the moment it is rather realistic to gen-
erate prototype compilers. But it seems that Lee's project MESS ([L
89]) is very near to the goal.

Our system LDL exploits the concept of [R 91], i.e. a language is
defined by a GSF, a kind of attribute grammars, and applies the
denotat ional approach for semantics definition. Because GSFs
are closely related to PROLOG programs, after some modifiations
and extensions the language definition is turned into a PROLOG
program, which can be considered as a prototype interpreter of
the defined language. The correctness of the prototype inter-
preter can be proved in an analogous way as in [ADJ 80].

89

The language definition serves also as an input of a test-case
generator. The generated test programs satisfying context condit-
ions can be used to test compilers/interpreters constructed for
the developed language applying any compiler compiler. For this
purpose the test programs are executed once by the prototype
interpreter and once by the tested compiler / interpreter .
Because the prototype interpreter is correct, from comparing the
results of both executions it can be seen whether the tested
compiler/interpreter works correctly for the test programs. Ad-
dit ionally, more sophisticated programs suggested by language
users can be used. In such a way LDL supports the development of
correct compilers/ interpreters to a high degree through valida-
tion, verification and testing.

Keeping in mind Koskimies' statement ([K 91]) "The concept of
an attribute grammar is too primitive to be nothing but a
basic framework, the 'machine language' of language implemen-
tation." LDL offers a higher-level tool supporting the definition
of procedural languages and their implementation in form of
a prototype interpreter. For this purpose the LDL library con-
tains predefined language constructs together with their den-
otational meaning expressed by PROLOG clauses. At present
this library contains all usual PASCAL constructs excluding
structured data consisting of compound components.

The structure of the LDL system is described in section 2. In sec-
tion 3 some information about future work will be given. GSFs and
the relations to other formalisms are described e.g. in [R 91].

2 Structure of LDL

The main components of LDL are the following:
a tool for language design which is based on a library of

language components and a knowledge base
- a test set generator for the generation of program examples
which satisfy all context conditions of the defined language.

The tool for language design supports the definition of proced-
ural languages and the design of prototype interpreters for the
defined languages. Within LDL GSFs are used for language defin-
ition, where the semantics is defined in a denotational-like style.
The GSF can be combined from predefined rule sets, but it is also
possible to define new rules. The syntax of the language is des-
cribed by the context-free basic grammar of the GSF. The context
conditions are realized by auxiliary syntactical functions and the
semantics of the language is defined by semantic functions in the

90

sense of GSF. If the language designer uses predefined GSF rules
then also context conditions and semantics are included. Defining
new GSF rules, either predefined or new auxiliary syntactical
and semantic functions can be applied.

The knowledge base contains some knowledge abou t p r o c e d -
ural p rogramming languages in general and about the predef ined
components (i.e. GSF rules and functions) for building prototype
interpreters/compilers in particular. That knowledge is used
by the tool for language design in order to direct the language
designer and to guarantee (or to support at least) a consis tent
language defini t ion in that sense, that the application of contra-~
dictory concepts (e.g. static and dynamic binding of global var-
iables in procedures) is prevented.

Since semantics definit ions within LDL are based on the denotat-
ional approach, the system offers predefined f u n c t i o n s rep-
resent ing fundamenta l concepts of denotat ional semantics. More-
over, there are help functions providing more qualif ied services
which are usually necessary in order to design nontrivial proc-
edural languages, e.g. functions representing a block concept.
All these functions are defined by PROLOG clauses and included
in the library of language components.

A first result of using the tool is a GSF scheme in form of a PROLOG
program describing both the syntactical and semantic structure
of the developed language. This GSF scheme is sufficient to com-
pute the meaning of each program in form of a term consisting
of semantic function symbols (Using the terminology of [L 89] a
GSF scheme defines the macrosemantics. The meaning of a prog-
ram in form of a term is then comparable with a POT in the sense
of [L 89].).

Example 1: statement(Sm) :- @ repeat, sm_list(S1), @ until,
expression(_,Type,Exp), # equal(bool,Type), & repuntil(Sm,Exp,S1).

This PROLOG clause defines a repeat-statement. #equal(...) is an
auxiliary syntactical function (in the GSF sense) which checks
whether the type Type of the expression fol lowing the terminal
until is boolean, repuntil(...) is a semantic function computing
the meaning S m of the repeat-s tatement depending on the mean-
ing Exp of the expression following until and on the meaning S1 of
the repeated s tatement sequence.

91

To get a complete prototype interpreter a GSF scheme must be
extended by definitions of the auxiliary syntactical functions (i.e.
context conditions) and the semantic functions (i.e. dynamic
semantics). (It is comparable with the definition of the m i c r o -
semantics in [L 89].) Supposing the GSF scheme was assembled
using the tool for language design, most of the functions appear-
ing in the GSF scheme will be offered by the library of lan-
guage components. However, there is no need to define these
functions at the beginning of language design ([R 91]). E.g., the
language designer could start to write down the GSF scheme in
order to define the (concrete) syntax and the semantic structure
of the language. Then, first source examples could be parsed
without any implementation for static and dynamic semantics. In
a second step the language designer could define the context
conditions by implementing the auxiliary syntactical functions
of the GSF. Finally, in order to get a complete prototype inter-
preter which allows to interprete programs of the defined lan-
guage, the designer must implement the semantic functions using
components from the library.

Example 2:
- The PROLOG clause equal(X,Y) :- X==Y. defines the auxiliary
syntactical function equal(...).
- Supposing the meaning of a repeat-statement is expressed by
the term repunt i l (E,Sm), where E is the meaning of the condition
of the repeat-statement and S m is the meaning of the repeated
statement sequence then the following clause desribes the inter-
pretation of that term:
com(repuntil(E,Sm)) :- !, com(Sm), reval(Val,E),

(c all(V al) ;com(repuntil(E,S rn))), !.

The prototype interpreter operates as follows :
A source program is read token by token from a text file.
Each token is classified by a standard scanner. It is a part of

LDL and should be sufficient for most lexical requirements.
If necessary it is possible to extend the scanner (which is prog-
rammed in PROLOG, too) for other lexical classes.

The parsing and checking of context conditions is i n t e r c o n n e c -
ted with input and scanning. If the context-free basic grammar
of the source language is an LL(k)-grammar the PROLOG system
itself can be used straightforwardly for parsing, whereas LR(k)
grammars demand to include a special parser into the prototype
i n t e r p r e t e r .
- Recognizing a language construct its meaning in form of a term
is constructed by connecting the meaning of its subconstructs.

92

- T h e term represent ing the meaning of the whole program is
interpreted, i.e. the function symbols of the term are considered
as functions transforming a given program state into a new one,
where a state is, roughly speaking, an assignation of values to
p r o g r a m var iab les .

For a prototype interpreter developed using LDL, a correctness
proof can be given. For that purpose, the equivalence between the
formal language definit ion in denotational-l ike style and its LDL
representation in PROLOG must be proved. The proof can be done
i n an analogous way as in [ADJ 80].

It is nearly impossible to prove the correctness of compilers,
generated by compiler compilers aiming at production-quali ty.
To test such compilers and the prototype interpreters, which
were designed using LDL, the system offers the so-called t e s t
set genera to r . The aim of this additional component is to gen-
erate programs of the defined language which are syntact ical ly
correct and which satisfy the context conditions of the language.
To limit the mult i tude of generated programs it should be possible
to define some additional properties of programs, e.g. the max-
imum number of statements in a statement sequence, the max-
imum depth of nested statements or expressions. Thus, our test set
generator consists of the following components:
- a GSF scheme in form of PROLOG clauses
- PROLOG clauses defining auxiliary syntactical functions and
thereby context condi t ions

PROLOG clauses generating source programs
a control mechanism which guarantees that the genera ted

programs possess the additional properties.
The needed GSF scheme will be usually the same as required for
the prototype interpreter. Also the definition of the a u x i l i a r y
syntactical functions can be taken straightforwardly from the
language definition for the prototype interpreter. The clauses
generat ing source programs are offered by the LDL library.

The test set generator operates as follows:
The start symbol of the context-free basic grammar is applied

in order to generate a program of the language.
- The first generation step is the generation of a term which can
be considered as the meaning of a syntactically correct
program satisfying the context conditions. Then, the program is
derived from this term.
- The control mechanism which guarantees the additional prop-
erties of the programs to be generated is applied in i n t e r c o n n e c -
t i o n with generation and testing context conditions. At present

93

some elements to control the generation of test programs are in-
cluded into the PROLOG clauses by hand. But there are other pos-
sibilities as e.g. described in [D 91] or [Aug 91]), which could
also be used to describe t he desired proper t ies of genera ted
test programs and to control the generation.

3 State of Implementation and Future Work

The project LDL was started in 1991. First, a prototype interpreter
for a toy language SPL was implemented based on a language
definition using the GSF formalism and its relation to PROLOG ([R
91]). Then, this language definition was modif ied in such a way
that it was possible to generate test programs satisfying the con-
text conditions of SPL. To control the generation some control
elements, e.g. counters controlling the number of statements in
a s tatement sequence or the depth of nested statements or expres-
sions, were included by hand. Based o n these experiments the
library of language constructs have been extended. Now, it is
possible to use nearly all language constructs of PASCAL ex-
c luding structured data with structured components . Applying
these language constructs a PASCAL-like l anguage YAL was def-
ined and tested with some programs, e.g. Ackermann's funct ion,
Towers of Hanoi, BUBBLESORT.
The implementation language is Quintus PROLOG under SUNOS,
but we gained also experiences with other PROLOG systems.
Using Quintus PROLOG the run-time efficiency of the prototype
interpreters for the designed languages is surprisingly high.

Future work wiil concentrate upon t h e f o l l o w i n g problems:
The tool for language design will be realized in form of an expert

system.
The test set generator must be extended for more powerful

languages and also by a control mechanism not disturbing the
process o f language definition.

Methods of possibly automatic test comparison must be devel-
oped .

A c k n o w l e d g e m e n t

I am very grateful to Ralf L~immel who developed the library
of language constructs and who designed and tested the language
YAL.

94

R e f e r e n c e s

[A 86] Arbab,B.: Compiling circular attribute grammars into PROLOG
IBM Journal of Research and Development, 30(3),1986,294-309

[ADJ 80] Thatcher,J.W.,Wagner,E.G.,Wright,J.B." More on advice on struc-
turing compilers and proving them correct. In: [J 80],165-188

[AM 91] Alblas,H.,Melichar,B. (eds.): Attribute Grammars, Applications
and Systems. Proceedings of the Inter. Summer School SAGA,
Prague,Czechoslowakia,June 1991,LNCS #545,Springer-Verlag

[Aug 91] Auguston,M.: FORMAN - program formal annotation language
In: Proc. of the 5th Israel Conf. on Computer Systems and Soft-
ware Engineering,Gerclia,May 1991,IEEE Edition,149-154

[BA 90] Bretz,M.,Abels,T.: Generierung von Programmauswertern aus
denotationellen Semantikbeschreibungen. In: J. Ebert (Hrsg.),
Alternative Konzepte ftir Sprachen und Rechner,Bad Honnef 1990,
Bericht 8/90,53-64

[BP 89] Bryant,B.R.,Pan,A.: Rapid prototyping of programming language
semantics using PROLOG. IEEE Software,1989,439-44

[D 91] Denney,R.: Test-case generation from Prolog-based specifications
IEEE Software,March 19991,49-57

[FL 90] Forbrig,P.,L~immel,U.: Prototyping in compiler construction
In: Pr"ekladaEe proflramovacfch jazykd, Sbornfk pt~edn~s~ek,Praha,
1990,(2S VTS-FEL-CVUT, 174-190

[J 80] Jones,N.D. (ed): Semantics-directed compiler generation
LNCS #94,Springer-Verlag 1980

[K 91] Koskimies,K." Object-orientation in attribute grammars
In: [AM 91],297-329

[L 89] Lee,P.: Realistic compiler generation. The MIT Press 1989

[R 91] Riedewald,G.: Prototyping by using an attribute grammar as a
logic program. In: [AM 91],401-437

[W 86] Watt,D.A.: Executable semantic descriptions
Software-Practice and Experience,16(1),13-43

