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Abs t r ac t .  LDL is a system supporting the design of proced- 
ural programming languages and generating interpreters for 
prototyping purposes. Moreover, test sets for testing inter- 
preters/compilers of the developed language can be generated. 
LDL is based on GSFs - a kind of attribute grammars - and uses 
the denotational approach for semantics definition. For the 
prototype interpreter its correctness can be proved. 

1 Introduction 

It is an old dream of compiler designers that formal specifications 
can at the same time serve as programming language definit ions 
and as compiler specifications. The goal is to generate automat- 
ically realistic compilers  from formal language specif icat ions.  A 
good survey about some older attempts based on either language 
definitions with denotational semantics or algebraic language 
definitions is represented in [J 80]. E.g. the systems of  Jones/  
Schmidt  and Mosses are based on denotational semantics, 
whereas Morris and Gaudel prefer the algebraic approach.  
Newer papers or projects are described in e.g. [A 86], [W 86], [BP 
89], [BA 90], [FL 90]. Although the final goal is to generate 
realistic compilers at the moment  it is rather realistic to gen- 
erate prototype compilers. But it seems that Lee's project MESS ([L 
89]) is very near to the goal. 

Our system LDL exploits the concept of [R 91], i.e. a language is 
defined by a GSF, a kind of attribute grammars, and applies the 
denotat ional  approach for semantics definition. Because GSFs 
are closely related to PROLOG programs, after some modifiations 
and extensions the language definition is turned into a PROLOG 
program, which can be considered as a prototype interpreter of  
the defined language. The correctness of  the prototype inter- 
preter can be proved in an analogous way as in [ADJ 80]. 
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The language definition serves also as an input of a test-case 
generator. The generated test programs satisfying context condit- 
ions can be used to test compilers/interpreters constructed for 
the developed language applying any compiler compiler. For this 
purpose the test programs are executed once by the prototype 
interpreter  and once by the tested compiler / interpreter .  
Because the prototype interpreter is correct, from comparing the 
results of both executions it can be seen whether the tested 
compiler/interpreter works correctly for the test programs. Ad- 
dit ionally,  more sophisticated programs suggested by language 
users can be used. In such a way LDL supports the development of 
correct  compilers/ interpreters  to a high degree through valida- 
tion, verification and testing. 

Keeping in mind Koskimies' statement ([K 91]) "The concept of 
an attribute grammar is too primitive to be nothing but a 
basic framework, the 'machine language' of language implemen- 
tation." LDL offers a higher-level tool supporting the definition 
of procedural languages and their implementation in form of 
a prototype interpreter. For this purpose the LDL library con- 
tains predefined language constructs together with their den- 
otational meaning expressed by PROLOG clauses. At present 
this library contains all usual PASCAL constructs excluding 
structured data consisting of compound components. 

The structure of the LDL system is described in section 2. In sec- 
tion 3 some information about future work will be given. GSFs and 
the relations to other formalisms are described e.g. in [R 91]. 

2 Structure  of LDL 

The main components of LDL are the following: 
a tool for  language design which is based on a library of  

language components and a knowledge base 
- a test set generator for the generation of program examples 
which satisfy all context conditions of the defined language. 

The tool for  language design supports the definition of proced- 
ural languages and the design of prototype interpreters for the 
defined languages. Within LDL GSFs are used for language defin- 
ition, where the semantics is defined in a denotational-like style. 
The GSF can be combined from predefined rule sets, but it is also 
possible to define new rules. The syntax of the language is des- 
cribed by the context-free basic grammar of the GSF. The context 
conditions are realized by auxiliary syntactical functions and the 
semantics of the language is defined by semantic functions in the 
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sense of  GSF. If the language designer uses predefined GSF rules 
then also context  conditions and semantics are included. Defining 
new GSF rules, either predefined or new auxiliary syntactical 
and semantic functions can be applied. 

The knowledge base contains some knowledge abou t  p r o c e d -  
ural p rogramming  languages in general and about the predef ined 
components  (i.e. GSF rules and functions) for building prototype 
interpreters/compilers  in particular. That knowledge is used 
by the tool for language design in order to direct the language 
designer  and to guarantee (or to support at least) a consis tent  
language defini t ion in that sense, that the application of  contra-~ 
dictory concepts (e.g. static and dynamic binding of global var- 
iables in procedures)  is prevented. 

Since semantics definit ions within LDL are based on the denotat- 
ional approach, the system offers predefined f u n c t i o n s  rep- 
resent ing  fundamenta l  concepts  of  denotat ional  semantics.  More- 
over, there are help functions providing more qualif ied services 
which are usually necessary in order to design nontrivial proc- 
edural languages, e.g. functions representing a block concept.  
All these functions are defined by PROLOG clauses and included 
in the library of language components. 

A first result of using the tool is a GSF scheme in form of a PROLOG 
program describing both the syntactical and semantic structure 
of  the developed language. This GSF scheme is sufficient to com- 
pute the meaning of each program in form of a term consisting 
of  semantic function symbols (Using the terminology of [L 89] a 
GSF scheme defines the macrosemantics.  The meaning of  a prog- 
ram in form of a term is then comparable with a POT in the sense 
of [L 89].). 

Example  1: statement(Sm) :- @ repeat, sm_list(S1), @ until, 
expression(_,Type,Exp), # equal(bool,Type), & repuntil(Sm,Exp,S1). 

This PROLOG clause defines a repeat-statement. #equal(...) is an 
auxiliary syntactical function (in the GSF sense) which checks 
whether  the type Type  of the expression fol lowing the terminal  
until  is boolean,  repuntil(...) is a semantic function computing 
the meaning S m of the repeat-s tatement  depending on the mean- 
ing Exp of the expression following until and on the meaning S1 of  
the repeated s tatement  sequence.  

# 
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To get a complete prototype interpreter a GSF scheme must be 
extended by definitions of the auxiliary syntactical functions (i.e. 
context conditions) and the semantic functions (i.e. dynamic 
semantics). (It is comparable with the definition of the m i c r o -  
semantics in [L 89].) Supposing the GSF scheme was assembled 
using the tool for language design, most of the functions appear- 
ing in the GSF scheme will be offered by the library of lan- 
guage components. However, there is no need to define these 
functions at the beginning of language design ([R 91]). E.g., the 
language designer could start to write down the GSF scheme in 
order to define the (concrete) syntax and the semantic structure 
of the language. Then, first source examples could be parsed 
without any implementation for static and dynamic semantics. In 
a second step the language designer could define the context 
conditions by implementing the auxiliary syntactical functions 
of the GSF. Finally, in order to get a complete prototype inter- 
preter which allows to interprete programs of the defined lan- 
guage, the designer must implement the semantic functions using 
components from the library. 

Example 2: 
- The PROLOG clause equal(X,Y) :- X==Y. defines the auxiliary 
syntactical function equal(...). 
- Supposing the meaning of a repeat-statement is expressed by 
the term repunt i l (E,Sm),  where E is the meaning of the condition 
of the repeat-statement and S m is the meaning of the repeated 
statement sequence then the following clause desribes the inter- 
pretation of that term: 
com(repuntil(E,Sm)) :- !, com(Sm), reval(Val,E), 

(c all(V al) ;com(repuntil(E,S rn))), !. 
# 

The prototype interpreter operates as follows : 
A source program is read token by token from a text file. 
Each token is classified by a standard scanner. It is a part of 

LDL and should be sufficient for most lexical requirements. 
If necessary it is possible to extend the scanner (which is prog- 
rammed in PROLOG, too) for other lexical classes. 

The parsing and checking of context conditions is i n t e r c o n n e c -  
ted with input and scanning. If the context-free basic grammar 
of the source language is an LL(k)-grammar the PROLOG system 
itself can be used straightforwardly for parsing, whereas LR(k) 
grammars demand to include a special parser into the prototype 
i n t e r p r e t e r .  
- Recognizing a language construct its meaning in form of a term 
is constructed by connecting the meaning of its subconstructs. 
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- T h e  term represent ing the meaning of  the whole program is 
interpreted,  i.e. the function symbols of  the term are considered 
as functions transforming a given program state into a new one, 
where a state is, roughly speaking, an assignation of  values to 
p r o g r a m  var iab les .  

For a prototype interpreter developed using LDL, a correctness 
proof  can be given. For that purpose, the equivalence between the 
formal language definit ion in denotational-l ike style and its LDL 
representation in PROLOG must be proved. The proof  can be done 
i n  an analogous way as in [ADJ 80]. 

It is nearly impossible to prove the correctness of compilers, 
generated by compiler  compilers aiming at production-quali ty.  
To test such compilers and the prototype interpreters, which 
were designed using LDL, the system offers the so-called t e s t  
set  genera to r .  The aim of  this additional component is to gen- 
erate programs of  the defined language which are syntact ical ly  
correct and which satisfy the context conditions of  the language. 
To  limit the mult i tude of  generated programs it should be possible 
to define some additional properties of  programs, e.g. the max- 
imum number  of  statements in a statement sequence, the max- 
imum depth of  nested statements or expressions. Thus, our test set 
generator  consists  of  the following components:  
- a GSF scheme in form of PROLOG clauses 
- PROLOG clauses defining auxiliary syntactical functions and 
thereby context  condi t ions  

PROLOG clauses generating source programs 
a control  mechanism which guarantees that the genera ted  

programs possess the additional properties. 
The needed GSF scheme will be usually the same as required for 
the prototype interpreter. Also the definition of  the a u x i l i a r y  
syntactical functions can be taken straightforwardly from the 
language definition for the prototype interpreter. The clauses 
generat ing source programs are offered by the LDL library. 

The test set generator operates as follows: 
The start symbol of  the context-free basic grammar is applied 

in order to generate a program of the language. 
- The first generation step is the generation of a term which can 
be considered as the meaning of a syntactically correct  
program satisfying the context conditions. Then, the program is 
derived from this term. 
- The control mechanism which guarantees the additional prop- 
erties of  the programs to be generated is applied in i n t e r c o n n e c -  
t i o n  with generation and testing context conditions. At present  
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some elements to control the generation of  test programs are in- 
cluded into the PROLOG clauses by hand. But there are other pos- 
sibilities as e.g. described in [D 91] or [Aug 91]), which could 
also be used to describe t he  desired proper t ies  of  genera ted  
test programs and to control the generation. 

3 State of Implementation and Future Work 

The project LDL was started in 1991. First, a prototype interpreter 
for a toy language SPL was implemented based on a language 
definition using the GSF formalism and its relation to PROLOG ([R 
91]). Then, this language definition was modif ied in such a way 
that it was possible to generate test programs satisfying the con- 
text conditions of  SPL. To control the generation some control 
elements,  e.g. counters controlling the number of statements in 
a s tatement  sequence or the depth of  nested statements or expres- 
sions, were included by hand. Based o n  these experiments the 
library of  language constructs have been extended. Now, it is 
possible to use nearly all language constructs of PASCAL ex- 
c luding structured data with structured components .  Applying 
these language constructs a PASCAL-like l anguage  YAL was def- 
ined and tested with some programs, e.g. Ackermann's  funct ion,  
Towers of Hanoi, BUBBLESORT. 
The implementation language is Quintus PROLOG under SUNOS, 
but we gained also experiences with other PROLOG systems. 
Using Quintus PROLOG the run-time efficiency of  the prototype 
interpreters  for the designed languages is surprisingly high. 

Future work wiil concentrate upon t h e f o l l o w i n g  problems: 
The tool for language design will be realized in form of an expert 

system. 
The test set generator must be extended for more powerful 

languages and also by a control mechanism not disturbing the 
process o f  language definition. 

Methods of possibly automatic test comparison must  be devel- 
oped .  
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