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A b s t r a c t .  Generation of efficient code for object-oriented programs requires 
knowledge of object lifetimes and method bindings. For object-oriented lan- 
guages that have automatic storage management and dynamic look-up of 
methods, the compiler must obtain such knowledge by performing static anal- 
ysis of the source code. We present an analysis algorithm which discovers the 
potential classes of each object in an object-oriented program as well as a safe 
approximation of their lifetimes. These results are obtained using abstract 
domains that approximate memory configurations and interprocedural call 
patterns of the program. We present several alternatives for these abstract 
domains that permit a trade-off between accuracy and complexity of the 
overall analysis. 

1 I n t r o d u c t i o n  

The object-oriented approach to programming has become an accepted program- 
ming paradigm, joining other paradigms such as imperative,  functional and rela- 
tional programming.  This new paradigm is normally associated with the concepts of 
class, method and inheritance. Different object-oriented languages implement  these 
concepts with varying degrees of dynamic behaviour. 

At one extreme, SMALLTALK makes every feature as dynamic as possible. In- 
stances of a class are Created dynamically which, when no longer referenced, are 
garbage collected automatically.  Messages are implemented by dynamic binding of 
call site to  method implementation.  In general this means tha t  a run-t ime search 
through the inheritance hierarchy to find the appropriate  method is required for 
every message send. Finally, SMALLTALK is dynamically typed,  there are no type 
declarations and methods are type-checked at run-time. 

At the other extreme, CA-q- implements as much as possible in a static manner  so 
tha t  G++ compilers can generate efficient code. In particular, memory  is allocated 
and de-allocated explicitly by the programmer,  methods are statically typed,  and 
message sends are bound statically under programmer control. 

In an ideal world, an object-oriented language would be as dynamic as SMALL- 
TALK and as efficient as C_A~. The language would provide dynamic features, but  
a compiler would analyze the code and determine whether or not these features 
are used. The user would then only pay a run-t ime penalty when, and where, the 
language is used in a truly dynamic manner.  
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Short of the ideal, we believe there are ways to improve over existing compiler 
technology. For instance, static program analysis provides a compiler with the infor- 
mation needed to distinguish between static and dynamic portions of a program. In 
particular, we have been investigating compile-time analysis techniques to determine 
the class(es) of each.object in an object-oriented program. This knowledge should 
permit the following compiler optimizations. 

�9 Static binding of message sends to particular method implementations. 
�9 Compile-time type checking of some method parameters. 
�9 In-line expansion of method bodies. 

The in-lining optimization is particularly relevant to object-oriented languages 
where programs tend to be composed of many classes containing very short method 
definitions. In practice, in-lining wins big. Experiments have shown that  with no 
in-lining SELF programs would run between 4 and 160 times slower [2]. With minor 
changes, our analysis can be used to infer lifetimes of objects and therefore shift 
some of the garbage collection overhead from run-time to compile-time. 

For our research we have invented a "typical" language with (single) inheritance, 
no type declarations of variables, untyped dynamically bound methods and auto- 
matic memory management. The use of this language is not a restriction. We expect 
our techniques to be widely applicable to compilers for existing languages. 

The remaining sections of this paper review past work in the area and give a gen- 
eral overview of our approach, briefly introduce the small object-oriented language, 
and then describe the analysis algorithm and abstract domains. 

2 R e l a t e d  W o r k  a n d  O v e r v i e w  
f 

The difficulty in optimizing object-oriented programs lies in the lack of type infor- 
mation. Without precise information on the class of the object to which a message 
is sent, it is difficult to determine the effect of the message and to bind it statically. 
(Note that,  static typing, as implemented in EIFFEL, helps little since a type in 
EIFFEL consists of a class along with all of its subclasses.) 

Previous research specific to optimizing object~oriented programs has focused on 
providing some form of useful type information to the compiler [13, 10, 11, 7]. This 
research was pioneered by Suzuki [13] who first separated the concepts of type and 
inheritance. In his framework any set of classes defines a type. Smaller sets are more 
informative: a singleton set represents the case when the object has a unique class, 
and an empty set indicates an error--there is no possible class for the object. Types 
are then inferred by a unification algorithm. 

Several extensions to this framework were proposed to correct some of the short- 
comings of the original algorithm [10, 11, 7]. Johnson proposed parameterized types 
so that  many common programs using objects with polymorphic instance variables 
could be typed [10]. Palsberg and Schwartzbach developed a type inference algo- 
ri thm that  takes the context of each message send into account to derive sharper 
types [11]. Although the algorithm is limited to the analysis of complete programs, 
their results seem to be the most accurate to date. 
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These algorithms have a number of shortcomings which cause unsatisfactory 
results for many simple programs. One source of inaccuracy is that  all variables are 
treated as global, so that  an assignment to the instance variable of one object affects 
all other objects of the same class. Another problem is that  the n i l  object (empty 
reference) is essentially swept under the rug, by either ignoring it entirely or treating 
it as a special case. Finally, all of the above algorithms enforce a type-discipline on 
the programs to ensure a degree of static type-safety. (This approach is inherent ly  
limited by the possibility of sending a message to n i l . )  

We propose a data  flow analysis algorithm [1], parameterized with analysis do- 
mains, that  provides abstract representations for program state and interprocedural 
call patterns. The technique is similar to abstract interpretation [4]. In our case, we 
draw on work done in the field of compiler optimization for our state abstraction 
[3, 9] and call pattern abstraction [12, 6, 2]. Specifically, our algorithm differentiates 
among instances of the same class and therefore maintains greater precision with re- 
spect to the type of their instance variables. Empty references can be detected; the 
algorithm ca.n provide must~may information for n i l  objects. Aliasing is implicitly 
taken into account by the state abstraction (as in [3]). 

As with most abstract interpretation or data. flow analysis frameworks, the ac- 
curacy of the results depends on the complexity of the abstract domains. Therefore, 
we present two related domains for abstracting program state. The first is relatively 
unsophisticated but should produce results rapidly. The second extends the first and 
yields more accurate results. With both domains, any approximations are conserva- 
tive in nature. When our algorithm, with either domain, derives a set of classes for 
an object at a particular point in the program, that  set is guaranteed to either be 
exact or be a superset of the exact answer. At worst, the compiler will be unable to 
optimize away all unnecessary method look-ups and run-time type-checks. 

There are similarities between our static analysis technique and the SELF tech- 
nology [2]. But the ultimate goals are different. In SELf compilation is done at 
run-time, so efficiency of the compiler is of paramount importance. For this reason 
the SELF compiler does not perform interprocedural analysis, nor does it keep track 
of program state. 

3 A n  O b j e c t - O r i e n t e d  L a n g u a g e  

The simple untyped object-oriented language defined in this section is used to illus- 
trate the analysis presented in subsequent sections. It should be noted that  this lan- 
guage is biased towards compilation. In particular, run-time modification of classes 
(as in [5]) and of the inheritance hierarchy (as in [2]) is not allowed, and neither 
messages nor class identifiers may be manipulated at run-time. 

The syntax of the language is shown in Figure 1, using the following notational 
conventions: curly brackets represent optional constructs, superscript plus signs indi- 
cate one or more occurrences of the preceding construct, and italicized text represents 
non-terminals. 

The semantics are typical of class-based object-oriented languages in which dy- 
namic object creation, automatic storage reclamation and single inheritance play a 
major role. A class is similar to a record or structure type in an imperative language 
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program  ::-- { class  + } m a i n  
m a i n  ::-- ma in  { va r  id + } star + 
class ::= class classid { inher i t s  classid } {vat id + } { m e t h o d s  m e t h o d  + } 
me thod  ::= method id  { (id) } { var  id + } is star + 
s~at ::-- id :-- exp I i f  exp t hen  sSat + else star + I 

while exp do star + I r e t u r n  ezp  I exp 
exp : : -- idmethodid{(id)} I s e l f  I c l a s s i d n e w  I id I cons tan t  
cons tan t  : :=n i l  I t rue  I false I 0 I 1 I .. .  

Fig. 1: Syntax of a simple object-oriented language 

where the fields consist of: da ta  fields called i n s tance  variables,  and named function 
pointers, called methods .  The instance variables of an object  may be accessed only 
through the object 's  methods.  A class Y may i nher i t  from another class X, using the 
i n h e r i t s  clause, which includes all of X's da ta  fields in Y, and a pointer  to a list of 
X's methods.  Y is said to be a subclass  of X, and, similarly, X is said to be a superc lass  
of Y. Not including X's methods directly allows them to be over - r idden  in Y, which 
is the essence of inheritance. 

An object is manipulated by sending it a message ,  which consists of a name and 
an argument,  if appropriate.  A message send causes a search of the object 's  methods 
for a matching name. In the case of failure, superclass method tables are searched in 
order, s tar t ing at the immediate  superclass, until either a match  is found or no such 
method exists. If  the search is successful, the corresponding function is called with 
the message's argument,  along with a hidden argument  named se l f  w h i c h  is bound 
to the object receiving the message. If  the search fails, the program is erroneous and 
a run-time error is signalled. 

A new object, or instance, of class C is created by C new. All instance variables 
of a new object are initialized to the value n i l .  Predefined constants in the language 
include numbers,  t ruth values, n i l ,  along with binary ari thmetic and logic primitives 
such as + and _>. The language does not include the s u p e r  construct,  which allows 
direct access to inherited methods,  because such method invocations can always be 
bound statically at compile time. 

4 A M o d e l  o f  P r o g r a m s  a n d  S t a t e  

In our toy language a program is defined as a set of class definitions and a main 
procedure. Before beginning analysis, two transformations are applied to the pro- 
gram. The  inheritance hierarchy is flattened, as in [11], which "fills" in all inherited 
methods with the appropriate  superclass methods. Also, all variables and formal ar- 
guments are given unique names. To preserve semantics, instance variables inherited 
from a superclass retain the same name. 

When a program is executed, its s tate consists of a set of constants  and active 
objects referring to each other through their instance variables. We find it convenient 
to view this s t ructure as a graph of unbounded size in which nodes stand for objects 
or constants and arcs represent the value of instance variables. Labels distinguish 
the arcs originating from a node; there is one label per instance var iab le  of the 
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corresponding object. Constants are nodes with no outgoing arcs. Activation records 
for methods are regarded as objects and therefore appear as nodes in the object 
graph. Their  local variables are treated as instance variables. 

D e f i n i t i o n  1. Let p be a program and L (labels) a set of variable names. An ob- 
ject graph is a pair (N,A),  where g is a finite set of objects (nodes) and A C 
N • N • L is a finite set of instance variables (labeled arcs). 

During static analysis a program, is represented by a control flow graph and 
an abstract object graph. Building the control flow graph for our analysis differs 
only slightly from building the interprocedural control flow graph in an imperative 
language [12]. In particular, a message send has arcs leading to and returning from 
all methods whose selector matches the message. Message sends are split into two 
nodes, corresponding to the call and return portions, the former binding arguments,  
the latter binding the return result if the statement is part of an assignment. Finally, 
an extra exit node is added to every method and to the main program. 

5 Analysis with Abstract Objects 

The state of an object-oriented program at any point in its computation is captured 
by the instantaneous states of all the objects in the computer 's  memory. At some 
point in a particular computation, this state is unique and can be represented by an 
object graph. Static analysis, however, examines textual points in the program and 
there may be many different computations that  cause control to reach a particular 
textual point. Thus, each textual point is associated with a set of possible execution 
states and, accordingly, we consider the type of an object at a textual point to be 
the set of classes that  the object can assume over all possible executions. 

For each textual point in the program, we construct an abstract object graph 
(AOG) summarizing all memory states occurring at this point during some program 
execution. Since the AOG models the memory structure of the program it keeps 
track of the value of instance variables, local variables, and possible aliasing relations 
among them. 

D e f i n i t i o n  2. An AOG is a pair {N, A} where N is a finite set of abstract objects, 
A C N x N • L is a finite set of arcs and L is a set of labels. The summary nature of 
the AOG entails that  multiple, identically labeled, arcs can originate from the same 

node. 

An AOG typically contains may information. An arc labeled xy originating at 
node x and ending at node y means that  at run-time the value of instance variable xy 
of the object corresponding to x may refer to y. We later modify this representation 
to include must information with the addition of creation counts. 

D e f i n i t i o n 3 .  The type of a variable is a set of AOG nodes. Let n e N, 1 e L and 
A C N •  g x  L. The type of variable l of node n in {N,A) is { m ] { n , m , l } e A }  

The set of abstract objects, N, is syntactically derived from the program being 
analysed. This set, a program wide constant, remains static over the analysis whereas 
the set of arcs, A, is dynamic. 
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D e f i n i t i o n 4 .  Let p be a program, N its set of nodes and L its variable names. 
The abstract object graphs of p, AOGp = { (N, A) I A q N • N • L }, form a 
complete lattice. Let gl,g2 e AOGp and gl = (N, AI),gg. = (N, A2). The partial 
order relation, gl _E g2, is defined as set inclusion of the set of arcs, A1 C_ As. 
The lattice meet operation, gl II g2 = (N, A1 U As). The least element, J_ is the 
disconnected graph, (N,{}),  and the greatest element, T, is the fully connected 
graph, ( N , N  • N • L). 

Note that  we require N to be finite, but  that  the object graphs summarized by 
an AOG are unbounded. This apparent  contradiction is solved by allowing nodes to 
summarize many objects of the same class. With this approximation we can limit 
the size of the graphs without unnecessary loss of type information. The choice of 
mapping from object graphs to AOGs is crucial to the efficiency and precision of the 
analysis. We now present two abstract domains effecting different mappings. 

5.1 Class  O b j e c t  G r a p h s  

Objects of the same class are likely to be used in the same way in a program, i.e. 
their instance variables are likely to refer to objects of the same type. Based on this 
observation it seems reasonable to define a domain where objects of the same class 
are represented by a single node in the graph: 

D e f i n i t i o n  5. A class object graph (COG) maps all dynamically created instances 
of a class onto a single graph node. 

In a COG, finite sets of constant objects, such as the logical values t r u e  and f a l s e  
are represented by nodes in the graph, one for each constant. Infinite, or large, sets 
of constants are abstracted so that  one graph node represents all values in the set. 
For our toy object-oriented language the constant nodes are: t r u e ,  f a l s e ,  n i l  and 
Int. 

The following program is used to illustrate the analysis with COGs. For the sake 
of clarity, we omit the abstract object nodes for methods in the discussion. 

main 

class P o in t  va r  p,  p' is 
va r  x, y p := P o in t  n e w  
m e t h o d s  p' := Po in t  n e w  -G1 

s e t - x ( v )  is i f  r e a d - i n t  = 0 
x := v t h e n p  s e t - x ( 1 )  -G2 

s e t - y ( v )  is e lse  p s e t - y ( p ' )  

y := v pi s e t - y ( 0 )  -G3 

-G4 

For this program, N = { P o i n t ,  nil, tn t}  with Point being the COG node repre- 
senting objects created at the two textual instances of P o in t  new. The sequence of 
graphs inferred by static analysis is shown in Figure 2. GI describes the state after 
creat'ion of the two Poin ts ,  their instance variables refer to nil. G2 portrays the 
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G1 G 2 G3 G4 

Fig. 2: A sequence of class object graphs 

state if the then-branch of the i f  is traversed. The arc z from Point to the integer 
node Int appears as a result of the assignment to instance variable x of p. G3 shows 
the effect of taking the e lse-branch.  Now y refers to an integer or to a point; the 
self-loop appeared because we have mapped both Po in t s  onto the same node and 
thus lost all distinction between them. The same graph could represent a recursive 
structure, e.g. a linked list, where y is the next pointer. 

The result of the analysis is the COG G4, obtained by taking the meet of G2 
and G3. At this point we know that  x has type {Int, nil}, and that  y has type 
{ Int, Point, nil}. 

COGs have been used extensively to analyze object-oriented programs [10, 11, 
13]. Unfortunately, the polymorphism inherent to the object-oriented style of pro- 
gramming proves to be a serious problem since objects of the same class often are 
used with instance variables of different classes[10]. 

5.2 T e x t u a l  O b j e c t  G r a p h s  

To improve the accuracy of static analysis we alter the analysis . domain so that  
different objects of the same class do not necessarily share the same node in the 
graph. Only objects created at the same textual point share abstract representations. 

D e f i n i t i o n  6. A textual object graph (TOG) maps all instances of a, class created at 
the same textual point in a program onto the same graph node. 

oin 

/4 

| 

GI 

1 Y Y Y 

x x 

Y 

G2 G 3 G4 

Fig. 3: Textual object graphs 
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In our previous example, there were two textual creations of Po in t ,  one for p 
and one for pl; the TOG associates a graph node to each: Point1 to p and Point2 
to p~. Therefore N = {Point1, Point2, nil, In t}  and the analysis infers the sequence 
of graphs of Figure 3. G4 clearly shows that  there are no recursive structures in this 
program and that  the type of y is different for p and p'. 

In general, this abstract representation yields bet ter  results than those obtained 
with COGs. Also, the types given to instances of "container" classes, e.g. lists, is 
more accurate and does not require special t reatment  as in [10]. 

5.3 Creat ion  Count s  

A problem common to both domains is that  assignment is defined as an additive 
operat ion--arcs  are never removed~ For example, the arcs connecting each node to 
n i l  never disappear from the graph. A compiler using the results of the analysis 
will have. to assume that  every instance variable of an object can always refer to 
n i l .  Due to this "sticky" behaviour, the quality of the analysis will only deterio- 
rate as the number of possible values increases. This problem, and specifically n i l -  
valued instance variables, has marred previous at tempts to provide a type system 
for object-oriented programs [10, 11, 13]. (Some authors have defined type-safety so 
that  programs may legally send messages to  n i l  [11].) 

The work of Chase et al. [3] points to a simple solution. The key observation is: 
if it can be determined that  an assignment will affect all the objects represented 
by a single node in the graph (must information), then it is possible to update the 
graph destructively. In the analysis of the example program with the TOGs, all 
assignments have this property since each node represents only one object. This is 
the static criterion for destructive update. (A node may represent many objects if the 
creation point is in a loop, or if it occurs in a method that  is called more than once 
along some control flow path.) We note in passing that  a node with no incoming 
arcs represents objects which are not referenced and, therefore, can be statically 
de-allocated. The graph model is extended in the following way. 

D e f i n i t i o n  7. An extended abs~rac~ objec~ graph is a triple (N, A, C), where (N, A) 
is an AOG and C = N • {0, 1, c~) maps nodes to their creation counts. {0, 1, oo) 
is totally ordered by the relation 0 < 1 < oo. We define the commutative addition 
operator G to be 

[add] 0 0 x = x 1 ~ 1 = oo oo G x = co 

and the substraction operator O to be 

[sub] 0 @ z = 0 1 @ 1 = 0 

Every node starts with a count of 0. Each time a node's creation point is encountered 
along a path in the program, the count is incremented. 

When two control flow paths meet, the greatest creation count is retained for 
each node in the graph. Note that  although creation counts can be applied to COGs, 
the gains are negligible since it is likely that  the counts for all classes will quickly 
converge to c~. 
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5.4 A O G  O p e r a t i o n s  

We now define abstract operations corresponding to assignment, object creation and 
control flow merge. These definitions apply to both textual object graphs and class 
object graphs. 

Merging of graphs, used for confluence of control flow paths, is implemented 
by the lattice meet operation which is simply the union of the arcs and the point- 
wise maximum of creation counts. For a given N, and graphs gl = (N, A1, C1) and 
g2 = (N, A2, C2), the merge of gl and g2 is: 

[merge] gl Ug2 = (N, A1U A2, C') 

w h e r e  C' = { (n, max(el, c2)) I (n, cl) e 61, (n, c2) e 6'2 } 

Assigning a set of objects S to an instance variable 1 of n updates the arcs of the 
corresponding graph node, and is written (gl(n, l) ~ S). If the creation count of n is 
not oo then the update replaces the current set of arcs labeled l with S, otherwise S 
is simply added to the existing arcs. Thus, for a given N, and graph g = (N, A, C) 
the operation is: 

[assign] (g[(n, 1) ~-* S) = i f  (n, oo) e C t h e n  (g, muA/'ew, C) 
else (N, Hpd U Afew, C) 

whereA/ 'ew : { (n ,m, l )  I m e S }, 
Upd= { (n', m',./') e A In r n',l r l' } 

Creation of an object is modelled by adding arcs pointing to n i l  to the corresponding 
node and increasing the creation count of n. The function l a b e l s  returns the set 
of instance variable names of a node. For a given N~ and graph g = (N,A,C) the 
operation is: 

[create] ereate(g,n) = ( . . . ( (g ,g ,c ' ) l (n , l l )~-~ { n i l } ) . . . l ( n ,  lk)~-* {ni l})  

w h e r e  C ' = { ( n , c @ l )  l ( n , c ) e C }  U { ( n ' , c ' ) e C I n ' ~ n } ,  
{ z l , . . . ,  = l a b e l s ( n )  

6 A F l o w  A n a l y s i s  A l g o r i t h m  

Programs are analyzed using conventional flow analysis [1]. The first step is to con- 
struct a control flow graph representation of the program. Each arc in this graph is 
assigned a flow function which computes the effect of executing the code in its source 
node, assuming that  its target node is to be executed next. Finally, all control flow 
nodes are assigned initial values in the lattice, and the flow functions are applied to 
the values until a fixpoint is reached. 

In the abstract object graph, methods and the main program are treated as 
abstract objects with outgoing arcs for each variable; in the case of methods, the 
graph contains arcs for s e l f ,  the argument, and the return result. These objects 
correspohd to activation records that  may be created at run-time. The creation 
count associated with such nodes is initially set to zero, incremented on entry to the 
method and decremented on exit. 
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We now describe the flow functions associated with a given control flow arc a. 
Assume that  the source node of a is in the control flow subgraph corresponding to 
method m 0. The flow functions take the abstract object graph (N, A, C) as argument 
and return an updated AOG. 

6.1 F low F u n c t i o n s  for  A s s i g n m e n t  S t a t e m e n t s  

Assigning a value to a variable involves finding all abstract objects that  may be af- 
fected and updating their arcs accordingly. Here we consider assignments to instance 
variables; the t reatment  of local variables is similar. 

When va lue  is assigned to an instance variable, i va r ,  it potentially affects all 
objects that  may be bound to s e l f .  Let Selves = { n I (me, n, s e l f )  6 A } be this 
set. The  general form of a flow function for an arc leaving such an assignment is: 

A(N,A,C). U ((N'A'C)l(n'ivar)~-+ Values) 
nESelves 

where Values is the set of abstract objects corresponding to va lue .  The functions 
for the various types of assignable values are as follows: 

va lue  Values 
c o n s t a n t  {eonst},where const is the A 0 G  corresponding to v a lu e  

l o c a l  v a r i a b l e  { n t (m0, n, va lue)  e A } 
i n s t a n c e  v a r i a b l e  { n I (s, n, va lue)  e A, s ~ Selves } 

If the value is a newly created object, the creation count for the creation point 
must be updated prior to updating the arcs. Let cp be the AOG node corresponding 
to the creation point, the flow function is: 

A(N,A,C). U (erea.te((Y,A,C),cp)](n, ivar)~-~ {ep}) 
nESelves 

6.2 F low F u n c t i o n s  for  M e s s a g e  Sends  

Message sends involve creation of AOG arcs representing the binding of parameters 
and locMs on entry to, and removal of those arcs on exit from, the called method. 
The implicit argument s e l f  is bound to the set of possible receivers tha t  match 
the class of the called method. An extra local variable, r e s u l t ,  is used to hold the 
return result; its value is required if the message send is an assignment statement.  

Let Arguments and 79T~eceivers be the sets of arguments and possible receivers, 
respectively. They are determined in the same manner as Values above. Now consider 
a flow graph are corresponding to a call from m0 to some method implementation 
ml,  the latter having a single local variable l o c a l .  Let classof(o) be the function 
returnin~ the class of the abstract object o. The flow function for this arc is: 

[call] A(N,A,C).(((((N,A,C'),  I(ml,self)~--~.eceivers) 
](ml, formal )  ~-+ Arguments) 

I<ml, local) {nil}) 
](ml, result) ~+ {nil}) 

w h e r e C ' = { ( m l , c O 1 )  t ( m l , c )  e C}  t3 { (n ' , c ' )  e C ] n ' 7 s  
n e c e i ' , , e r s  = { r I r  'neeeivers, c lasso f ( , ' )  = elassof(m ) } 
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For the return flow arc, assume the result is assigned to the instance variable ivar. 
The resulting flow function is: 

[re~urn] A(N,A,C) .  U (g'I(n"ivarl)~"~7~esult) 
. n E . g e l v e ~  

w h e r e  g' : ((N, A, C')[(ml,  self) ~-+ {}) 
I(ml, formal) {}) 

I(m~, local) ~ {}) 
I(m , result) {}), 

C' = { (m , , c  O 1) I (ml ,  e) E C } U { ( . ' ,  c/) E C [ r/./ r ml  }, 
T~esult = { r [( ,nl , r ,  r e su l t )  e A } 

6.3 F l o w  Analysis  

Performing the analysis is now straightforward. The flow value stored at each node 
in the control flow graph represents what is known about the abstract objects and 
variables at entry to the node. All are initially assigned _k. These values are then 
iterated through the functions on the arcs, with the meet operator applied when 
control flow paths merge. This process is continued until a fixpoint is reached. In 
the algorithm below, the function pred returns the set of predecessors of n and J~,~ 
is the flow function on the arc from i to n. 

F O R E A C H  node n in the conlrol flow graph DO 
n'----.]_ 

R E P E A T  
F O R E A C H  node n in the control flow graph DO 

n : - - n U (  U fi,n(i)) 
iepred(l) 

U N T I L  a fixpoint is reached. 

7 More Precise Analysis with Call Strings 

Because the effect of a method depends strongly on its calling environment (i.e. the 
type of the receiver and of the arguments), analysis information from different call 
sites should be kept separate during the analysis. We propose tagging the abstract 
object graphs with the sequence of call-points (control flow graph call nodes) through 
which they were propagated. The abstract state of the program at a point inside 
method m becomes a set of pairs (call-path, g), where g represents an instance of 
the abstract object graph and call-path is the sequence of method call points that 
brought control to m. 

Since static analysis requires finite representations and call chain sequences for 
methods cannot, in general, be bounded, we represent the call-path by a finite ap- 
proximation. One possibility is a regular expression whose elements are method call 
points, similar to the abstract interpretation described in [8]. The alternative de- 
scribed here approximates a call path by the last k calls in the sequence [12], for 
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some small value of k. All paths which are identical in the last k calls will have 
their state information merged thus creating some approximation in the results. 
The choice of k determines a trade-off between accuracy and the computational ef- 
fort of performing the analysis. Most traditional interprocedural data  flow analysis 
algorithms [1] implicitly use k = 0, and [11] use essentially the same method with 
k = l .  

The extended analysis algorithm is a generalization of the one given earlier. At 
any textual point p in the program, the algorithm derives a set of (call-path, g) pairs 
that  describes the possible object states and corresponding call strings that  may hold 
at that  point in the program. If the statement at that  point is any operation other 
than a method invocation, the g component of each (call-path, g) pair is updated as 
in the previous analysis method. 

Assume that  we are currently analyzing method rno, the program point p is a 
message send and ml is an implementation of that  message. The state description 
set at this point is S and fp,-~l is the flow function defined in the previous section. 
The flow function on the arc from p to ml appends p to all call-strings and applies 
the abstract object graphs to fp,ml.1 

[call] ,~S.{ <s ++p, fp,,~,(g)) l <s,g) e S}  

At the end of analysis of a method, the state description set must be p ropaga ted  
back to each applicable invocation point. If p~ is the next node in m0 and rn~ is the 
last point in ml ,  then the flow function on the arc from m~ to pt prefixes the symbol 
'?', the unknown call point, to each call string and shortens them to length k by 
dropping their suffix. 

[ return] ,XX.{((?-H-s) 1" k, fm,,,p,(g)) 14k] = p, <s,g) e S }  

The star t  node of ml is the target of multiple control flow arcs. Let 2~n be the set of 
all incoming (call-path, g) pairs. The call strings in this set are shortened to length 
k by dropping the earliest call point in the sequence and the TOG values in pairs 
with identical call strings are merged. 

[e,Ury] { (s, g) I g = U {  g' I ~ = s' .t k, (s', g') e z~  } } 

At p~, there will in general be several description sets propagated back from differ- 
ent implementations of the message. The resulting description sets, Ties, must be 
combined with description sets that  describe the program state immediately before 
the call, S to remove '?' from the call strings, and all pairs with identical call-strings 
are merged. 

[, 'es~m4 AS.{ (a ++s,  g) I g = U{ g' I (? ++s,  g') e Ties, (a ++s,  g") ~ S } } 

a The ith element of string s is written as s[i]. The concatenation of strings s and t is 
denoted by s ++  t. A prefix of length n of a string x is denoted by z T n while a suffix 
of length n is denoted by z 1. n. 



248 

class Point 
var x, y 
m e t h o d s  

se t -x(v)  is 
A. x : = v  

se t -y (v)  is 
B .  y : = v  

main 
1. var p is 
2. p := Point new 
3. p se t -x  ( t rue)  
4. if  r ead- in t  = 0 
5. t hen  p se t -x(1)  
6. else n i l  

Fig. 4: A Sample Program for Analysis 

We now present a trivial example to clarify the analysis algorithm and the use of 
call strings. The sample program for analysis is shown in Figure 4. To simplify the 
description, the statements in the main body are numbered 1 through 6 and the two 
executable s tatements inside the Point class are lettered A and B. We use the name 
Pi to represent a program point immediately before s tatement  i, and p~ to represent a 
program point immediately after s tatement  i. With this naming convention, several 
program points coincide (e.g. p~ = P3) and we will pass over such duplicates in the 
explanation.To keep the example as simple as possible, we will limit the length of 
call strings to 1. The analysis algorithm starts with an initial state description at 
s ta tement  1 of (?,_L) where '?' is a callzstring of length 1 that  indicates that  the 
caller is unknown (the caller is actually the operating system), and I represents the 
bot tom graph in the TOG lattice. Pictorially, _L is the disconnected graph drawn as 
graph Go in Figure 6. The analysis algorithm might produce the sequence of state 
description sets shown in Figure 5. 

make  a pass  over  ma in  program: 

P o i n t  pl : {(?,C0)} 
P o i n t  p2 : {(?,G1)} 
P o i n t  ps : {(?,G2)} 
Point p, : {(7, C2)} 
P o i n t  p5: {(?,G2)} 
P o i n t  p~ : {(?,G2)} 
P o i n t  pr : {(?,G2)} 
Point p~ : { (%62)}  

make  a pass  over me thod  set-x: 

Point pA: { (p~,Ca) , (p~,c~)}  

P o i n t  P~A : { ( p s , G 4 ) , ( p s , G ~ ) }  

propagate results back to call points  
and repeat analysis  as required: 

P o i n t  p4 : {(?,GT)} 
P o i n t  p5 : {(?,GT)} 
P o i n t  p~ : {(?,G8)} 

, P o i n t  pg: {(?,GT)} 
P o i n t  p~ : {(?,Gg)} 

repeat pass over me thod  set-x  

P o i n t  PA : {(Ps,G3),(Ps,Gs)} 

. . .  and noth ing  more  changes 

Fig. 5: Analysing the program of Fig. 4 
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Fig. 6: Abstract Object Graphs. Creation counts ~re displayed tinder node names. 

8 D i s c u s s i o n  

Previous work in analysis of object-oriented languages has produced some relatively 
imprecise analysis techniques. We have therefore developed bet ter  techniques. Fur- 
thermore,  we provide a means for the compiler implementer  to choose an appropriate  
trade-off between precision and the cost of the analysis. 

Separate compilation remains a challenge for any form of interprocedural  static 
analysis. On one hand we would like to keep program units separate  and minimize 
the re-compilation effort. On the other hand we need to be able to analyze as much 
as possible of the source program to generate efficient code. Research towards a 
modus vivendi continues. 
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