
Compile-Time Analysis of Object-Oriented
Programs

Jan Vitek, R. Nigel Horspool and James S. Uhl

Depatrment of Computer Science
University of Victoria *

A b s t r a c t . Generation of efficient code for object-oriented programs requires
knowledge of object lifetimes and method bindings. For object-oriented lan-
guages that have automatic storage management and dynamic look-up of
methods, the compiler must obtain such knowledge by performing static anal-
ysis of the source code. We present an analysis algorithm which discovers the
potential classes of each object in an object-oriented program as well as a safe
approximation of their lifetimes. These results are obtained using abstract
domains that approximate memory configurations and interprocedural call
patterns of the program. We present several alternatives for these abstract
domains that permit a trade-off between accuracy and complexity of the
overall analysis.

1 I n t r o d u c t i o n

The object-oriented approach to programming has become an accepted program-
ming paradigm, joining other paradigms such as imperative, functional and rela-
tional programming. This new paradigm is normally associated with the concepts of
class, method and inheritance. Different object-oriented languages implement these
concepts with varying degrees of dynamic behaviour.

At one extreme, SMALLTALK makes every feature as dynamic as possible. In-
stances of a class are Created dynamically which, when no longer referenced, are
garbage collected automatically. Messages are implemented by dynamic binding of
call site to method implementation. In general this means tha t a run-t ime search
through the inheritance hierarchy to find the appropriate method is required for
every message send. Finally, SMALLTALK is dynamically typed, there are no type
declarations and methods are type-checked at run-time.

At the other extreme, CA-q- implements as much as possible in a static manner so
tha t G++ compilers can generate efficient code. In particular, memory is allocated
and de-allocated explicitly by the programmer, methods are statically typed, and
message sends are bound statically under programmer control.

In an ideal world, an object-oriented language would be as dynamic as SMALL-
TALK and as efficient as C_A~. The language would provide dynamic features, but
a compiler would analyze the code and determine whether or not these features
are used. The user would then only pay a run-t ime penalty when, and where, the
language is used in a truly dynamic manner.

* P.O. Box 3055, Victoria, BC, Canada VSW 3P6. {jvi.tek, n ige lh , juhl}@csr .uvic.ca

237

Short of the ideal, we believe there are ways to improve over existing compiler
technology. For instance, static program analysis provides a compiler with the infor-
mation needed to distinguish between static and dynamic portions of a program. In
particular, we have been investigating compile-time analysis techniques to determine
the class(es) of each.object in an object-oriented program. This knowledge should
permit the following compiler optimizations.

�9 Static binding of message sends to particular method implementations.
�9 Compile-time type checking of some method parameters.
�9 In-line expansion of method bodies.

The in-lining optimization is particularly relevant to object-oriented languages
where programs tend to be composed of many classes containing very short method
definitions. In practice, in-lining wins big. Experiments have shown that with no
in-lining SELF programs would run between 4 and 160 times slower [2]. With minor
changes, our analysis can be used to infer lifetimes of objects and therefore shift
some of the garbage collection overhead from run-time to compile-time.

For our research we have invented a "typical" language with (single) inheritance,
no type declarations of variables, untyped dynamically bound methods and auto-
matic memory management. The use of this language is not a restriction. We expect
our techniques to be widely applicable to compilers for existing languages.

The remaining sections of this paper review past work in the area and give a gen-
eral overview of our approach, briefly introduce the small object-oriented language,
and then describe the analysis algorithm and abstract domains.

2 R e l a t e d W o r k a n d O v e r v i e w
f

The difficulty in optimizing object-oriented programs lies in the lack of type infor-
mation. Without precise information on the class of the object to which a message
is sent, it is difficult to determine the effect of the message and to bind it statically.
(Note that, static typing, as implemented in EIFFEL, helps little since a type in
EIFFEL consists of a class along with all of its subclasses.)

Previous research specific to optimizing object~oriented programs has focused on
providing some form of useful type information to the compiler [13, 10, 11, 7]. This
research was pioneered by Suzuki [13] who first separated the concepts of type and
inheritance. In his framework any set of classes defines a type. Smaller sets are more
informative: a singleton set represents the case when the object has a unique class,
and an empty set indicates an error--there is no possible class for the object. Types
are then inferred by a unification algorithm.

Several extensions to this framework were proposed to correct some of the short-
comings of the original algorithm [10, 11, 7]. Johnson proposed parameterized types
so that many common programs using objects with polymorphic instance variables
could be typed [10]. Palsberg and Schwartzbach developed a type inference algo-
ri thm that takes the context of each message send into account to derive sharper
types [11]. Although the algorithm is limited to the analysis of complete programs,
their results seem to be the most accurate to date.

238

These algorithms have a number of shortcomings which cause unsatisfactory
results for many simple programs. One source of inaccuracy is that all variables are
treated as global, so that an assignment to the instance variable of one object affects
all other objects of the same class. Another problem is that the n i l object (empty
reference) is essentially swept under the rug, by either ignoring it entirely or treating
it as a special case. Finally, all of the above algorithms enforce a type-discipline on
the programs to ensure a degree of static type-safety. (This approach is inherent ly
limited by the possibility of sending a message to n i l .)

We propose a data flow analysis algorithm [1], parameterized with analysis do-
mains, that provides abstract representations for program state and interprocedural
call patterns. The technique is similar to abstract interpretation [4]. In our case, we
draw on work done in the field of compiler optimization for our state abstraction
[3, 9] and call pattern abstraction [12, 6, 2]. Specifically, our algorithm differentiates
among instances of the same class and therefore maintains greater precision with re-
spect to the type of their instance variables. Empty references can be detected; the
algorithm ca.n provide must~may information for n i l objects. Aliasing is implicitly
taken into account by the state abstraction (as in [3]).

As with most abstract interpretation or data. flow analysis frameworks, the ac-
curacy of the results depends on the complexity of the abstract domains. Therefore,
we present two related domains for abstracting program state. The first is relatively
unsophisticated but should produce results rapidly. The second extends the first and
yields more accurate results. With both domains, any approximations are conserva-
tive in nature. When our algorithm, with either domain, derives a set of classes for
an object at a particular point in the program, that set is guaranteed to either be
exact or be a superset of the exact answer. At worst, the compiler will be unable to
optimize away all unnecessary method look-ups and run-time type-checks.

There are similarities between our static analysis technique and the SELF tech-
nology [2]. But the ultimate goals are different. In SELf compilation is done at
run-time, so efficiency of the compiler is of paramount importance. For this reason
the SELF compiler does not perform interprocedural analysis, nor does it keep track
of program state.

3 A n O b j e c t - O r i e n t e d L a n g u a g e

The simple untyped object-oriented language defined in this section is used to illus-
trate the analysis presented in subsequent sections. It should be noted that this lan-
guage is biased towards compilation. In particular, run-time modification of classes
(as in [5]) and of the inheritance hierarchy (as in [2]) is not allowed, and neither
messages nor class identifiers may be manipulated at run-time.

The syntax of the language is shown in Figure 1, using the following notational
conventions: curly brackets represent optional constructs, superscript plus signs indi-
cate one or more occurrences of the preceding construct, and italicized text represents
non-terminals.

The semantics are typical of class-based object-oriented languages in which dy-
namic object creation, automatic storage reclamation and single inheritance play a
major role. A class is similar to a record or structure type in an imperative language

239

program ::-- { class + } m a i n
m a i n ::-- ma in { va r id + } star +
class ::= class classid { inher i t s classid } {vat id + } { m e t h o d s m e t h o d + }
me thod ::= method id { (id) } { var id + } is star +
s~at ::-- id :-- exp I i f exp t hen sSat + else star + I

while exp do star + I r e t u r n ezp I exp
exp : : -- idmethodid{(id)} I s e l f I c l a s s i d n e w I id I cons tan t
cons tan t : :=n i l I t rue I false I 0 I 1 I .. .

Fig. 1: Syntax of a simple object-oriented language

where the fields consist of: da ta fields called i n s tance variables, and named function
pointers, called methods . The instance variables of an object may be accessed only
through the object 's methods. A class Y may i nher i t from another class X, using the
i n h e r i t s clause, which includes all of X's da ta fields in Y, and a pointer to a list of
X's methods. Y is said to be a subclass of X, and, similarly, X is said to be a superc lass
of Y. Not including X's methods directly allows them to be over - r idden in Y, which
is the essence of inheritance.

An object is manipulated by sending it a message , which consists of a name and
an argument, if appropriate. A message send causes a search of the object 's methods
for a matching name. In the case of failure, superclass method tables are searched in
order, s tar t ing at the immediate superclass, until either a match is found or no such
method exists. If the search is successful, the corresponding function is called with
the message's argument, along with a hidden argument named se l f w h i c h is bound
to the object receiving the message. If the search fails, the program is erroneous and
a run-time error is signalled.

A new object, or instance, of class C is created by C new. All instance variables
of a new object are initialized to the value n i l . Predefined constants in the language
include numbers, t ruth values, n i l , along with binary ari thmetic and logic primitives
such as + and _>. The language does not include the s u p e r construct, which allows
direct access to inherited methods, because such method invocations can always be
bound statically at compile time.

4 A M o d e l o f P r o g r a m s a n d S t a t e

In our toy language a program is defined as a set of class definitions and a main
procedure. Before beginning analysis, two transformations are applied to the pro-
gram. The inheritance hierarchy is flattened, as in [11], which "fills" in all inherited
methods with the appropriate superclass methods. Also, all variables and formal ar-
guments are given unique names. To preserve semantics, instance variables inherited
from a superclass retain the same name.

When a program is executed, its s tate consists of a set of constants and active
objects referring to each other through their instance variables. We find it convenient
to view this s t ructure as a graph of unbounded size in which nodes stand for objects
or constants and arcs represent the value of instance variables. Labels distinguish
the arcs originating from a node; there is one label per instance var iab le of the

240

corresponding object. Constants are nodes with no outgoing arcs. Activation records
for methods are regarded as objects and therefore appear as nodes in the object
graph. Their local variables are treated as instance variables.

D e f i n i t i o n 1. Let p be a program and L (labels) a set of variable names. An ob-
ject graph is a pair (N,A), where g is a finite set of objects (nodes) and A C
N • N • L is a finite set of instance variables (labeled arcs).

During static analysis a program, is represented by a control flow graph and
an abstract object graph. Building the control flow graph for our analysis differs
only slightly from building the interprocedural control flow graph in an imperative
language [12]. In particular, a message send has arcs leading to and returning from
all methods whose selector matches the message. Message sends are split into two
nodes, corresponding to the call and return portions, the former binding arguments,
the latter binding the return result if the statement is part of an assignment. Finally,
an extra exit node is added to every method and to the main program.

5 Analysis with Abstract Objects

The state of an object-oriented program at any point in its computation is captured
by the instantaneous states of all the objects in the computer 's memory. At some
point in a particular computation, this state is unique and can be represented by an
object graph. Static analysis, however, examines textual points in the program and
there may be many different computations that cause control to reach a particular
textual point. Thus, each textual point is associated with a set of possible execution
states and, accordingly, we consider the type of an object at a textual point to be
the set of classes that the object can assume over all possible executions.

For each textual point in the program, we construct an abstract object graph
(AOG) summarizing all memory states occurring at this point during some program
execution. Since the AOG models the memory structure of the program it keeps
track of the value of instance variables, local variables, and possible aliasing relations
among them.

D e f i n i t i o n 2. An AOG is a pair {N, A} where N is a finite set of abstract objects,
A C N x N • L is a finite set of arcs and L is a set of labels. The summary nature of
the AOG entails that multiple, identically labeled, arcs can originate from the same

node.

An AOG typically contains may information. An arc labeled xy originating at
node x and ending at node y means that at run-time the value of instance variable xy
of the object corresponding to x may refer to y. We later modify this representation
to include must information with the addition of creation counts.

D e f i n i t i o n 3 . The type of a variable is a set of AOG nodes. Let n e N, 1 e L and
A C N • g x L. The type of variable l of node n in {N,A) is { m] { n , m , l } e A }

The set of abstract objects, N, is syntactically derived from the program being
analysed. This set, a program wide constant, remains static over the analysis whereas
the set of arcs, A, is dynamic.

241

D e f i n i t i o n 4 . Let p be a program, N its set of nodes and L its variable names.
The abstract object graphs of p, AOGp = { (N, A) I A q N • N • L }, form a
complete lattice. Let gl,g2 e AOGp and gl = (N, AI),gg. = (N, A2). The partial
order relation, gl _E g2, is defined as set inclusion of the set of arcs, A1 C_ As.
The lattice meet operation, gl II g2 = (N, A1 U As). The least element, J_ is the
disconnected graph, (N,{}), and the greatest element, T, is the fully connected
graph, (N , N • N • L).

Note that we require N to be finite, but that the object graphs summarized by
an AOG are unbounded. This apparent contradiction is solved by allowing nodes to
summarize many objects of the same class. With this approximation we can limit
the size of the graphs without unnecessary loss of type information. The choice of
mapping from object graphs to AOGs is crucial to the efficiency and precision of the
analysis. We now present two abstract domains effecting different mappings.

5.1 Class O b j e c t G r a p h s

Objects of the same class are likely to be used in the same way in a program, i.e.
their instance variables are likely to refer to objects of the same type. Based on this
observation it seems reasonable to define a domain where objects of the same class
are represented by a single node in the graph:

D e f i n i t i o n 5. A class object graph (COG) maps all dynamically created instances
of a class onto a single graph node.

In a COG, finite sets of constant objects, such as the logical values t r u e and f a l s e
are represented by nodes in the graph, one for each constant. Infinite, or large, sets
of constants are abstracted so that one graph node represents all values in the set.
For our toy object-oriented language the constant nodes are: t r u e , f a l s e , n i l and
Int.

The following program is used to illustrate the analysis with COGs. For the sake
of clarity, we omit the abstract object nodes for methods in the discussion.

main

class P o in t va r p, p' is
va r x, y p := P o in t n e w
m e t h o d s p' := Po in t n e w -G1

s e t - x (v) is i f r e a d - i n t = 0
x := v t h e n p s e t - x (1) -G2

s e t - y (v) is e lse p s e t - y (p ')

y := v pi s e t - y (0) -G3

-G4

For this program, N = { P o i n t , nil, tn t} with Point being the COG node repre-
senting objects created at the two textual instances of P o in t new. The sequence of
graphs inferred by static analysis is shown in Figure 2. GI describes the state after
creat'ion of the two Poin ts , their instance variables refer to nil. G2 portrays the

242

G1 G 2 G3 G4

Fig. 2: A sequence of class object graphs

state if the then-branch of the i f is traversed. The arc z from Point to the integer
node Int appears as a result of the assignment to instance variable x of p. G3 shows
the effect of taking the e lse-branch. Now y refers to an integer or to a point; the
self-loop appeared because we have mapped both Po in t s onto the same node and
thus lost all distinction between them. The same graph could represent a recursive
structure, e.g. a linked list, where y is the next pointer.

The result of the analysis is the COG G4, obtained by taking the meet of G2
and G3. At this point we know that x has type {Int, nil}, and that y has type
{ Int, Point, nil}.

COGs have been used extensively to analyze object-oriented programs [10, 11,
13]. Unfortunately, the polymorphism inherent to the object-oriented style of pro-
gramming proves to be a serious problem since objects of the same class often are
used with instance variables of different classes[10].

5.2 T e x t u a l O b j e c t G r a p h s

To improve the accuracy of static analysis we alter the analysis . domain so that
different objects of the same class do not necessarily share the same node in the
graph. Only objects created at the same textual point share abstract representations.

D e f i n i t i o n 6. A textual object graph (TOG) maps all instances of a, class created at
the same textual point in a program onto the same graph node.

oin

/4

|

GI

1 Y Y Y

x x

Y

G2 G 3 G4

Fig. 3: Textual object graphs

243

In our previous example, there were two textual creations of Po in t , one for p
and one for pl; the TOG associates a graph node to each: Point1 to p and Point2
to p~. Therefore N = {Point1, Point2, nil, In t} and the analysis infers the sequence
of graphs of Figure 3. G4 clearly shows that there are no recursive structures in this
program and that the type of y is different for p and p'.

In general, this abstract representation yields bet ter results than those obtained
with COGs. Also, the types given to instances of "container" classes, e.g. lists, is
more accurate and does not require special t reatment as in [10].

5.3 Creat ion Count s

A problem common to both domains is that assignment is defined as an additive
operat ion--arcs are never removed~ For example, the arcs connecting each node to
n i l never disappear from the graph. A compiler using the results of the analysis
will have. to assume that every instance variable of an object can always refer to
n i l . Due to this "sticky" behaviour, the quality of the analysis will only deterio-
rate as the number of possible values increases. This problem, and specifically n i l -
valued instance variables, has marred previous at tempts to provide a type system
for object-oriented programs [10, 11, 13]. (Some authors have defined type-safety so
that programs may legally send messages to n i l [11].)

The work of Chase et al. [3] points to a simple solution. The key observation is:
if it can be determined that an assignment will affect all the objects represented
by a single node in the graph (must information), then it is possible to update the
graph destructively. In the analysis of the example program with the TOGs, all
assignments have this property since each node represents only one object. This is
the static criterion for destructive update. (A node may represent many objects if the
creation point is in a loop, or if it occurs in a method that is called more than once
along some control flow path.) We note in passing that a node with no incoming
arcs represents objects which are not referenced and, therefore, can be statically
de-allocated. The graph model is extended in the following way.

D e f i n i t i o n 7. An extended abs~rac~ objec~ graph is a triple (N, A, C), where (N, A)
is an AOG and C = N • {0, 1, c~) maps nodes to their creation counts. {0, 1, oo)
is totally ordered by the relation 0 < 1 < oo. We define the commutative addition
operator G to be

[add] 0 0 x = x 1 ~ 1 = oo oo G x = co

and the substraction operator O to be

[sub] 0 @ z = 0 1 @ 1 = 0

Every node starts with a count of 0. Each time a node's creation point is encountered
along a path in the program, the count is incremented.

When two control flow paths meet, the greatest creation count is retained for
each node in the graph. Note that although creation counts can be applied to COGs,
the gains are negligible since it is likely that the counts for all classes will quickly
converge to c~.

244

5.4 A O G O p e r a t i o n s

We now define abstract operations corresponding to assignment, object creation and
control flow merge. These definitions apply to both textual object graphs and class
object graphs.

Merging of graphs, used for confluence of control flow paths, is implemented
by the lattice meet operation which is simply the union of the arcs and the point-
wise maximum of creation counts. For a given N, and graphs gl = (N, A1, C1) and
g2 = (N, A2, C2), the merge of gl and g2 is:

[merge] gl Ug2 = (N, A1U A2, C')

w h e r e C' = { (n, max(el, c2)) I (n, cl) e 61, (n, c2) e 6'2 }

Assigning a set of objects S to an instance variable 1 of n updates the arcs of the
corresponding graph node, and is written (gl(n, l) ~ S). If the creation count of n is
not oo then the update replaces the current set of arcs labeled l with S, otherwise S
is simply added to the existing arcs. Thus, for a given N, and graph g = (N, A, C)
the operation is:

[assign] (g[(n, 1) ~-* S) = i f (n, oo) e C t h e n (g, muA/'ew, C)
else (N, Hpd U Afew, C)

whereA/ 'ew : { (n ,m, l) I m e S },
Upd= { (n', m',./') e A In r n',l r l' }

Creation of an object is modelled by adding arcs pointing to n i l to the corresponding
node and increasing the creation count of n. The function l a b e l s returns the set
of instance variable names of a node. For a given N~ and graph g = (N,A,C) the
operation is:

[create] ereate(g,n) = (. . . ((g ,g ,c ') l (n , l l)~-~ { n i l }) . . . l (n , lk)~-* {ni l})

w h e r e C ' = { (n , c @ l) l (n , c) e C } U { (n ' , c ') e C I n ' ~ n } ,
{ z l , . . . , = l a b e l s (n)

6 A F l o w A n a l y s i s A l g o r i t h m

Programs are analyzed using conventional flow analysis [1]. The first step is to con-
struct a control flow graph representation of the program. Each arc in this graph is
assigned a flow function which computes the effect of executing the code in its source
node, assuming that its target node is to be executed next. Finally, all control flow
nodes are assigned initial values in the lattice, and the flow functions are applied to
the values until a fixpoint is reached.

In the abstract object graph, methods and the main program are treated as
abstract objects with outgoing arcs for each variable; in the case of methods, the
graph contains arcs for s e l f , the argument, and the return result. These objects
correspohd to activation records that may be created at run-time. The creation
count associated with such nodes is initially set to zero, incremented on entry to the
method and decremented on exit.

245

We now describe the flow functions associated with a given control flow arc a.
Assume that the source node of a is in the control flow subgraph corresponding to
method m 0. The flow functions take the abstract object graph (N, A, C) as argument
and return an updated AOG.

6.1 F low F u n c t i o n s for A s s i g n m e n t S t a t e m e n t s

Assigning a value to a variable involves finding all abstract objects that may be af-
fected and updating their arcs accordingly. Here we consider assignments to instance
variables; the t reatment of local variables is similar.

When va lue is assigned to an instance variable, i va r , it potentially affects all
objects that may be bound to s e l f . Let Selves = { n I (me, n, s e l f) 6 A } be this
set. The general form of a flow function for an arc leaving such an assignment is:

A(N,A,C). U ((N'A'C)l(n'ivar)~-+ Values)
nESelves

where Values is the set of abstract objects corresponding to va lue . The functions
for the various types of assignable values are as follows:

va lue Values
c o n s t a n t {eonst},where const is the A 0 G corresponding to v a lu e

l o c a l v a r i a b l e { n t (m0, n, va lue) e A }
i n s t a n c e v a r i a b l e { n I (s, n, va lue) e A, s ~ Selves }

If the value is a newly created object, the creation count for the creation point
must be updated prior to updating the arcs. Let cp be the AOG node corresponding
to the creation point, the flow function is:

A(N,A,C). U (erea.te((Y,A,C),cp)](n, ivar)~-~ {ep})
nESelves

6.2 F low F u n c t i o n s for M e s s a g e Sends

Message sends involve creation of AOG arcs representing the binding of parameters
and locMs on entry to, and removal of those arcs on exit from, the called method.
The implicit argument s e l f is bound to the set of possible receivers tha t match
the class of the called method. An extra local variable, r e s u l t , is used to hold the
return result; its value is required if the message send is an assignment statement.

Let Arguments and 79T~eceivers be the sets of arguments and possible receivers,
respectively. They are determined in the same manner as Values above. Now consider
a flow graph are corresponding to a call from m0 to some method implementation
ml, the latter having a single local variable l o c a l . Let classof(o) be the function
returnin~ the class of the abstract object o. The flow function for this arc is:

[call] A(N,A,C).(((((N,A,C'), I(ml,self)~--~.eceivers)
](ml, formal) ~-+ Arguments)

I<ml, local) {nil})
](ml, result) ~+ {nil})

w h e r e C ' = { (m l , c O 1) t (m l , c) e C} t3 { (n ' , c ') e C] n ' 7 s
n e c e i ' , , e r s = { r I r 'neeeivers, c lasso f (, ') = elassof(m) }

246

For the return flow arc, assume the result is assigned to the instance variable ivar.
The resulting flow function is:

[re~urn] A(N,A,C) . U (g'I(n"ivarl)~"~7~esult)
. n E . g e l v e ~

w h e r e g' : ((N, A, C')[(ml, self) ~-+ {})
I(ml, formal) {})

I(m~, local) ~ {})
I(m , result) {}),

C' = { (m , , c O 1) I (ml , e) E C } U { (. ' , c/) E C [r/./ r ml },
T~esult = { r [(,nl , r , r e su l t) e A }

6.3 F l o w Analysis

Performing the analysis is now straightforward. The flow value stored at each node
in the control flow graph represents what is known about the abstract objects and
variables at entry to the node. All are initially assigned _k. These values are then
iterated through the functions on the arcs, with the meet operator applied when
control flow paths merge. This process is continued until a fixpoint is reached. In
the algorithm below, the function pred returns the set of predecessors of n and J~,~
is the flow function on the arc from i to n.

F O R E A C H node n in the conlrol flow graph DO
n'----.]_

R E P E A T
F O R E A C H node n in the control flow graph DO

n : - - n U (U fi,n(i))
iepred(l)

U N T I L a fixpoint is reached.

7 More Precise Analysis with Call Strings

Because the effect of a method depends strongly on its calling environment (i.e. the
type of the receiver and of the arguments), analysis information from different call
sites should be kept separate during the analysis. We propose tagging the abstract
object graphs with the sequence of call-points (control flow graph call nodes) through
which they were propagated. The abstract state of the program at a point inside
method m becomes a set of pairs (call-path, g), where g represents an instance of
the abstract object graph and call-path is the sequence of method call points that
brought control to m.

Since static analysis requires finite representations and call chain sequences for
methods cannot, in general, be bounded, we represent the call-path by a finite ap-
proximation. One possibility is a regular expression whose elements are method call
points, similar to the abstract interpretation described in [8]. The alternative de-
scribed here approximates a call path by the last k calls in the sequence [12], for

247

some small value of k. All paths which are identical in the last k calls will have
their state information merged thus creating some approximation in the results.
The choice of k determines a trade-off between accuracy and the computational ef-
fort of performing the analysis. Most traditional interprocedural data flow analysis
algorithms [1] implicitly use k = 0, and [11] use essentially the same method with
k = l .

The extended analysis algorithm is a generalization of the one given earlier. At
any textual point p in the program, the algorithm derives a set of (call-path, g) pairs
that describes the possible object states and corresponding call strings that may hold
at that point in the program. If the statement at that point is any operation other
than a method invocation, the g component of each (call-path, g) pair is updated as
in the previous analysis method.

Assume that we are currently analyzing method rno, the program point p is a
message send and ml is an implementation of that message. The state description
set at this point is S and fp,-~l is the flow function defined in the previous section.
The flow function on the arc from p to ml appends p to all call-strings and applies
the abstract object graphs to fp,ml.1

[call] ,~S.{ <s ++p, fp,,~,(g)) l <s,g) e S}

At the end of analysis of a method, the state description set must be p ropaga ted
back to each applicable invocation point. If p~ is the next node in m0 and rn~ is the
last point in ml , then the flow function on the arc from m~ to pt prefixes the symbol
'?', the unknown call point, to each call string and shortens them to length k by
dropping their suffix.

[return] ,XX.{((?-H-s) 1" k, fm,,,p,(g)) 14k] = p, <s,g) e S }

The star t node of ml is the target of multiple control flow arcs. Let 2~n be the set of
all incoming (call-path, g) pairs. The call strings in this set are shortened to length
k by dropping the earliest call point in the sequence and the TOG values in pairs
with identical call strings are merged.

[e,Ury] { (s, g) I g = U { g' I ~ = s' .t k, (s', g') e z~ } }

At p~, there will in general be several description sets propagated back from differ-
ent implementations of the message. The resulting description sets, Ties, must be
combined with description sets that describe the program state immediately before
the call, S to remove '?' from the call strings, and all pairs with identical call-strings
are merged.

[, 'es~m4 AS.{ (a ++s, g) I g = U{ g' I (? ++s, g') e Ties, (a ++s, g") ~ S } }

a The ith element of string s is written as s[i]. The concatenation of strings s and t is
denoted by s ++ t. A prefix of length n of a string x is denoted by z T n while a suffix
of length n is denoted by z 1. n.

248

class Point
var x, y
m e t h o d s

se t -x(v) is
A. x : = v

se t -y (v) is
B . y : = v

main
1. var p is
2. p := Point new
3. p se t -x (t rue)
4. if r ead- in t = 0
5. t hen p se t -x(1)
6. else n i l

Fig. 4: A Sample Program for Analysis

We now present a trivial example to clarify the analysis algorithm and the use of
call strings. The sample program for analysis is shown in Figure 4. To simplify the
description, the statements in the main body are numbered 1 through 6 and the two
executable s tatements inside the Point class are lettered A and B. We use the name
Pi to represent a program point immediately before s tatement i, and p~ to represent a
program point immediately after s tatement i. With this naming convention, several
program points coincide (e.g. p~ = P3) and we will pass over such duplicates in the
explanation.To keep the example as simple as possible, we will limit the length of
call strings to 1. The analysis algorithm starts with an initial state description at
s ta tement 1 of (?,_L) where '?' is a callzstring of length 1 that indicates that the
caller is unknown (the caller is actually the operating system), and I represents the
bot tom graph in the TOG lattice. Pictorially, _L is the disconnected graph drawn as
graph Go in Figure 6. The analysis algorithm might produce the sequence of state
description sets shown in Figure 5.

make a pass over ma in program:

P o i n t pl : {(?,C0)}
P o i n t p2 : {(?,G1)}
P o i n t ps : {(?,G2)}
Point p, : {(7, C2)}
P o i n t p5: {(?,G2)}
P o i n t p~ : {(?,G2)}
P o i n t pr : {(?,G2)}
Point p~ : { (%62)}

make a pass over me thod set-x:

Point pA: { (p~,Ca) , (p~,c~)}

P o i n t P~A : { (p s , G 4) , (p s , G ~) }

propagate results back to call points
and repeat analysis as required:

P o i n t p4 : {(?,GT)}
P o i n t p5 : {(?,GT)}
P o i n t p~ : {(?,G8)}

, P o i n t pg: {(?,GT)}
P o i n t p~ : {(?,Gg)}

repeat pass over me thod set-x

P o i n t PA : {(Ps,G3),(Ps,Gs)}

. . . and noth ing more changes

Fig. 5: Analysing the program of Fig. 4

249

00|
oo oi G2 G3

sel] :@ @

G s G6 G7

@ @

(38 G9

Fig. 6: Abstract Object Graphs. Creation counts ~re displayed tinder node names.

8 D i s c u s s i o n

Previous work in analysis of object-oriented languages has produced some relatively
imprecise analysis techniques. We have therefore developed bet ter techniques. Fur-
thermore, we provide a means for the compiler implementer to choose an appropriate
trade-off between precision and the cost of the analysis.

Separate compilation remains a challenge for any form of interprocedural static
analysis. On one hand we would like to keep program units separate and minimize
the re-compilation effort. On the other hand we need to be able to analyze as much
as possible of the source program to generate efficient code. Research towards a
modus vivendi continues.

250

R e f e r e n c e s

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and Tools.
Addison-Wesley, 1986.

2. C. D. Chambers. The Design and Implementation of the Self Compiler, an Optimizing
Compiler for Object-Oriented Languages. Ph.D. Thesis, Stanford University, 1992.

3. D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of Pointers and Structures. In
SIGPLAN'90 Conf. on Programming Language Design and Implementation, 1990.

4. P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Program by Construction or Approximation of Fixpoints. In Conf. Rec. of
the 4th A CM Syrup. on Principles of Programming Languages, 1977.

5. A. Goldberg and G. Robson. Smalltalk.80 - The Language and its Implementation.
Addison-Wesley, 1983.

6. L. Harrison. The Interprocedural Analysis and Automatic Parallelization of Scheme
Programs. Technical Report CSRD Rpt. 860, University of Illinois, Urbana, II1., 1989.

7. A. V. Hense. Type Inference for O'small. Technischer Bericht A 06/91, Universitht
des Saarlandes, 1991.

8. R. N. Horspool and J. Vitek. Static Analysis of PostScript. In Proceeding of the
International Conference on Computer Languages, 1993.

9. P. Hudak. A Semantic Model of Reference Counting and its Abstraction. In Abstract
Interpretation of Declarative Languages. Ellis Horwood, 1987.

10. R. E. Johnson. Type-checking Smalltalk. In OOPSLA'86 Conf. Proc., 1986.
11. J. Palsberg and M. I. Schwartzbach. Object-Oriented Type Inference. In OOPSLA'91

Conf. Proc., 1991.
12. M. Sharir and A. Pnueli. Two Approaches to Interprocedural Data Flow Analysis. In

S. S. Munchnick and N. D. Jones, editors, Program Flow Analysis: Theory and Appli-
cations. Prentice-Hall, 1981.

13. N. Suzuki. Inferring Types in Smalltalk. In Conf. Rec. of the 8th A CM Syrup. on
Principles of Programming Languages, 1981.

