
A Term Pattern-Match Compiler 
Inspired by Finite Automata Theory 

Mikael Pettersson (mpe@ida.liu.se) 

Deparlment of Computer Science, Link6ping University, Sweden 

ABSTRACT 

This paper presents a new alg~xithm for compiling term pattern- 
matching for functional languages. Earlier algorithms may produce dupli- 
cated code, and redundant or sub-optimal discrimination tests for certain 
combinationw of patterns, in particular when a pattern column contains a 
mixture of constructors and variables. This algorithm, which was inspired 
by finite automata theory, addresses these problems and solves them to 
some extent. It does so by viewing patterns as regular expressions and 
optimizing the finite automaton that is built to recognize them. It also 
makes checking patterns for exhaustiveness and irredundancy cheap opera- 
tions. 

1. Introduction 
Term pattern-matching is a key feature of modem (mostly-) functional programming lan- 
guages such as Standard ML [HMTg0] and Haskell [Hudak et a191]. Pattern-matching is 
used both to determine the shape of objects, and to bind variables to parts of them. Stan- 
dard algorithms exist for compiling pattern-matching to simpler constructs [Augusts- 
son85,Wadler87]. They produce good code for most cases, but have problems with cer- 
tain combinations of patterns (when they must fall back to the so-called "mixture rule"). 

The algorithm presented in this paper was inspired by finite automata theory. A pattern is 
now viewed as a regular expression over atomic values, constructor names and wildcards. 
The pattern-match compiler takes a sequence of patterns and compiles them to an acyclic 
deterministic finite automaton. Equivalent states are merged, and the automaton is then 
transformed to an expression in the compiler's intermediate language. This approach has 
some interesting consequences: 

�9 Since equivalent states are merged, the problem of duplication of the right-hand side 
expressions is avoided. 

�9 Since finite automata encode all information in their states, they never need to back- 
track or inspect a particular value more than once. 

The rest of this paper is organized as follows: Section 2 discusses some problems with the 
standard algorithms. Section 3 defines the new algorithm, and Section 4 illustrates it on 
two examples. Section 5 discusses some implementation issues, and Section 6 compares 
this with related algorithms. Section 7 concludes with some comparisons between this 



259 

algorithm and an earfier implementation of the standard one. 

2. P r o b l e n m  w i t h  e a r l i e r  a l g o r i t h m s  

The well-known pattern-match compilation algorithms in [Augustsson85] and ~a~er87] 
(henceforth referred to as the "standard" algorithms since they me very similar) work 
well in many cases. For certain inputs, however, they may produce poor code. This hap- 
pens when the selected pattern column contains a mixture of variable and non-variable 
patterns. In this case the colunm is "chopped up" into alternafi.g sub-sequences of con- 
structors and variables. The problem with this is that when a discrimination test is done 
on a sub-sequence, the original context is lost, and this may lead to redundant or sub- 
optimal tests. This section presents some examples that illuminate these weak spots. All 
examples are written in Standard ML, as is the generated code. 

2.1. Copied Expressions 
Consider the following function definition (from [Wadler87]): 

fun unwieldy [] [] = A 

I unwieldy xs ys = B xs ys 

A naive implementation of the standard algorithms would generate: 

fun unwieldy xs ys = 

case xs 

of nil => (case ys 

of nil 

i 
] _ => B xs ys 

=> A 

ffi> B xs ys) 

Since there are two ways for the second equation to match, the second expression B xS 
y s  appears two times in the generated code. 

To eliminate expression copying, Augustsson proposes a new control operator DEFAULT. 
If it appears in the right-hand side of Some CASE expression, then control is transferred to 
the default entry of the nearest enclosing CASE 1. 

fun unwieldy xs ys - 

case xs 

of nil -> (case ys 

of nil 

I 
I _ => B xs ys 

ffi>A 

=> DEFAULT) 

This has the drawback of being far too low4evel for a compiler using a goto-less high- 
level language as its intermediate code. A much cleaner solution, and no less efficient ff 
the compiler does basic analysis and integration of local procedures, is to wrap up shared 
expressions as local procedures. The above example could then become: 

1 Wadlcr uses I] and FAIL instead, but the r is the same.. 



260 

fun unwieldy xs ys = 

let fun default() = B xs ys 

in 

case xs 

of nil 

I 
end 

-> (case ys 

of nil => A 

I -> default()) 
ffi> defaul~.() 

Most modern compilers for Scheme, Standard ML and Common Lisp are able to compile 
the tail-calls to d e f a u l t  as simple branches [Steele78, Krantz et a186, AJ89]. 

2.2. Repeated and Sub-optimal Tests 

Consider the following definition (again adapted from [Wadler87]): 

fun demo [] ys ffi A ys 

J demo xs [] ffi B xs 

I demo (x" ::xs') (y' ::ys') = C x' xs" y' ys' 

fun demo xs ys = 

case xs 

of nil 

I 

ffi> A ys 

-> (* PE(1) *) 

case ys 

of nil => B xs 

[ => (* PE(2) *) 

case xs (* <--(i) *) 
of (x" : :xs" ) ffi> 

(case ys (* <--(2) *) 

of (y'::ys') => C x' xs" y' 
I ffi> ERROR) 

I => ~RROR 

y s "  

The problem is that the repeated tests (marked with arrows above) must check for all con- 
structors of the type, even though it is easily seen that only some ac.~lly can appear. The 
nested tests need to test for all constructors only if control could come to the default case 
via some use of the DEFAULT operator. The pattern-match compiler should optimize 
nested tests when this is not the case. 

A referee commented on an earlier version of this paper that this sometimes is solved by 
partial evaluation. The pattern-match compiler would do a post-optimization pass on the 
generated expression. At every simple match pat-~exp, it would optimize exp with the 
knowledge that the matched variable was pat. For instance, at the line marked PE (1) ,  it 
would first note that x s  must be a pair, and then be able to simplify the repeated test 
marked < - -  (1) .  The point of the algorithm presented in this paper is that it achieves 
tl~s optimization directly, without the need for an extra pass. 

In the important special case where the repeated pattern onlytests for a single constructor, 
us in the example above, the CASE expression should be eliminated and replaced by a 
LET to directly bind the variables to the components of the value. 



261 

3. Term Pattern-Matching and Finite Automata 
The basic intuition behind this algorithm is that patterns can be viewed as alternation- and 
repetition-free regular expressions consisting of constructor names (possibly with sub- 
patterns), atomic values and wildcards. These regular expressions are easily mapped to 
tree-based deterministic finite automata This in turn implies that backtracking never is 
needed: all the necessary information is encoded in the states of the automata. These 
automata are essentially n-ary Izees, with arcs labeled by constructors, atomic values or 
wildcards, and non-leaf nodes corresponding to particular positions in the original pat- 
terns. Two internal nodes are equivalent if their sets of outgoing arcs are the same, and 
they correspond to the same position in the patterns. Therefore, the trees can easily be 
optimized by merging equivalent states in a single bottom-up traversal: this results in 
DAG-shaped automata that define the control flow of the generated pattern-matching 
code. 

Using the analogy of finite automata makes it possible to directly describe an algorithm 
that neither needs backtracking nor generates duplicate code. Viewing patterns as regular 
expressions also makes it quite easy to define the mapping from patterns to states and arcs 
in the automata. 

The Algorithm 

The algorithm is divided into four logical steps: renaming of patterns, generating the 
DFA, merging of equivalent states, and mapping to intermediate code. Each of these steps 
will now be described in detail. 

The input to the algorithm is a sequence of match rules (row of n patterns =~ expression), 
and a sequence of n root variables. The order of the match rules is significant: the first (or 
top-most) rule that matches is the one whose expression will be evaluated. 

The intermediate data structure of the algorithm is an acyclic deterministic finite automa- 
ton. Each state in the automaton is either final or a test state. There is one final state for 
each expression in the right-haud sides of the match mles, and one for matching failure. 
A test state corresponds to a simple case-expression that performs a discrimination test on 
a certain variable, and is characterized by that variable and a sequence of arcs: (simple 
pattern, new state) 2. Each state also has some additional attributes: 

�9 a unique stamp for identification purposes 

�9 a set offree variables (defined and used below in step 4) 

�9 a reference count indicating the number of direct references to the state 

Step I: Renaming 

The first step is to augment each pattern with its corresponding path variable. In order for 
the st_at_e merging process (step 3) to work, it must be guaranteed that two different test 
states that test the same part of the input object use the same variable name. For each 
match rule, the pattern row and the expression are subject to the following preproeessing: 

2 A simple pattern is either an atomic value, a wildcard, or a constructor applied only to variables or wildcards. 



262 

Each (sub-) pattern is replaced by an internal paUern path=pattern, where the path 
is defined as follows: 

�9 The path of each top-level pattern in the pattern row is the name of the corre- 
sponding mot variable (the one with the same index). 

�9 If ample  paueru (/xul, . . . .pat ,)  has path p. then each pat i will have path 
psi.  

�9 Ifaconstructorapplicationctorpathaspathp, thenpmhaspathp$2 (p$1 is 
the path of the tag, if there is one). 

Since every patllm comes with a variable, there is no need for Variable patterns in 
the internal form: wildcards are used instead. The pattern preprocessing also results 
in a renaming substitution mapping original variables in the patterns to their corre- 
sponding path variables. This substitution is first applied to the expression in the 
right-hand side, then the expression is replaced by a new final state containing the 
renamed expression. The reference count of this stall is initially 0. 
The result is the ~ (row of internal patterns,final state). 

Example: The input is the variable x and the match rules: 

nil => E1 
cons (y,ys) => E2 

The renaming step results in the following structures: 

xfnil 
xfcons (x$251=__, x$252-__) 

ql-El 
q2-E2 [x$2$1/y, x$2$2/ys] 

where q l  and q2 are two new final states. 

Step 2: Generating the DFA 

The second step is to map the sequence of internal patterns and final states to a determinis- 
tic finite automaton, using an algorithm match. Match takes as input a matrix of patterns, 
and a column of final states (one for each row in the matrix). It rettwns the start stall of the 
constructed automaton. Given the pre-processed match rules, the initial matrix is defined 
by the pattern rows, and the states by the newly constructed final states. Match proceeds 
by doing case analysis on the pattern matrix, and choosing some column and one of the 
two cases in the algorithm. 

The Variable Rule 

match {vl-__, v2=__ .... vn=_} { ql } 
{.. } {..) 

The top-most row has only variable (non-constructor) patllms. Therefore. q l  is the top- 
most final stall to match the input, and the result is simply q l  with its reference count 
field incremented by one. 



263 

The Mixture Rule 

{vffipatl, pats1.. } {ql} 

match {.. } {. �9 } 
{v-patn, patsn.. } {qn} 

The is the real work-horse of  the algorithm. There is some column whose top-most pattern 
is a constructor. (For simplicity, it is depicted above as the left-most column, but any col- 
umn will do.) The goal is to build a test state with the variable v and some outgoing arcs 
(one for each conslrnctor and possibly a default arc). For each constructor c in the 
selected column, its arc is defined as follows: 

Let  {il . . . . .  ii} be the row-indices of  the patterns in the column t l ~  match e. Since 
the patterns are viewed as regular expressions, this will be the indices of the pat- 
terns that either have the same constructor c,  or are wildcards. 
Let {pat 1 . . . . .  patj} be the patterns in the column corresponding to the indices com- 

puted above, and let n be the arity of  the constructor c,  i.e. the number of sub- 
patterns it has. For each pati, its n sub-patterns are extracted; if pat i is a wildcard, n 
wildcards are produced instead, each tagged with the right path variable. This 
results in a pattern matrix with n columns and j rows. This matrix is then appended 
to the result of selecting, from each column in the rest of  the original matrix, those 
rows whose indices are in {il . . . . .  ij}. Finally the indices are used to select the cor- 
responding final states that go with these rows. Note that the order of the indices is 
significant; selected rows do not change their relative orders. 
The arc for the constructor c is now defined as ( c ' ,  s t a t e ) ,  where c '  is c with 
any immediate sub-patterns replaced by their path variables (thus c '  is a simple 
pattern), and state is the result of  re, cursively applying match to the new matrix 
and the new sequence of  final states. 

Finally, the possibility for matching failure is considered. If the set of constructors is 
exhanslive, then no more arcs are computed. Otherwise, a default arc (_ ,  s t a t e )  is the 
last arc. If there are any wildcard patterns in the selected column, then their rows are 
selected from the rest of  the m a r x  and the final states, and the state is the result of apply- 
ing match to the new matrix and states. Otherwise, the error slate is used after its refer- 
ence count has been incremented. 

Step 3: Optimizing the DFA 

The third step is to merge equivalent states. Since the DFAs are acyclic, this process can 
be efficiently implemented in a bottom-up fashion. Two final states are equivalent if they 
have the same stamp. Two test states are equivalent if they test the same variable (this is 
the reason for the renaming step), and their sets of  outgoing arcs are equal. Two arcs are 
equal if their simple patterns are equal and the target states have the same stamps. 

Here it has been described as a separate step, but this can easily be integrated into the 
match algorithm. Whenever match is about to create a new test state, it first checks 
whether an equivalent one already exists. If so, the reference count field of the old state is 
incremented, and the old state is returned. Otherwise a new state with reference count 1 is 
created and returned. 



264 

Step 4: Generating Intermediate Code 

The fourth and final step is to map the automaton to an expression in the intermediate lan- 
guage. Since shared states are to be implemented as local procedures, the notion of the 
free variables of a state becomes important: 

�9 The free variables of a final state are the path variables from the substitution created 
in step 1 when renaming the expression of this state. The error state has no free 
variables. 

�9 The free variables of an arc (simple pattern, new state) are the free variables of the 
state, minus the variables bound in the pattern. 

�9 The free variables of a test state is the union of the free variables of the outgoing 
arcs, plus the test variable. 

As for step 3, the free variable computation has been described as a separate step. Again, 
this is not necessary since the free-variable field can be computed once and for all when 
the state initially is created. 

Starting with the start state, the intermediate language expression is constructed as fol- 
lows: 

�9 The translation of a final state is the expression it contains. 

�9 The translation of a test state is a simple case-expression, whose variable is the vari- 
able of the state, and whose sequence of match rules is the result of translating all 
the outgoing arcs. 

�9 The translation of an arc (pattern, state) is the match rule pattern=,expression, 
where the expression is the translation of the state reference. 

�9 A reference to a non-shared state is replaced by the translation of the state itself. 

�9 A reference to a shared state, i.e. one whose reference count field is greater than 
one, is made into a call to a local procedure. The name of this procedure is the 
stamp of the state, and the arguments are the free variables of the state (in some 
canonical order). The body of the procedure is the translation of the state itself. 

The resulting intermediate expression may refer to procedures corresponding to shared 
states. In this case, the expression is wrapped in a LETREC with bindings for each such 
procedure. 

4. T w o  E x a m p l e s  

4.1. The DEMO Function 

fun demo [] ys = E1 where EI=A ys 

] demo xs [] = E2 where E2=B xs 

] demo (x'::xs') (y'::ys') ffi E3 where E3=C x' xs" y" ys' 



265 

Step 1: Renaming 

Here the names xs and ys will be used as the root variables. The result of  the renaming 
is: 

xs-nil, ys-_ ql-E1 
xs~_, ys-nil q2-E2 
xs.cons(xs$2$1f_,xs$2$2~_), ysfficons(ys$2$1ffi_,ys$2$2=_) q3ffiE3' 

where E3' =E3 [xs$251/x', xs$2$2/xs', ys$2$1/y', ys$2$2/ys' ]. 

Step 2: Generating the DFA 

{xs-nil, ys-_ } {ql} 
match0: {xs-_,ys-nil } {q2} 

{xs-cons(xs$2$1f_,xs$2$2ffi_},ys-cons(ys$2$1ffi ,ys$252~_) } {q3} 

The mixture role is applicable in the first column. The constructor nil matches rows 1 
and 2, and c o n s  matches rows 2 and 3. The constructors are exhaustive, thus no default 
case. 

q0 : case xs 
of nil => match1 
I cons(xs$2$1ffi_,xs$2$2 -) => match2 

where: 

match1: {ys-- } {ql} 
{ysffinil} {q2} 

match2: {xs$2$1=_,xs$2$2--,ys=nil } {q2} 
{xs$2$1ffi_,xs$2$2=_,ys=cons(ys$2$1=_,ys$2$2ffi_)} {q3} 

(notice how the xs m row 2 was split into two new wildcard patterns to make it compati- 
ble with the two new sub-patterns from the first cons)  

Considering m a t c h l ,  this is a ease for the rinsable rule. It immediately reduces to q l .  

Considering match2 ,  this is a case for the mixture rule in column 3 (the y s  variable). 
The n i l  constructor only matches row 1, and c o n s  row 2. Again, no default case. 

q4 : ease ys 
of nil => match3 
I cons(ys$2$1,ys$2$2) ffi> match4 

where: 

match3: {xs$2$1=_,xs$2$2ffi } {q2} 

match4: {ys$251= ,ys$2$2=_,xs$2$1--,xs$2$2--} {q3} 

For both of the new matches, the variable rule is applicable, and they reduce to their 
respective final states. 



266 

The final automaton is: 

q0 : 

q4 : 

case xs 

of nil => ql 

cons(xs$2$1,xs$2$2) => q4 

case ys 

of nil => q2 

I cons(ys$2$1,ys$2$2) => q3 

with the final states q l ,  q2 and q3 defined as in the beginning. 

Step 3: Optimization 

In this example, no two states are equivalent. 

Step 4: Intermediate Code 

fun demo xs ys = 

case xs 

of nil 

[ cons (xs$2$1,xs$2$2) 

case ys 

of nil 

I cons(ys$2$1,ys$2$2) 

=> A ys 
=> 

=> B xs 

=> C xs$251 xs$252 ys$251 ys$252 

4.2. The UNWIELDY Function 

fun unwieldy [] [] = A 

I unwieldy xs ys = B xs ys 

Step h Renaming 

Here the names xs and ys will be used as the root variables. The result of the renaming 
is: 

xs=nil, ys=nil ql=A 

xs=__, ys=__ q2=B xs ys 

Step 2: Generating the DFA 

match0: {xs=nil, ys=nil} {ql} 

{xs=_, ys=_ } {q2} 

The mixture rule is applicable in the first column. The constructor nil matches rows 1 
and 2. n i l  is not exhaustive, so there will be a default arc for the wildcard rows, row 2 
here. 



267 

qO : case xs 

of nil => match1 

[ ~> match2 

where: 

matchl: {ys-nil} {ql} 
{ys =_ } {q2} 

match2: {ys-_ } {q2} 

Considering m a t c h 2  first, this is a case for the variable rule, so it immediately reduces to 
q2. 

Considering matchl, ~ ~ a case for the mixture rule in column 1. The nil consU'uc- 
tot matches rows 1 and 2, but is not exhaustive, so there will be a default arc for the wild- 
card row 2. 

q3 : case ys 

of nil => match3 

[ => match4 

where: 

match3: {} {ql} 
{} {q2} 

match4: (} {q2} 

T h e  variable rule is applicable in both cases, so match3 reduces to ql and match4 to 

q2. 

The final automaton is: 

qO : case xs 

of nil => q3 

[ _ => q2 

q3 : case ys 
of nil => ql 
I _ ffi> q2 

with the final states q l  and q2 defined as in the beginning. 

Step 3: Optimization 

The two references to q2 are merged by incrementing q2's  reference count. 

Step 4: Intermediate Code 

State q2 has a reference count greater than one, so it is made into a local procedure. It has 
no free variables since no substitution was made in step 1. 



268 

fun unwieldy xs ys = 

let fun q2() = B xs ys 

in 

case xs 

of nil => 

(case ys 

of nil => A 

I => q2 ()) 
I ffi> q2 () 

end 

s. Implementation Notes 

5.1. Data Representation 
The algorithm as described compiles complex pattern-matching to simple patterns, i.e. 
patterns with no nested constructors. A really good implementation should however go 
one step further and also consider low-level representation issues before emitting the final 
intermediate code. In particular, the application of a DATATYPE constructor can be repre- 
sented in several different ways depending on the rest of its DATATYPE declaration. See 
[Appel90] and [Cardelli84] for further information about representation choices. It should 
be noted though that such representation optimizations are often limited to statically-typed 
and strict languages like Standard ML. Lazy languages implemented by graph reduction 
often choose uniform representations in order to speed up the reduction process (see e.g. 
[Peyton Jones 87]). 

A special case deserves to be mentioned here. Simple CASE-expressions whose patterns 
are the constructors of a DATATYPE, can often execute in (9(1) time by the use of jump 
tables. The implementation of simple CASE-expressions has been studied in the context of 
ordinary imperative languages, see e.g. the excellent summary in [Bemstein85]. 

5.2. CompUe-time Warnings 

The definition of Standard ML requires that the compiler give warnings if a pattern-match 
is non-exhaustive or redundant. These conditions are easily checked by inspecting the ref- 
erence counts of the final states in the automaton. If the failure state has a non-zero refer- 
ence count, then the match can fail, and the non-exhaustiveness message is triggered. If 
any final state corresponding to a fight-hand side expression has a zero reference count, 
then that expression can never be evaluated, and the patterns must contain redundant 
equations. 

6. Comparisons with Related Algorithms 
There are both interesting similarities and differences between this and the standard algo- 
rithm. Both operate on a matrix of patterns, repeatedly choosing a column on which to 
perform a discrimination test, and continuing with several smaller matches. The primary 
difference, apart from this algorithms use of an intermediate data structure, appears to be 
the treatment of matching failure. The standard algorithm uses a third argument tomatch, 
which acts as a "failure continuation". In the sub-matches genexated by the mixture role, 
the fail expression is defined by the continued matching on the bottom part of the pattern 



269 

matrix (from the first variable and downwards) (or DEFAULT if backtracking is used). 
This is why the same part of the input can he inspected multiple times. In contrast, the 
algorithm described in this paper always considers a/l the rows that might match at the 
same time. It is possible that this may cause an explosion in the number of states of the 
DFA (analogously to the worst cases when nondeterministic finite automata are converted 
to deterministic ones), although this has not been observed in practise. 

It should be emphasised that this algorithm only is applicable to strict languages, or lazy 
languages with strict top-down, left-right evaluation in pattern-matching constructs. There 
are some approaches that try to deal with termination problems in lazy pattern-matching, 
see e.g. [PS90]. 

7. Experiences and Conclusions 
The algorithm presented here, with refinements for exploiting the actual representations of 
various datatypes, has been implemented twice. First as a prototype in Standard ML, used 
to debug and verify the ideas and algorithms. A second implementation was done in 
Scheme to replace an earlier one used in the author's macro package for SML-like 
datatypes and pattern-matching in Scheme. This package had been used extensively in the 
implementation of the author's SML-in-Scheme system (roughly 6.500 lines of code). 

To this author's surprise, the use of the new algorithm did not lead to a reduction in code 
size. For a total of 231 pattern-matching constructs, 1671 states were generated, of which 
only 38 (2.3%) were shared. Only two out of the 231 automatons had two shared states; 
none had more. It was conjectured therefore that programmers tend to write rather simple 
pattern-matching constructs, and avoid complex ones. Whether this is because they do not 
trust their compilers or whether the troublesome constructs rarely are needed, is an open 
question. 

The primary advantages of the new algorithm's use of the finite automata analogy appears 
therefore to be the ease by which someone can follow the algorithms, and in the low com- 
plexity of the implementation. Speaking from practical experience, having implemented 
three generations of pattern-match compilers, this author definitely feels that the algorithm 
described here was the easiest one to implement, and the one that required the least 
amount of debugging. 

8. A c k n o w l e d g e m e n t s  

The primary inspiration for using finite automata to implement term pattern-matching 
came from Hoffman and O'Donnell's paper on tree pattern-matching [HO82]. The prob- 
lem of tree pattern-matching is to find all the places in an input tree where some pattern 
matches. Its primary application appears to be in tree-rewriting systems, such as code gen- 
erators automatically built from template-rewrite specifications [AGT89]. 

R e f e r e n c e s  

[AGT89] A.V. Aho, M. Ganapathi, S. W. K. Tjiang, Code Generation Using 
Tree Matching and Dynamic Programming (ACM TOPLAS, Vol. 
11(4), October 1989). 



270 

[AJ89] Andrew W. Appel and Trevor Jim, Continuation-Passing, Closure- 
Passing Style (Proceedings 1989 ACM Symposium on Principles of 
programming Languages). 

[Appel90] Andrew W. Appel, A Runtime System (Lisp and Symbolic Computa- 
tim, Vol. 3, 343-380, 1990. Also in the "New Jersey" SML distribu- 
tim.) 

[Augustsson85] Lennart Augustsson, Compiling Pattern-Matching (Proceedings 1985 
Conference on Functional Programming Languages and Computer 
Architectme, Springer LNCS-201). 

[Bernstein85] Robert L. Bemstein, Producing Good Code for the Case Statement 
�9 (Software - -  Practice and Experience, Vol. 15(10), October 1985). 

[Cardelli84] Luca Cardelli, Compiling a Functional Language (Proceedings 1984 
ACM Conference on Lisp and Functional Programming). 

[HO82] Cristoph M. Hoffman and Michael J. O'Donnell, Pattern Matching in 
Trees (Journal of the ACM, Vol. 29(1), January 1982). 

[HMT90] Robert Harper, Robin Milner and Mads Tofte, The Definition of Stan- 
dard ML (The MIT Press). 

[Hudak et al 91] Paul Hudak et al, Report on the Programming Language Haskell, Ver- 
sion 1.1 (June, 1991). 

[Kranz et al 86] D. Kranz, R. Kelsey, J. Rees, P. Hudak, J. Philbin, and N. Adams, 
ORBIT: An optimizing compiler for Scheme (Proceedings SIGPLAN 
'86 Symposium on Compiler Construction, SIGPLAN Notices, Vol. 
21(7), July 1986). 

[Peyton Jones 87] Simon L. Peyton Jones, The Implementation of Functional Program- 
ruing Languages (Prentice-Hall, 1987). 

[PS90] L. Puel and A. Smkez, Compiling Pattern Matching by Term Decompo- 
sition ~ n g s  of the 1990 ACM Conference on Lisp and Func- 
tional Programming). 

[Steele78] Guy L. Steele Jr., Rabbit: a compiler for Scheme (AI-TR-474, MIT, 
1978). 

[Wadler87] Philip Wadler, Efficient Compilation of Pattern-Matching (Chapter 5 of 
[Peyton Jones 87]). 


