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Abstract  

This paper presents a method to eliminate parts of the overhead introduced by parallel 
constructs in EDS LISP, a parallel extension of Common Lisp. Futures support a declara- 
tive style of explicit parallel programming. In languages with futures there is no static 
distinction between data calculated locally and data calculated by another process. Hence 
before data can be accessed a dynamic accessibility check has to be done. If the data is not 
yet determined an implicit wait has to be performed. Checks are done even when all data 
objects are present. 
An algorithm is presented which does away with a significant amount of these checks. It 
is a variant of (intra-procedural) abstract interpretation, up to some extend similar to 
strictness analysis. Unlike other approaches the presented approach copes with both func- 
tional and non-functional LISP. The algorithm has been implemented in Common Lisp. 
The benchmarks are promising. 

1 EDS LISP: Programming with Futures 
The EDS Lisp (see [Hal le  90]) language supports explicit large grain parallelism. 
Aside from message passing and synchronization mechanisms the main lan- 
guage extension w.r.t. Common Lisp is the future. This construct is borrowed 
wi th  some changes from other parallel  Lisp dialects ([Hal 85]). We first show a 
(somewhat  naive) parallel  va r ian t  of quicksort using futures: 

(DEFUN QSORT (ARG-LIST) 
(IF ARG-LIST ; (else NIL) 

(LET ((PIVOT (CAR ARG-LIST)) (REST-LIST (CDR ARG-LIST)) 
(LEFT-LIST NIL) (RIGHT-LIST NIL)) 

( LOOP 
(IF REST-LIST 

(LET ((ACTUAL (CAR REST-LIST))) 
(IF (> ACTUAL PIVOT) 

(PUSH ACTUAL RIGHT-LIST) 
(PUSH ACTUAL LEFT-LIST)) 

(RETURN)) ;leave loop 
(SETO REST-LIST (CDR REST-LIST))) 

(NCONC (QSORT LEFT-LIST) (LIST PIVOT) (FUTURE #'QSORT RIGHT-LIST))))) 
The only difference to sequential  quicksort  is tha t  the  second recursive call is 
done in parallel  using the future construct; left and right lists are sorted in par- 
allel. To unders tand the semantics of futures, consider the call 
(FUTURE function-name arguments). The future behaves  almost like the Com- 
mon Lisp construct  funcall. The only difference is tha t  it re turns  immediately  - 
af ter  the evaluat ion of the arguments - with some place-holder value. This place- 
holder stands for a resul t  which is not yet  computed. Eventual ly,  the function de- 
noted by function-name is applied asynchronously to the evaluated arguments. 
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When it returns the place-holder is overwritten with the real result. Place- 
holders are first class citizens : they may be copied and passed as argument to 
functions like all other values. Further, they may be used to build other values, 
e.g. as argument of the list-creating function CONS. Obviously, this black box 
treatment stops inside primitive constructs which "really need their arguments" 
like arithmetic operations. This is what we mean by touching. According to the 
semantics of future-based languages an implicit wait for the argument values has 
to be done in such circumstances: The evaluation is deferred until the argument 
value is accessible. In the above example the implicit wait is done for left lists but 
not for right lists. The reason for this is the fact that NCONC is not symmetric 
with respect to its arguments: the last one is handled in black box fashion. 
There are two properties which are necessary for implicit waiting for the i'th ar- 
gument of a construct  call (F... X...). 

- the i'th argument position must be touching 

- the construct F must be primitive 

The properties with respect to touching result directly from the (sequential) se- 
mantics of predefined LISP constructs. In contrast, it is up to the language de- 
signer to classify constructs as primitive or non-primitive (with implications on 
the obtainable amount of parallelism). 

2 Checks  : The Price  for Implicit  Synchronizat ion  
To understand the aim of touching analysis it is necessary to have a look on some 
implementation aspects. As in sequential LISP objects are represented by tagged 
cells. Future objects are represented by cells with a special tag value. Further, a 
future cell contains a pointer to a data structure representing the "content" of 
the future. Hence there are 3 different kinds of objects to be considered: 

undetermined future objects can not be accessed immediately. The evalu- 
ation has to be suspended until the objects become determined. 

The values of determined objects can be read and written without any syn- 
chronization but they may have to be accessed through a chain of pointer 
dereferencing actions. 

- present objects are conventional LISP objects. Of course, every present ob- 
ject is determined. 

Given these three kinds of objects, WAIT (explicit and implicit) can be defined: 

WAIT (X) = 
i f  is-present (X) then X 

else 
i f  future-is-not-computed (X) then dowait (X) endif 

WAIT (deref (X)) 

;this check occurs very often 
;and fails rarely 

;the evaluation is suspended 
; follow dereferencing chain 

endif 
The check in the first line is the point of interest. The aim its elimination. Pro- 
vided we know at compile time that X is present the code simply becomes WAIT 
(X) = X. Less important, when we know that X is determined there is no need for 
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the check future-is-not-computed inside the recursion. In this case the check will 
fail for every recursion step and hence can be eliminated. 

3 T o u c h i n g  A n a l y s i s  : A n  E x a m p l e  
Consider the function MAP-DESTRU which performs a modification of its first 
argument (a list) by applying its second argument (a functional object) to each 
element of the list. 
We first mark the touching positions with question marks. 

(OEFUN MAP-DESTRU (SPINE ACTION) 
(LET ((ACTLIST SPINE) 

(ACTUAL NIL) (RESULT NIL)) 
( LOOP 

(IF (? (NULL (? ACTLIST)))(RETURN)) ; leave loop 
(SETQ ACTUAL (CAR (? ACTLIST))) 
(RPLACA (? ACTLIST )(FUNCALL (? ACTION) ACTUAL)) 
(SETQ ACTLIST (CDR (? ACTLIST)))) 

SPINE) ) 
Obviously CAR, NULL and CDR touch their arguments. IF touches always its 
first argument, the touching of the second and third depending on the context (in 
this example, it does not touch). Note that SETQ (assignment) overwrites its first 
argument rather than touching it. 
Applying the analysis we get some positions where we know that arguments are 
already determined (marked by "t") respectively present (marked by "$"). 

(DEFUN MAP-DESTRU (SPINE ACTION) 
(LET ((ACTLIST SPINE) 

(ACTUAL NIL) (RESULT NIL)) 
( LOOP 

(IF ($ (NULL (? ACTLIST)))(RETURN)) 
(SETQ ACTUAL (CAR (! ACTLIST))) 
(RPLACA (I ACTLIST )(FUNCALL (? ACTION) ACTUAL)) 
(SETQ ACTLIST (CDR (I ACTLIST)))) 

SPINE) ) 
Note the difference between determined and present.: the function NULL yields a 
present value .  In  contrast, it touches its argument making it determined. 

In troduc ing  Waits: The A s s i g n m e n t  Parad igm 
We can go one step further to obtain more present objects: for every argument on 
a touching position a WAIT will be performed anyhow. Why not perform the 
WAIT explicitly and overwrite the argument (in case it is a var iable)  with the re- 
sult value ? (It is crucial to consider the exact definition of the semantics in order 
to allow such transformations. However, the rationale for this is beyond the scope 
of this paper .) 

(DEFUN MAP-DESTRU (SPINE ACTION) 
(LET ((ACTLIST SPINE) 

(ACTUAL NIL) (RESULT NIL)) 
( LOOP 

(IF ($ (NULL ($ (SET(} ACTLIST (WAIT (? ACTLIST))))) (RETURN)) 
(SETQ ACTUAL (CAR ($ ACTLIST))) 
(RPLACA ($ ACTLIST ) 

(FUNCALL ($ (SET(} ACTION (WAIT (? ACTION)))) ACTUAL)) 
(SETQ ACTLIST (CDR ($ ACTLIST)))) 

SPINE) 
We gain present values rather than determined ones. Note that there are more 
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present objects (and are  indeed recognized by the  analysis) than  those marked  but 
we do not bother about them because they do not occur on touching positions. 

4 The Semantics of Touching Analysis 
We now give somewhat  simplified definitions for touching, strictness, implicit 
wait, present, determined and primitive in order to come to a more exact  state- 
men t  of the touching problem. 

Every data  object is uniquely determined by a r e f e r e n c e .  
Moreover, any object may have a con t en t s .  While the reference of an object ex- 
ists dur ing  its lifetime the contents may  be - at  least  initially - undefined. This is 
the typical si tuation when an object is created by a future function call. 

D e f i n i t i o n  
An object is called d e t e r m i n e d  iff it has a defined contents. A variable (or pa- 
rameter)  is determined iff its value is a determined object. 

D e f i n i t i o n  
An object is called p r e s e n t  iff it is determined dur ing its entire lifetime. A vari- 
able is present iff its value is a present object. A variable or parameter  is not 
present iff it is bound ei ther  to an  object created by a future call or received its 
value from a variable or pa ramete r  which is not present either. 
Obviously any present object variable or pa ramete r  is determined. 

Note tha t  both definitions ignore the s t ructure  of objects. Present or determined 
lists for instance may contain elements  which have arbi t rary properties. 

D e f i n i t i o n  
A construct a p p l i c a t i o n  (F X 1 . . .  Xi-1 Xi Xi+l .  �9 �9 Xn)is called i - t ouch ing  iff for 
any Y (especially for any undetermined Y), Y w o u l d  be determined after  the ap- 
plication (F X1 �9 �9 �9 Xi.1 Y Xi+ 1. �9 �9 Xn). In other  words, the contents of the object 
resul t ing from the evaluation of the a rgumen t  is needed during the function ap- 
plication. A construct F is called i - t ouch in g  iff every application of F is i- 
touching. 

O b s e r v a t i o n  
In EDS LISP every i-touching construct  is i-strict. The reverse is not true. In 
LISP all functions are strict (even functions like CONS !). Obviously, not all 
functions are touching (e.g. CONS). 

D e f i n i t i o n  
A function application is called i - r e su l t - t ouch ing  for some i iff its i 'th result  is 
determined. A function is called i . r e su l t - t ouch i ng  iff all its applications are i- 
result-touching. 

The semantics definition of EDS LISP contains a specification of all primitive 
functions with respect to the properties touching and result-touching. 

E x a m p l e s  
- the functions CAR, CDR, etc. are touching and not result-touching. 
- + , / ,  -, etc. are touchingw.r.t, all a rguments  and result-touching. 
- the special form SETQ (assignment) is ne i ther  touching nor result-touching. 
- the function RPLACA is 1-touching and result-touching. 
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- the special form IFis 1-touching and not result-touching. 
- the functions CONS and LIST are not touchingbut result-touching. 
- the function FUTURE is 1-touching and not result-touching. 
- the function WAIT is touching and result-touching. 

Note that  these properties yield in any context. Special calls like (CAR (IF ...)) 
lead to touching of more arguments (of IF). But these are properties of the call 
context rather  than properties of IF. 

The semant ics  of EDS LISP with respec t  to implicit synchronizat ion 

WAIT leads to synchronization iff its argument is not determined: The 
evaluation is suspended until its argument receives a value. This happens 
when the return value of a function spawned by a future becomes deter- 
mined. 

The object returned by WAIT is present and has the same value as the ar- 
gument of WAIT. 

For every touching position of a primitive construct an implicit WAIT occurs. 
No implicit WAIT occurs on other positions. 

These assertions together with the touching property definitions of all primitive 
functions are part of the semantic definition for EDS LISP. Further, they are the 
basis of the touching analysis. 

5 T h e  T o u c h i n g  A n a l y s i s  S c e n a r i o  
Given a set of functions find those function applications ( F . . .  Xi �9 �9 �9 ) which obey 
the following conditions: 

a) F is i-touchingandprirnitive. 

b) Xi is determined or present (in the context where (F.. .  X i . . .  ) occurs). 

The second condition holds in two typical situations: 

1) Xi is touched by some other touching function or 

2) Xi stems from a result-touching function application (including constants). 

6 A b s t r a c t  I n t e r p r e t a t i o n  
Abstract interpretation simulates the run time behaviour of programs in a sim- 
pler domain. For touching analysis this domain is three valued and totally or- 
dered: ? < ! < $, in words: no-prop < determined < present. Properties of locals 
and parameters w.r.t, this domain are collected by the abstract interpretation al- 
gorithm. Worst case approximations are made for unknown data, conditionals 
and loops. It should be noted that  there is no reason to restrict the analysis to 
purely functional programs. Loops and multiple assignments are handled in a 
straightforward manner. To obtain good results the analysis infers properties of 
user defined functions. This leads to intraprocedural optimization. 

Recursion is handled in a way which is well known from strictness analysis: 
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We start with an optimistic (t) assumption, namely that all arguments of the 
recursive calls are touched and all results are determined resp. present. 

The propagation is done iteratively. Every iteration computes new properties 
and new function bodies using the propagation algorithm of the non- 
recursive analysis for every step. 

The new property approximation is obtained by join between the old one and 
the properties obtained by the propagation. 

The iteration stops iffthe function properties do not change any more. 

Note that the start assumptions are optimistic rather than pessimistic. Although 
recursion and loops are treated very similar this is a fundamental difference. 

7 Implementat ion  Results  and Related Work 
The algori thm is implemented in Common LISP working by source to source 
transformation.  It covers a functionali ty of over 100 LISP constructs including 
all aspects described in this document.  Moreover special (dynamic) var iables  and 
closures are handled. 
The identification of present with determined enforced by the ass ignment  para- 
digm is optional. However,  we feel tha t  it is almost  a lways useful. 
Some benchmarks  have been run  before and after  the analysis. We have counted 
the occurring touching positions and the present respective determined argu- 
ments  on such positions. Both benchmark  tables  give ratios relative to the total 

Check elimination ratios w.r.t, touching positions I 2 3 4 

without assignmentparadigm: present's 0.17 0.16 0.14 0.59 
without assignment paradigm: determined's 0.59 0.67 0.57 0.15 

with introduced assignments : present's 0.67 0.83 i 0.71 0.84 

1: MAP-DESTRU, 2: as MAP-DESTRU but with the first loop traversal unrolled, 
3: non-destructive MAP, 4: DESTRUCTIVE benchmark (Gabriel benchmark) 

/ 

number  of touching positions. The rows in the first table show the el imination ra- 
tios for the analysis  with and without  introduced assignments,  respectively. 

Check elimination ratios w.r.t, touching positions TAK *) QSORT FAC FIB 

non-recursive (naive) analysis 0.33 0.64 0.66 0.77 

recursive analysis 0.60 0.67 0.79 0.84 

Some well-known recursive functions (*): a Gabriel benchmark) 

The second benchmark table shows results of the naive, non-recursive analysis 
versus the recursive analysis (the version with introduced assignments only). 

All ratios show a significant improvement of the run time behavior (of course de- 
pending on the cost of these checks on an individual machine). 
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Touching analysis has been done in the Mul-T project in the context of a compiler 
for Scheme ([KrHaMo89]). The exact definition of the touching scenario, how- 
ever, is lacking. Moreover, it seems that they analyze functional constructs, only. 
Although the touching analysis problem is different to the strictness analysis 
problem (see section 4), the method is very similar. With respect to the method 
we are very close to [CIPJo86]. However, there is no reason to restrict the method 
to functional programs. 
Another related topic is type inference (see e.g. [PJo87], chapter 8 and 9).Touch- 
ing analysis is a special case of type inference. Our algorithm is nicely extendible 
to type inference. The inference methods used in the context of functional lan- 
guages do not fit for LISP. Note that LISP is neither functional nor type-safe. 
Hence properties are different on different program locations. This is in sharp 
contradiction to the concept of type in statically typed languages. 
Methods used in some compiler optimizers are related to touching analysis, too. 
Lifetime analysis - albeit more simple - uses similar ideas (see e.g. [AhSeUl86]). 

Due to page limitations, some of the aspects discussed in this paper are somewhat 
simplified. A more accurate framework with the formal justification w.r.t, recur- 
sive analysis for imperative languages is presented in a forthcoming paper. The 
extension to non-LISP future-based languages is subject of further work. 
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