
Improving the Performance of Parallel LISP
by Compile Time Analysis

J~irgen Knopp
Siemens AG. Otto Hahn Ring 6
8000 Miinchen 83, Germany

email: jk@ km21.zfe.siemens.de

Abstract

This paper presents a method to eliminate parts of the overhead introduced by parallel
constructs in EDS LISP, a parallel extension of Common Lisp. Futures support a declara-
tive style of explicit parallel programming. In languages with futures there is no static
distinction between data calculated locally and data calculated by another process. Hence
before data can be accessed a dynamic accessibility check has to be done. If the data is not
yet determined an implicit wait has to be performed. Checks are done even when all data
objects are present.
An algorithm is presented which does away with a significant amount of these checks. It
is a variant of (intra-procedural) abstract interpretation, up to some extend similar to
strictness analysis. Unlike other approaches the presented approach copes with both func-
tional and non-functional LISP. The algorithm has been implemented in Common Lisp.
The benchmarks are promising.

1 EDS LISP: Programming with Futures
The EDS Lisp (see [Hal le 90]) language supports explicit large grain parallelism.
Aside from message passing and synchronization mechanisms the main lan-
guage extension w.r.t. Common Lisp is the future. This construct is borrowed
wi th some changes from other parallel Lisp dialects ([Hal 85]). We first show a
(somewhat naive) parallel va r ian t of quicksort using futures:

(DEFUN QSORT (ARG-LIST)
(IF ARG-LIST ; (else NIL)

(LET ((PIVOT (CAR ARG-LIST)) (REST-LIST (CDR ARG-LIST))
(LEFT-LIST NIL) (RIGHT-LIST NIL))

(LOOP
(IF REST-LIST

(LET ((ACTUAL (CAR REST-LIST)))
(IF (> ACTUAL PIVOT)

(PUSH ACTUAL RIGHT-LIST)
(PUSH ACTUAL LEFT-LIST))

(RETURN)) ;leave loop
(SETO REST-LIST (CDR REST-LIST)))

(NCONC (QSORT LEFT-LIST) (LIST PIVOT) (FUTURE #'QSORT RIGHT-LIST)))))
The only difference to sequential quicksort is tha t the second recursive call is
done in parallel using the future construct; left and right lists are sorted in par-
allel. To unders tand the semantics of futures, consider the call
(FUTURE function-name arguments). The future behaves almost like the Com-
mon Lisp construct funcall. The only difference is tha t it re turns immediately -
af ter the evaluat ion of the arguments - with some place-holder value. This place-
holder stands for a resul t which is not yet computed. Eventual ly, the function de-
noted by function-name is applied asynchronously to the evaluated arguments.

272

When it returns the place-holder is overwritten with the real result. Place-
holders are first class citizens : they may be copied and passed as argument to
functions like all other values. Further, they may be used to build other values,
e.g. as argument of the list-creating function CONS. Obviously, this black box
treatment stops inside primitive constructs which "really need their arguments"
like arithmetic operations. This is what we mean by touching. According to the
semantics of future-based languages an implicit wait for the argument values has
to be done in such circumstances: The evaluation is deferred until the argument
value is accessible. In the above example the implicit wait is done for left lists but
not for right lists. The reason for this is the fact that NCONC is not symmetric
with respect to its arguments: the last one is handled in black box fashion.
There are two properties which are necessary for implicit waiting for the i'th ar-
gument of a construct call (F... X...).

- the i'th argument position must be touching

- the construct F must be primitive

The properties with respect to touching result directly from the (sequential) se-
mantics of predefined LISP constructs. In contrast, it is up to the language de-
signer to classify constructs as primitive or non-primitive (with implications on
the obtainable amount of parallelism).

2 Checks : The Price for Implicit Synchronizat ion
To understand the aim of touching analysis it is necessary to have a look on some
implementation aspects. As in sequential LISP objects are represented by tagged
cells. Future objects are represented by cells with a special tag value. Further, a
future cell contains a pointer to a data structure representing the "content" of
the future. Hence there are 3 different kinds of objects to be considered:

undetermined future objects can not be accessed immediately. The evalu-
ation has to be suspended until the objects become determined.

The values of determined objects can be read and written without any syn-
chronization but they may have to be accessed through a chain of pointer
dereferencing actions.

- present objects are conventional LISP objects. Of course, every present ob-
ject is determined.

Given these three kinds of objects, WAIT (explicit and implicit) can be defined:

WAIT (X) =
i f is-present (X) then X

else
i f future-is-not-computed (X) then dowait (X) endif

WAIT (deref (X))

;this check occurs very often
;and fails rarely

;the evaluation is suspended
; follow dereferencing chain

endif
The check in the first line is the point of interest. The aim its elimination. Pro-
vided we know at compile time that X is present the code simply becomes WAIT
(X) = X. Less important, when we know that X is determined there is no need for

273

the check future-is-not-computed inside the recursion. In this case the check will
fail for every recursion step and hence can be eliminated.

3 T o u c h i n g A n a l y s i s : A n E x a m p l e
Consider the function MAP-DESTRU which performs a modification of its first
argument (a list) by applying its second argument (a functional object) to each
element of the list.
We first mark the touching positions with question marks.

(OEFUN MAP-DESTRU (SPINE ACTION)
(LET ((ACTLIST SPINE)

(ACTUAL NIL) (RESULT NIL))
(LOOP

(IF (? (NULL (? ACTLIST)))(RETURN)) ; leave loop
(SETQ ACTUAL (CAR (? ACTLIST)))
(RPLACA (? ACTLIST)(FUNCALL (? ACTION) ACTUAL))
(SETQ ACTLIST (CDR (? ACTLIST))))

SPINE))
Obviously CAR, NULL and CDR touch their arguments. IF touches always its
first argument, the touching of the second and third depending on the context (in
this example, it does not touch). Note that SETQ (assignment) overwrites its first
argument rather than touching it.
Applying the analysis we get some positions where we know that arguments are
already determined (marked by "t") respectively present (marked by "$").

(DEFUN MAP-DESTRU (SPINE ACTION)
(LET ((ACTLIST SPINE)

(ACTUAL NIL) (RESULT NIL))
(LOOP

(IF ($ (NULL (? ACTLIST)))(RETURN))
(SETQ ACTUAL (CAR (! ACTLIST)))
(RPLACA (I ACTLIST)(FUNCALL (? ACTION) ACTUAL))
(SETQ ACTLIST (CDR (I ACTLIST))))

SPINE))
Note the difference between determined and present.: the function NULL yields a
present value . In contrast, it touches its argument making it determined.

In troduc ing Waits: The A s s i g n m e n t Parad igm
We can go one step further to obtain more present objects: for every argument on
a touching position a WAIT will be performed anyhow. Why not perform the
WAIT explicitly and overwrite the argument (in case it is a var iable) with the re-
sult value ? (It is crucial to consider the exact definition of the semantics in order
to allow such transformations. However, the rationale for this is beyond the scope
of this paper .)

(DEFUN MAP-DESTRU (SPINE ACTION)
(LET ((ACTLIST SPINE)

(ACTUAL NIL) (RESULT NIL))
(LOOP

(IF ($ (NULL ($ (SET(} ACTLIST (WAIT (? ACTLIST))))) (RETURN))
(SETQ ACTUAL (CAR ($ ACTLIST)))
(RPLACA ($ ACTLIST)

(FUNCALL ($ (SET(} ACTION (WAIT (? ACTION)))) ACTUAL))
(SETQ ACTLIST (CDR ($ ACTLIST))))

SPINE)
We gain present values rather than determined ones. Note that there are more

274

present objects (and are indeed recognized by the analysis) than those marked but
we do not bother about them because they do not occur on touching positions.

4 The Semantics of Touching Analysis
We now give somewhat simplified definitions for touching, strictness, implicit
wait, present, determined and primitive in order to come to a more exact state-
men t of the touching problem.

Every data object is uniquely determined by a r e f e r e n c e .
Moreover, any object may have a con t en t s . While the reference of an object ex-
ists dur ing its lifetime the contents may be - at least initially - undefined. This is
the typical si tuation when an object is created by a future function call.

D e f i n i t i o n
An object is called d e t e r m i n e d iff it has a defined contents. A variable (or pa-
rameter) is determined iff its value is a determined object.

D e f i n i t i o n
An object is called p r e s e n t iff it is determined dur ing its entire lifetime. A vari-
able is present iff its value is a present object. A variable or parameter is not
present iff it is bound ei ther to an object created by a future call or received its
value from a variable or pa ramete r which is not present either.
Obviously any present object variable or pa ramete r is determined.

Note tha t both definitions ignore the s t ructure of objects. Present or determined
lists for instance may contain elements which have arbi t rary properties.

D e f i n i t i o n
A construct a p p l i c a t i o n (F X 1 . . . Xi-1 Xi Xi+l . �9 �9 Xn)is called i - t ouch ing iff for
any Y (especially for any undetermined Y), Y w o u l d be determined after the ap-
plication (F X1 �9 �9 �9 Xi.1 Y Xi+ 1. �9 �9 Xn). In other words, the contents of the object
resul t ing from the evaluation of the a rgumen t is needed during the function ap-
plication. A construct F is called i - t ouch in g iff every application of F is i-
touching.

O b s e r v a t i o n
In EDS LISP every i-touching construct is i-strict. The reverse is not true. In
LISP all functions are strict (even functions like CONS !). Obviously, not all
functions are touching (e.g. CONS).

D e f i n i t i o n
A function application is called i - r e su l t - t ouch ing for some i iff its i 'th result is
determined. A function is called i . r e su l t - t ouch i ng iff all its applications are i-
result-touching.

The semantics definition of EDS LISP contains a specification of all primitive
functions with respect to the properties touching and result-touching.

E x a m p l e s
- the functions CAR, CDR, etc. are touching and not result-touching.
- + , / , -, etc. are touchingw.r.t, all a rguments and result-touching.
- the special form SETQ (assignment) is ne i ther touching nor result-touching.
- the function RPLACA is 1-touching and result-touching.

275

- the special form IFis 1-touching and not result-touching.
- the functions CONS and LIST are not touchingbut result-touching.
- the function FUTURE is 1-touching and not result-touching.
- the function WAIT is touching and result-touching.

Note that these properties yield in any context. Special calls like (CAR (IF ...))
lead to touching of more arguments (of IF). But these are properties of the call
context rather than properties of IF.

The semant ics of EDS LISP with respec t to implicit synchronizat ion

WAIT leads to synchronization iff its argument is not determined: The
evaluation is suspended until its argument receives a value. This happens
when the return value of a function spawned by a future becomes deter-
mined.

The object returned by WAIT is present and has the same value as the ar-
gument of WAIT.

For every touching position of a primitive construct an implicit WAIT occurs.
No implicit WAIT occurs on other positions.

These assertions together with the touching property definitions of all primitive
functions are part of the semantic definition for EDS LISP. Further, they are the
basis of the touching analysis.

5 T h e T o u c h i n g A n a l y s i s S c e n a r i o
Given a set of functions find those function applications (F . . . Xi �9 �9 �9) which obey
the following conditions:

a) F is i-touchingandprirnitive.

b) Xi is determined or present (in the context where (F.. . X i . . .) occurs).

The second condition holds in two typical situations:

1) Xi is touched by some other touching function or

2) Xi stems from a result-touching function application (including constants).

6 A b s t r a c t I n t e r p r e t a t i o n
Abstract interpretation simulates the run time behaviour of programs in a sim-
pler domain. For touching analysis this domain is three valued and totally or-
dered: ? < ! < $, in words: no-prop < determined < present. Properties of locals
and parameters w.r.t, this domain are collected by the abstract interpretation al-
gorithm. Worst case approximations are made for unknown data, conditionals
and loops. It should be noted that there is no reason to restrict the analysis to
purely functional programs. Loops and multiple assignments are handled in a
straightforward manner. To obtain good results the analysis infers properties of
user defined functions. This leads to intraprocedural optimization.

Recursion is handled in a way which is well known from strictness analysis:

276

We start with an optimistic (t) assumption, namely that all arguments of the
recursive calls are touched and all results are determined resp. present.

The propagation is done iteratively. Every iteration computes new properties
and new function bodies using the propagation algorithm of the non-
recursive analysis for every step.

The new property approximation is obtained by join between the old one and
the properties obtained by the propagation.

The iteration stops iffthe function properties do not change any more.

Note that the start assumptions are optimistic rather than pessimistic. Although
recursion and loops are treated very similar this is a fundamental difference.

7 Implementat ion Results and Related Work
The algori thm is implemented in Common LISP working by source to source
transformation. It covers a functionali ty of over 100 LISP constructs including
all aspects described in this document. Moreover special (dynamic) var iables and
closures are handled.
The identification of present with determined enforced by the ass ignment para-
digm is optional. However, we feel tha t it is almost a lways useful.
Some benchmarks have been run before and after the analysis. We have counted
the occurring touching positions and the present respective determined argu-
ments on such positions. Both benchmark tables give ratios relative to the total

Check elimination ratios w.r.t, touching positions I 2 3 4

without assignmentparadigm: present's 0.17 0.16 0.14 0.59
without assignment paradigm: determined's 0.59 0.67 0.57 0.15

with introduced assignments : present's 0.67 0.83 i 0.71 0.84

1: MAP-DESTRU, 2: as MAP-DESTRU but with the first loop traversal unrolled,
3: non-destructive MAP, 4: DESTRUCTIVE benchmark (Gabriel benchmark)

/

number of touching positions. The rows in the first table show the el imination ra-
tios for the analysis with and without introduced assignments, respectively.

Check elimination ratios w.r.t, touching positions TAK *) QSORT FAC FIB

non-recursive (naive) analysis 0.33 0.64 0.66 0.77

recursive analysis 0.60 0.67 0.79 0.84

Some well-known recursive functions (*): a Gabriel benchmark)

The second benchmark table shows results of the naive, non-recursive analysis
versus the recursive analysis (the version with introduced assignments only).

All ratios show a significant improvement of the run time behavior (of course de-
pending on the cost of these checks on an individual machine).

277

Touching analysis has been done in the Mul-T project in the context of a compiler
for Scheme ([KrHaMo89]). The exact definition of the touching scenario, how-
ever, is lacking. Moreover, it seems that they analyze functional constructs, only.
Although the touching analysis problem is different to the strictness analysis
problem (see section 4), the method is very similar. With respect to the method
we are very close to [CIPJo86]. However, there is no reason to restrict the method
to functional programs.
Another related topic is type inference (see e.g. [PJo87], chapter 8 and 9).Touch-
ing analysis is a special case of type inference. Our algorithm is nicely extendible
to type inference. The inference methods used in the context of functional lan-
guages do not fit for LISP. Note that LISP is neither functional nor type-safe.
Hence properties are different on different program locations. This is in sharp
contradiction to the concept of type in statically typed languages.
Methods used in some compiler optimizers are related to touching analysis, too.
Lifetime analysis - albeit more simple - uses similar ideas (see e.g. [AhSeUl86]).

Due to page limitations, some of the aspects discussed in this paper are somewhat
simplified. A more accurate framework with the formal justification w.r.t, recur-
sive analysis for imperative languages is presented in a forthcoming paper. The
extension to non-LISP future-based languages is subject of further work.

Acknowledgments
I wish to thank T. Henties, H. Ilmberger and M. Reich for fruitful discussions
about strictness and touching and for proofreading earlier versions of this paper.
This work was sponsored by the EC within project ESPRIT EP 2025.

References

[AbHa87] S. Abramsky, C. Hankin, editors: Abstract Interpretation of Dec-
larative Languages, Ellis Horwood Series in Computers and
Their Applications, 1987.

[AhSeU186] A. Aho, R. Sethi, J. Ullmann, Compilers: Principles, Techniques,
and Tools, Addison-Wesley, 1986.

[C1PJo86] C.Clack , S. Peyton-Jones: Strictness Analysis: a Practical Ap-
proach, in Proceedings of the ACM Conference on Functional
Languages and Computer Architecture 1985, LNCS 201.

[Halle 90] C. Hammer, T. Henties: Parallel Lisp on a Distributed Machine,
in EUROPAL Workshop on High Performance and Parallel Com-
puting in Lisp, London, 1990.

[Hal85] R. Halstead: Multiplisp: A Language for Concurrent Symbolic
Computation, in ACM Transactions on Programming Languages
and Systems, October 1985.

[KrHaMo89] D. Kranz, R. Halstead, Jr., E. Mohr: Mul-T: A High-Performance
Parallel Lisp, in ACM Programming Language Design and Im-
plementation, Portland, Oregon, June 1989.

[PJoC187] S.Peyton-Jones, C.Clack: Finding Fixpoints in Abstract Interpre-
tation, in [AbHa87].

[PJo87] S.Peyton-Jones, editor: The Implementation of Functional Pro-
gramming Languages, Prentice Hall, 1987.

