
Attribute-Directed Top-Down Parsing

Karel Miiller

Czech Technical University, Department of Compaters
Prague, Czechoslovakia

A b s t r a c t . This paper deals with a method how an effective attribute-direc-
ted top-down parser and attribute evaluator can be constructed from a condi-
tional L-attributed grammar (CLAG). The method is based on exploitation
of an attribute stack in attribute evaluation and on definition of a translation
scheme for CLAG.

1 B a s i c C o n c e p t s a n d N o t a t i o n s

Our definition of at t r ibute grammars is based on [4] and [5]. An attribute grammar
(AG) G over a semantic domain D is a context-free g rammar Go = (N, ~ , P, S),
the underlying contexr grammar of G, augmented with at tr ibutes and semantic
rules. A production p E P is denoted by p : Xo ~ X1X2.. .X~ where X0 E N,
Xi E (N U ~) for all i, 0 < i <_ n, (n > 0). The semantic domain D is a pair
([2, r where [2 is a set of sets, the sets of at tr ibute values, and the set {true,false)
of boolean values, and ~ is a collection of mappings (called semantic functions of
the form f : V1 • ... • Vm --~ Vo, where m > 0 and V/ E 12,0 < i < m. The
set of a~tribute symbols denoted by Art is parti t ioned into Inh (inherited at t r ibute
symbols) and Syn (synthesized at tr ibute symbols). For each at t r ibute symbol b E Att ,
a set V(b) E 12 contains all possible values of the at tr ibutes corresponding to b.

For X E N, A t t (X) denotes the set of at t r ibute symbols of X. An attribule is
denoted X.a, where X E N and a E A t t (X) . I n h (X) (Syn (X)) denotes the set of
inherited (synthesized) at t r ibute symbols of X. We assume that the s tar t symbol
has no inherited at tr ibutes and terminals have no attr ibutes at all.

For X E N, let Ord define a linear ordering of the at tr ibutes of X with the inheri-
ted at t r ibutes preceding the synthesized attributes. Thus, for all X E N, Oral(X) is
an ordering of Art (X) and for b E Art(X) , Ord(X)(b) is the index of b with respect
to this ordering.

A production p : Xo -* XIX2. . .Xn has an ailribute occurrence k.b, 0 < k < n, if
Xk.b is an at tr ibute. An at t r ibute occurrence k.b of p is called an input occurrence,
if either b E Inh and k = 0, or b E Syn and k > 0. Otherwise k.b is said to be an
output occurrence. For each output occurrence k.b of p, there is exactly one semantic
rule of the form k.b := f (j l . a l , ...,j,n.am), where every ji.ai is an input occurrence
of p and f is a semantic function in ~ of the type f : 17t • ... • V,~ --* 1/0, where
Vo = V(b) and for 1 < i < m: ~ = V(ai). Notice that a t t r ibute g rammars are in
Bochmann normal form. An at t r ibute g rammar is L-attribur if for every semantic
rule k.b := f (j l . a l , . . . , j , , .am) such that b is an inherited at t r ibute holds j~ < k for
each i = 1, ..., m.

A finite set C(p) of semantic condir is associated with each production p E P.
A semantic condition is an expression of the form q(jl.a~, ..., jm.a,~), where every

38

ji.ai is an input occurrence of p and q is a boolean-valued function of the type
q : V1 x ... x Vm ---* {true, false}, where Vi = V(ai), 1 < i < m. An at t r ibute
g r a m m a r in which for all productions p the set C(p) of semantic conditions is empty,
is called an unconditional at tr ibute grammar. Otherwise AG is called conditional.

Let t be a complete derivation tree of underlying CFG Go of G, u its node labelled
with X. Then for all b E Att(X), u.b is an attribute instance at tached to a node
u. I f a node u has n sons ul, ..., un which are labelled according to a product ion p :
Xo ---* X1X2...Xn, then each semantic rule k.b := f (j l .al, ..., jm.am) associated with
p is interpreted as an evaluation instruction uk.b :-- f(ujl .al, ..., ujm.a,~) associated
with ~attribute instance uk.b, and each semantic condition q(jl.al, ...,jm.am) from
C(p) is interpreted as a test instruction q(ujl .al,..., uj,~.am) associated with p.

A derivation tree t is well evaluated if all a t t r ibute instances have values according
to" the associated evaluation instructions, and all test instructions associated with
the productions used in the tree yield true. TREES(G) denotes the set of all well
evaluated derivation trees of G. The language generated (or defined) by an AG G
is defined by L(G) = {w I w = yield(t), for some t 6 TREES(G)} . Notice tha t
L(G) C L(Go). For an unconditional AG G, L(G) = L(Ge).

Let the s tar t symbol of the underlying CFG of an AG G have a distinguished
synthesized at t r ibute symbol r. The translation (more precisely string-to-value trans-
lation) T(G) generated (or defined) by AG G is the mapping from L(G) to subsets
of the set Y(r) defined by T(G)(w) = {x I x = u.r, u is the root of a well evaluated
tree t, r is its distinguished at t r ibute and w = yield(t)}. This set may contain more
than one element. In this case G is called semantically ambiguous, otherwise G is
semantically unambiguous.

Throughout this paper, conditional L-at tr ibuted grammars (CLAG) are treated.
I t is well known tha t any derivation tree in CLAG can be evaluted using the one-pass
evaluation strategy [2].

2 A t t r i b u t e S t a c k

In order to obtain a translation defined by a L-at t r ibute g rammar for an input string,
we can simulate the one-pass evaluation of a derivation tree and allocate memory for
a t t r ibute instances using a stack of registers, which can hold a t t r ibute values. For
a n interior node u labelled with X, and its sons ul, ..., u~ labelled with X1, ..., Xn,
the stack of at t r ibute registers (at tr ibute stack) will be used in the following way:

- Before entering a subtree with the root u, the top of the a t t r ibute stack consists
of registers with evaluated attr ibutes from Inh(X) and registers with undefined
values of at tr ibutes from Syn(X).

- After leaving this subtree, the top of the at t r ibute stack consists of registers with
at t r ibutes from Syn(X).

- Before evaluation of inherited at tr ibutes of Xi, the a t t r ibute stack contains regis-
ters with evaluated at tr ibutes from Syn(X~_ 1), ..., Syn(X1), Inh(X) and regis-
ters with undefined values of at tr ibutes from Syn(X). Registers for all a t t r ibutes
f rom Att(Xi) are then added to the stack, at tr ibutes from Inh(Xi) are evaluated
and a subtree with the root ui is entered.

39

After evaluation of attributes from S y n (X) , the attribute stack contains registers
with evaluated attributes from S y n (X ~) , . . . , Syn (X1) , I n h (X) , S y n (X) . These
registers except S y n (X) are then removed.

D e f i n i t i o n 1. Attr ibute stack.
Let D = (O , ~) be the semantic domain of a conditional L-attr ibute grammar G.,
Let N a t be the set of natural numbers, Pos the set of positive integers, Val =
V1 t.J ... t3 Vn U { u n d e r } for all ~ from 12 the set containing all possible at t r ibute
values including undefined value under . An attribute stack over the domain D is a
data structure of the type As tack for which the following operations are defined:

emp ty : --+ As tack read : As tack , Pos ---* Va l
push : As tack , Va l --~ As tack wri te : As tack , Pos , Val --~ As tack
add : As tack , N a t --* As tack length : As tack --* Na t
remove : As tack , N a t ~ As tack

These operation should satisfy the following equations:
add(s, O) = s
add(s, n) = push(add(s , n - 1), under) for n > 0
remove(s , O) = s
r e m o v e (p u s h (s , x) , n) = remove(s , n - 1) for > 0
read(push(s , x), 1) = z
read(push(s , z) , n) = read(s, n - 1) for n > 1
write(push(s,), 1, y) = push(s, y)
wri t e (push (s , z) , n, y) = push (wr i t e (s , n - 1, y), x) for n > 1
l eng th (emp ty) = 0
l eng th (push(s , x)) = length(s) + 1

3 T r a n s l a t i o n s c h e m e f o r C L A G

In order to formally describe an attribute evaluation using the at tr ibute stack for a
given L-at tr ibute grammar, each semantic rule will be transformed to an operation
of the type As tack --. As tack and each semantic condition to an operation of the
type As tack --~ { true, f a l se} . Adding new registers and removing old registers will
be done in the same way. These operations will be called semantic operations and
semant ic predicates.

For any production p : Xo ~ X 1 X 2 . . . X n , we will define the following semantic
operations and predicates:

Ap,i adding registers for attributes of Xi, 1 < i < n, to the at tr ibute stack,
Ep,i evaluation of the inherited attributes of Xi, 1 < i < n,
Ep,e evaluation of the synthesized attributes of X0,
Rp removing registers with synthesized attributes of the right-hand side of p

and inherited attributes of the left-hand side of p from the at t r ibute stack,
Pp,0 a predicate which is evaluated and tested before entering a subtree with the

root X1
- Pp, i a predicate which is evaluated and tested after leaving a subtree with the

r o o t X i , l < i < n .
Semantic operations and predicates can be constructed by the Algorithm 1.

40

A l g o r i t h m 1: Construction of semantic operations and predicates.
Input: A conditional L-attributed grammar G .
Output: OP, the set of semantic operations, and PR, the set of semantic predicates.
Method: For each production p : Xo ~ X1X2...X~, let Fk be the set of all semantic
rules k.b := f (j l .el,..., jm.am), 0 < k < n, and C~ the set of all semantic conditions
q(jl .al , ...,jm.am), for which k = max(j1, ...,jm). For k = 0 ,1 , . . . , n construct the
semantic operations and the semantic predicates according to the following rules:
(1) For each a t t r ibu te occurrence i.a in Fk define the a t t r ibu te stack selector

selk(i.a) as follows:

selk(i.a) =
Ord(Xk)(a) if k > 0, i = k,

IAtt(Xk)j + E~S_)+I ISyn(Xj)[+ Ord(X,)(a) - tInh(Xi)l i fk > 0,0 < i < k,

IAtt(X~)] + E~'-~ ISyn(Xj)I + Ord(Xo)(a) if k > O, i = O,
I@n(Xi)l + Ord(XO(a) -IInh(Xi)l i fk = 0, i > 0,

E~-=i ISyn(Xj)l + Ord(XO(a) if k = 0, i = 0.
(2) For each at tr ibute occurrence i.a in Ck define the at tr ibute stack selector

selck (i.a) as follows:

selck(i.a) =
Ord(Xk)(a) -IInh(X~)(a)l if k > 0, i = k,

Eff_-,+~ ISyn(S~)l + Ord(S~)(a) -IInh(X~)l i fk > 0,0 < i < k,

Ej=17~ ISyn(Xj)I + Ord(Xo)(a) if k > 0, i = 0,
Ord(Xo)(a) if k=0,i=0.

(3) For each semantic rule k.b := f (j l .al , ..., jm.am) define the semantic operation

SOpk,b a s

sopk, () = rite(s, selk sel, (jl .dO),..., ead(s, selk
Construct the semantic operation Ep,k as a composition of the operations sopk,b:

Ep,~ (s) = sops,ha (SOpk,b~ (.. .(sopk,b,~ (S))...)).
Add Ep,, to OP.

(4) For each semantic condition q(jl.al, ...,jm.am) from Ck define the semantic
predicate sprk,q as

sprk,q(S) = q(read(s,'selck (jl.al)), ..., read(s, selck (jm.am))).
Construct the semantic predicate Pp,k as a conjuction of the predicates sprk,q:

Pp,k(s) = sprk,q,(s) a n d ... a n d sprk,q~(s).
Add Pp,k to PR.

(5) If k > 0 and sz = IAtt(Xk)l is greater then 0, then add to OP the semantic
operation Ap,k defined as Ap,k(s) = add(s, sz).

n (6) If k = 0 and sz =]Inh(Xo)l + ~ j= l ISyn(Xj)I is greater then 0, then add to

OF the semantic operation Rp defined as Rp(s) = remove(s, sz).

D e f i n i t i o n 2. Translation scheme for CLAG.
Let G be a conditional L-attributed grammar over a semantic domain D with un-
derlying CFG Go = (N, Z, P, S), OP the set of semantic operations, and P R the
set of semantic predicates constructed by the Algorithm 1. A translation scheme for
G is the translation grammar Q = (N, r , F, R, S), where F = OP U P R and each
production r E R corresponds to one and only one production p E P in the following

4]

way:
p : Xo ---* X1X2...X,~
r : Xo ~ Pp,oAp,l Ep,lX1Pp,1...Ap,,~Ep,nX, Pp,nEp,oRp

If any of the symbols Pp,i, Ap,i, Ep,i or Rp does not exist then empty string is used
instead of the symbol in production r. Any symbol from the set F will be called an
action symbol.

D e f i n i t i o n 3. Attr ibuted derivation.
Let Q -= (N, ~, O PU P R, R, S) be the translation scheme of a CLAG. An attributed
form (A-form) is a pair (~, s) where ~ E Z'* {.}(N U Z U OF U PR)*, s e dstack. A
direct attributed derivation is the relation between attr ibuted forms denoted by
and defined as follows:
1. (aXfl, s) ~ (a6fl, s) if X E N, X --* 6 is a rule in R,
2. (a.afl, s) ~ (aa.fl, s) if a e Z,
3. (u.Ej3, s) ~ (u.fl, E(s)) if E �9 OR,
4. (u.Cfl, s) ::a (u.fl, s) if C �9 PR, C(s) = true.
The direct at t r ibuted derivation according to the first rule is called a syntax deriva-
lion, the others are called semantic derivations. Notation f ~ * g expresses that an
A-form g is derived from an A-form f , i.e. that there is a sequence of a t t r ibuted
forms f = f0, f2, . . . ,fn = g, where fi ~ fi+l, 0 < i < n. This sequence is called an
attributed derivation of the length n of the A-form g from the A-form f .

D e f i n i t i o n 4. Let Q = (N, Z, OPUPR, R, S) be the translation scheme of a CLAG.
The language generated by Q is defined by

L(Q) = {u [(.S, add(empty, [Syn(S)I)) ~* (u.,s), u �9 Z*}.
The translation generated by Q is the mapping from L(Q) to subsets of the set V(r),
r is the distinguished attribute of S, defined by

T(Q)(u) = {v [(.S, add(empty, ISyn(S)[)) =:a* (u., s), v = read(s, Ord(S)(r))}.

T h e o r e m 5 . Let G be a conditional L-altribuled grammar, Q be the translation
scheme for G. Then L(G) =- L(Q) and T(G) = T(Q).

Proof. Can be found in [6].

4 Nondetermin i s t i c Machine for CLAG

The translation defined by a CLAG can be performed by a pushdown automaton
with an infinite set of states. We define a pushdown automaton M as a system
M = (K, ~ , F, 6, q0, Z0, F) in the same way as in [1] with the only exception that
the set of states K may be infinite.

T h e o r e m 6 . Let G be a CLAG, r the distinguished synthesized attribute. There
exists a pushdown automaton M with potentially infinite set of states K, and a
mapping f of the type K --+ V(r), such that the language accepted by M equals L(G)
and for w E L(G), v = T(G)(w) if and only if (qo, w, Zo) F-* M (q, e, e) and v -- f(q).

Proof. Let Go -= (N, X', P, S) be the underlying CFG of G and Q = (N, Z, OP U
PR, R, S) the translation scheme for G. Then M = (I(, Z, F, 6, q0, S, 0) where

42

K is the set of all possible values of the type Astack,
F -- ~ U N U O P U P R O {E}, E is a new symbol,
q0 is value of the operation add(empty, [Syn(S)l)
/5(q, a, a) -- {(q, e)} for all a E Z,
6(q, e, X) contains (e, ~) for all production X ---* a ~ R,
~(q, e, Op) = {(Op(q), e)} for all Op E O P
6(q, e, Pr) --- {(q, if Pr(q) then e else E)} for all P r C PR.

The mapping f is defined as f (s) = read(s, Ord(S)(r)) . The rest of the proof can
be found in [6].

5 D e t e r m i n i s t i c T o p - d o w n M a c h i n e f o r C L A G

A deterministic top-down parser for CLAG can be driven not only by a lookahead
symbol but also by conditions over attributes. Such parser is said to be attribute-
driven. The following definition determines a class of t ranslat ion schemes for which
a deterministic top-down attribute-driven parser can be constructed.

D e f i n i t i o n 7. A translation scheme Q = (N, ~ , O P U PR, R, S) of a CLAG G is a
ALL(I) translation scheme if for all X E N the following holds: if there are distinct
productions pl : X ---+ a l and P2 : X ~ c~2, such that:

F I R S T 1 (a l . F O L L O W I (X)) N FIRST1 (a 2 . F O L L O W I (X)) • 0,
then a l = Plfll , a2 = P2f12, P1 and P~ E PR, and for any value s of the type
Astaek, for which both Pl(s) and P2(s) are defined, expression (P~(s) a n d P2(s))

yields false.

D e f i n i t i o n 8. A parse table for an ALL(l) translation scheme Q is a mapping M of
the type N x (~UU{e}) ---* A C T , in which A C T is a set of actions containing elements
e x p a n d (p) , select(p1, P2,-.-, P,,) and e r r o r , where p, Pl, . . . , P,~ are productions of T.

- M (X , u) = e x p a n d (p) i fp : X --~ ~, u E FIRST1 (a . F O L L O W I (X)) and either
the first symbol of the string c~ is a predicate symbol or for any other production
X -* fl holds u E F I R S T I (~ . F O L L O W I (X)) .

- M (X , u) = se lec t (p l , . . . ,pn) if pl : X --~ Pla i ... p~ : X --~ P~a,~ are all X-
production for which Pi is in P R and u E F I R S T I (a i . F O L L O W I (X)) .
Otherwise M (X , u) -- error.

A l g o r i t h m 2: ALL(l) parser for translation scheme.
Input: An ALL(l) translation scheme Q for CLAG G with the distinguished attri-

bute r, an input string w.
Output: if w E L(G), then T(G)(w); otherwise, an error indication.
Melhod: Let M be the parse table for T. A configuration of the parser is a triple
(v, a, s), where v E 5?* is an unread part of the input, ~ E (N U ~ U O P U PR)* is a
current content of the parsing stack and s is a current value of the at tr ibute stack. A
move of the parser is the relation between configurations denoted by ~- and defined

as follows:
1. (av, Z~, s) ~ (v, ~, s) if Z ~ X, Z = a,
2. (av, Za , s) F (av, Za, s) if Z G N, M (Z , a) = e x p a n d (Z --* •),

43

3. (av, Za, s) t- (av, 13c~, s) if Z e N, M(Z, a) = select(. . . , Z --+ PI3, ...),
P E PR, P(s) = true,

4. (av, Za, s) F- (av, a, s) if Z e PR, Z(s) = true,
5. (av, Za, s) F- (av, a, Z(s)) if Z E OP.
The execution of the algorithm is as follows:
(1) Starting in the initial configuration Co = (w, S, add(empty, ISyn(S)I)), compu-

te successive next configurations Co t- C1 F- ... ~- ... until no further configura-
tions can be computed.

(2) If the last computed configuration is (e, e, s) then result is read(s, Ord(s)(r)).
Otherwise, report an error.

Translation schemes can be transformed by transformations known for trans-
lation grammars. Therefore an ALL(I) parser can be constructed also in case the
underlying CF grammar of a CLAG G is not LL(1) but a transformation of the
translation scheme for G into an ALL(l) form succeeds. Moreover, special trans-
formations for translation schemes can be developed. These transformations respect
the semantics of action symbols. For more details see [6].

6 Implementation

The method described in the previous sections has been fully implemented in the
compiler constructor ATRAG 4.0 [6]. This system was used several times as a tool
supporting development and implementation of a commercial compiler. For instance,
the front-end part of the Pascal compiler for processor Intel 8096 family was specified
by a conditional L-attr ibute grammar with non LL(1) syntax. The recent practical
expoitat ion of ATRAG is the front-end part of a translator ~from Hewlett-Paekard
Basic 5.5 into ANSI-C language.

References

[1] Aho,A.V., UUman,J.D.: The theory of parsing, translation and compiling. Vol.1 and
Vol.2, Prentice Hall, Engelwood Cliffs, N.J., 1972.

[2] op den Akker,R.: Parsing attribute grammar. Doct. Diss., Dept. Comput. Sci., Uni-
versity of Twente, The Netherlands, 1988.

[3] op den Akker,R., Melichar,B. and Tarhio,J.: Attribute evaluation and parsing. In:
Proc. of International Summer School SAGA (ed. H.Alblas and B.Melichar), Lect.
Notes Comput. Sci. 545, Springer-Verlag, Berlin, 1991, pp. 187-214.

[4] Ffl$,G.: The theory of attribute grammars. Doct. Diss., Twente University of Techno-
logy, Enschede, The Netherlands, 1983.

[5] Knuth,D.E.: Semantics of context-free languages. Math. System Theory 2 (1968), pp.
127-145.

[6] Mfiller,K.: Attribute-directed top-down parsing. Research Rep. DC-92-05, Dept. of
Comp., Czech Univ. of Techn., Prague, 1992.

[7] Watt,D.A.: Rule splitting and attribute-directed parsing. In: Proc. of Workshop Aar-
hus (ed. N.D.Jones), Lect. Notes Comput. Sci. 94, Springer-Verlag, Berlin, 1980, pp.
363 - 392.

