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Abstract. We give primary-backup protocols for various models of fail-
ure. These protocols are optimal with respect to degree of replication,
failover time, and response time to client requests.

1 Introduction

One way to implement a fault-tolerant service is to employ multiple sites that

fail independently. The state of the service is replicated and distributed among

these sites, and updates are coordinated so that even when a subset of the sites

fail, the service remains available.
A common approach to structuring such replicated services is to designate

one site as the primary and all the others as backups. Clients make requests by

sending messages only to the primary. If the primary fails, then a failover occurs
and one of the backups takes over. This service architecture is commonly called

the primary-backup or the primary-copy approach [1].

In [5] we give lower bounds for implementing primary-backup protocols under
various models of failure. These lower bounds constrain the degree of replication,

the time during which the service can be without a primary, and the amount of

time it can take to respond to a client request. In this paper, we show that most

of these lower bounds are tight by giving matching protocols.

Some of the protocols that we describe have surprising properties. In one

case, the optimal protocol is one in which a non-faulty primary is forced to

relinquish control to a backup that it knows to be faulty! However, the existence

of such a scenario is not peculiar to our protocol. As shown in [5], relinquishing

control to a faulty backup is indeed necessary to achieve optimal protocols in

some failure models. Another surprise is that in some protocols that achieve

optimal response time, the site that receives the request (i.e. the primary) is

not the site that sends the response to the clients. We show that this anomaly is

not idiosyncratic to our protocols--it is necessary for achieving optimal response
time.
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Therest of the paper is organized as follows. Section 2 gives a specification for

primary-backup protocols, Sect. 3 discusses our system model, Sect. 4 summa-

rizes the lower bounds from [5], and Sect. 5 summarizes our results. Sections 6,
7 and 8 describe the protocols that achieve our lower bounds, and Sect. 9 de-

scribes a protocol in which the primary is forced to relinquish control to a faulty

backup. We conclude in Sect. 10. Due to lack of space, the description of some of
the protocols and all proofs are omitted from this paper. See [4] for a complete

description and proofs.

2 Specification of Primary-Backup Services

Our results apply to any protocol that satisfies the following four properties,

and many primary-backup protocols in the literature (e.g. [1,2,3]) do satisfy
this characterization.

Pbl: There exists predicate Prrny, on the state of each site s. At any time, there

is at most one site s whose state satisfies Prmy,.

Pb2" Each client i maintains a site identity Desti such that to make a request,

client i sends a message (only) to Desti.

For the next property, we model a communications network by assuming that

client requests are enqueued in a message queue of a site.

Pb3: If a client request arrives at a site that is not the primary, then that request

is not enqueued (and is therefore not processed by the site).

A request sent to a primary-backup service can be lost if it is sent to a faulty

primary. Periods during which requests are lost, however, are bounded by the

time required for a backup to take over as the new primary. Such behavior is

an instance of what we call bofo (bounded outage finitely often). We say that

an outage occurs at time t if some client makes a request at that time but does

not receive a response I . A (k, A)-bofo server is one for which all outages can

be grouped into at most k periods, each period having duration of at most A._.

The final property of the primary-backup protocols is that they implement a

bofo-server (for some values of k and A).

Pb4: There exist fixed and bounded values k and A such that the service behaves

like a single (k, A)-bofo server.

Clearly, Pb4 can not be implemented if the number of failures is not bounded.

In particular, if all sites fail, then no service can be provided and so the service

is not (k, A) for any finite k and A.

1 For simplicity, we assume in this paper that every request elicits a response.
Therefore, as well as being finite, the number of such periods of service outages can
occur is also bounded (by k).



3 The Model

Consider a system with ns sites and nc clients. Site clocks are assumed to be

perfectly synchronized with real time 3. Clients and sites communicate through a

completely connected, point-to-point, FIFO network. Furthermore, if processes

(clients or sites) Pi and pj are connected by a (nonfaulty) link, then we assume

for some a priori known/_, a message sent by pi to pj at time t arrives at pj at

some time t _ E (t..t + 6].

We assume that all clients are non-faulty and consider the following types

of site and link failures: crash failures (faulty sites may halt prematurely; until

they halt, they behave correctly) 4, crash+link failures (faulty sites may crash or

faulty links may lose messages), receive-omission failures (faulty sites may crash

or omit to receive some messages), send-omission failures (faulty sites may crash

or omit to send some messages), general-omission failures (faulty sites may fail

by send-omission, receive-omission, or both). Note that link failures and the

various types of omission failures are different only insofar as a message loss is

attributed to a different component. Link failures are masked by adding redun-

dant communication paths; omission failures are masked by adding redundant

sites. As we will see, the lower bounds for the two cases are different.

Let f be the maximum number of components that can be faulty (i.e. f is

the maximum number of faulty sites in the case of crash, send-omission, receive-

omission and general-omission failures, whereas f is the maximum number of

faulty sites and links in the case of crash+link failures).

4 Lower Bounds

In Tab. 1, we repeat the lower bounds from [5] for the degree of replication, the

blocking time and the failover time for the various kinds of failures. Informally,

a protocol is C-blocking if in all failure-free runs, the time that elapses from

the moment a site receives a request until a site sends the associated response

is bounded by C. _ Failover time is defined to be the longest duration (over all

possible runs) for which there is no primary. However, the failover time bounds

only hold for protocols that satisfy the following additional (and reasonable)

property.

Pb5: A correct site that is the primary remains so until there is a failure.

s The protocols can be extended to the more re,tic model in which clocks are only
approximately synchronized [7].

4 The lower bounds are also tight for fail-stop failures [10] except for the bound on
failover time.

5 We assume that it takes no time for a site to compute the response to a request.



Table1.LowerBounds--Degree of Replication, Blocking Time and Failover Time

il Failure type Replication Blocking time (C) . Failover Time

Crash n, > y 0 f6

Crash+Link n, > f + 1 0 2f6
Send-Omission n, > f 6 if f = 1 2f6

26 if f > 1
Receive--Omission 6 if n. < 2f and f = 1

n, > [32-£j 26 if n, _<2f and f > 1 2f6
0 if n, > 2f

General-Omission n. > 2f 6 "if f = 1 2f6
26 if f > 1

5 Summary of Results

We first present a primary-backup protocol schema that will be used to derive

the protocols for all the failure models. This schema is based on the properties of
two key primitives, broadcast and deliver, that sites use to exchange messages.

We show that the schema satisfies Pbl--Pb5 by only using these properties inde-

pendent of the particular failure model. Each failure model--crash, crash+link,
send-omission, receive-omission and general-omission--is handled with a differ-

ent implementation of broadcast and deliver, and in all but one case optimal

protocols are constructed.

The protocols for crash and crash+link failures show that all the correspond-

ing lower bounds are tight. The protocol for general-omission failures uses a

translation technique similar to [8], and demonstrates that our lower bounds for

general-omission failures are tight, except for the bound on blocking time when

f = 1. However, for this special case we have derived a different protocol (not

described in this paper) having optimal blocking time. In all failure free runs of
this protocol, the site that receives the request (i.e. the primary) is not the site

that sends the response to the client. We show that this behavior is necessary in

this paper.

We do not show the protocols for send-omission and receive-omission fail-

ures in this paper because they are similar to the protocol for general-omission

failures. These protocols establish that the bounds for send-omission failures

are tight. For receive-omission failures, the lower bound on blocking time when

ns > 2f and the lower bound on failover time are also tight. However, our pro-

tocol does not have optimal replication, as it requires ns > 2f (rather than

n, > [_J).
Finally, in [5] we proved that all receive-omission protocols having [_J <

n8 < 2f necessarily exhibit a scenario in which a non-faulty primary is forced

to relinquish control to a faulty backup. In Sect. 9, we describe such a protocol:

it uses two sites and tolerates a single receive-omission failure. In addition, this



protocolis6-blockingandsoit demonstratesthatourlowerboundonblocking
timeis tightforns _< 2f and f = 1. As in the protocol for general omission when

f = 1, it is the backup that sends responses to clients. This behavior is shown

to be necessary for an important class of protocols.

6 Protocols for the Clients and the (k, A)-bofo server

Property Pb4 requires that the primary-backup service behave like some (k, A)-

bofo server. Figure 1 gives such a canonical (k, A)-bofo server (say s), and Fig. 2

gives the protocol for client i interacting with s. As with any other bofo server,

a client will not receive the response to a request if either the request to s or the

response from s is lost.

initialize()
cobegin

]l inform-cllents("Dest = s" )

[I do forever
when received request from client c

response :--- II(state, request)
state = state o response
send response to client c

od
coend

procedure initialize()
sta_e := c

procedure inform-clients(ic)

send (ic) to all clients

Fig. 1. Protocol run by a single (k, A) bofo-server s

In Fig. 2, response-time corresponds to the amount of time the client has to

wait in order to get the response from s, which is just the round trip message

delay. The exact value for response-time depends on the failure model being
assumed.

7 The Primary-Backup Protocol Schema

We first make the simplying assumption that the links between the clients and

the sites are non-faulty and there are no omission failures between the clients and

the sites (i.e. only the links between sites can be faulty for crash+link failures,



cobegln
II do forever

if received "Dest = s" then

Desti := s
od

IIdo forever

if want to send request
send request toDest,

if not received response by response-time then
recover() /* call some recovery procedure, which might retry */

else

od
coend

Fig. 2. Protocol run by client i interacting with server s

and omission failures can occur only between sites for omission failures). We

show in Sect. 7.1 how this assumption can be removed.

In order to emulate the server s (and consequently satisfy property Pb4), our

primary-backup protocol consists of n, sites {sl,..., sn,}, each of which runs

the protocol in Fig. 3. The protocol for the clients remains the same.

inltlallze(i)
cobegin

IIif i = 0 then primary(i) else backup(i)
II dellvery-process(i)

II failure-detector(i)
eoend

Fig. 3. Protocol run by site si to emulate server s

The procedures primary and backup (shown in Fig. 4) are the same for all

the failure models. On the other hand, the implementation of the procedures ini-

tialize, broadcast(used in Fig. 4), dellvery-process and failure-detector

change depending on the particular failure model. However, we ensure that these

different implementations always satisfy a set of properties, called B1--B11 be-
low. We extracted these properties in order to make our proofs modular. In

particular we proved that, independent of the failure model, the protocol in

Figs. 3 and 4 satisfies Pbl-Pb5, as long as the remaining procedures satisfy

B1--Bll. As a result, we could then prove Pbl-Pb5 for any other failure model



by just ensuring that the implementation of broadcast, delivery-process and

failure-detector for that failure model satisfied B1-Bll.

procedure primary(j)

cobegin

I] inform-clients("Dest = st" )

[[ broadcast((mylastlog, s3,1as_(stat%)),j ) /* to all sites */

do forever

when received request from client c

response :---- II(stat%, request)

star% := star% o response

broadcast ((log, st, response), j)

send response to client c

od

coend

procedure backup(k)

do forever

((tag, st, r),j) :-- Deq(Rqueuek)

/* assume that dequeueing an empty queue

does not return any sensible value of tag */

/* synchronizing with the new primary */

if tag = mylastlog then
ifr E statek then

if r = last(statek) then skip

else statek :----s_ate_ \ last(statek)

else statek :---- statek o r

/* logging response from primary */

if tag = log then statek := statek o r

/* becoming the primary */

ifYj < k : Faultyk[sj] then prlmary(k)

od

Fig. 4. The procedures primary and backup

We now give the properties B1--Bll. In these properties, d, C and r are some

constants whose values depend on the failure model. Intuitively, d corresponds

to the amount of time that can elapse from the time a message is broadcast to

the time it is dequeued by the receiver, C corresponds to the blocking time and

r corresponds to the interval between successive "I am alive" messages that sites

send to each other (as we will see in the implementation of failure-detector).



When we say that a site "hMts", we mean that either the site has crashed or

has stopped executing the protocol by executing a stop. The array of booleans

Faultyk indicates which servers sk believes has halted: Faultyk[sj] being true

implies sk believes that sj has halted. Finally, we define a broadcast by a site to

be successful if the site does not halt during the execution of broadcast.

The properties can be subdivided according to the procedures to which they
relate:

Properties of broadcast and delivery-process:

BI: If sj initiates a broadcast b' after broadcast b, then no site dequeues b'
before b.

B2: If sj initiates a broadcast b at time t, then no site dequeues b after time
t+d.

B3: If sj initiates a broadcast at time t and does not halt by time t + C, then
the broadcast is successful. Furthermore, no broadcast takes longer than C

to complete.

Properties of failure--detector:

B4: If Faultyj[s_] becomes true, then it continues to be true, unless sj halts.

B5: The value of Faultyj [s_] can only change at time t = Ir + d for some integer
I>0.

B6: If Faultyj[sk] = true at time t then sk has halted by time t.

B7: If sj has not halted by time tl, and si, i < j has halted by time t2 where

tl = t2 + 7-+ d, then Faultyj[si] = true by time tx.

Properties of broadcast and delivery-process interacting with failure-de-
tector:

B8: No correct site halts in procedures initialize, broadcast, delivery-process
or failure-detector.

B9: If s I initiates a successful broadcast at time t, then for all non-halted sites

sk, k > j, raulty_[sj] = false through time [_]r + d.

B10: If s i initiates a successful broadcast b, then for every non-halted site s_:

(Faultyk[si] = true) =¢, (sk has dequeued b).

Bll: If sj initiates a broadcast b at time t and s_,k > j broadcasts b_, then
either no site dequeues b after bI, or Faultyk[sj] = false through time t + d.

7.1 Outline of the Proof of Correctness

We now informally argue that the protocol in Figs. 3 and 4 satisfies Pbl-Pb5 as

long as the procedures initialize, broadcast, dellvery-process and failure-
detector satisfy B1--Bll.

Define: Prmy, i at time t --- sj has not halted by time t

A Vk < j : Faultyj[sk] = true at time t.
From the above definition, Pbl can now be seen from B6 and the backup

protocol in Fig. 4. Pb2 trivially follows from Fig. 2. Pb3 follows from Fig. 4 as



norequestis sent to a site sj before sj becomes the primary. Also, Pb5 holds

(from B8 and Fig. 4) as a correct primary continues to be the primary. We now
show Pb4.

In order to show Pb4, we need to show two things-the state of the new

primary is consistent with the state of oldprimary; and all outages are bounded.
We first show that the states are Consistent.

Starting at the top of Fig. 4: when a site sj becomes the primary, it first
informs the clients of its identity by calling inform-clients. For now, ignore

the broadcast of (mylastlog,sj,-) by primary sj.

Whenever sj gets a request from a client, it computes the response, changes

state, broadcasts the log to the backups and sends the response back to the

client. It can be seen from Fig. 4 that if primary sj sends a response r to the

client, then s t must have executed a successful broadcast of (log, st, r). This fact

and properties B1,B2,B9 and B10 imply that (log, st, r) must also have been

dequeued by any backup sk before sk becomes the primary. Thus, the state of sk
will continue to be consistent with the state of st iff the states were consistent

when s t became the primary. We show this as follows.

Informally, the states of sj and sk could be inconsistent when sj becomes

the primary for the following reason. Consider a scenario in which some primary
si crashes during the broadcast of (log,si, r) for some r. It is possible that sk

received (log, si, r) and sj did not. As a result, the states ofsj and sk now differ.

It is for this reason that s t broadcasts (mylastlog, si , r') where r' = last(statej)
on becoming the primary. On receiving this, s_ sees that r' ¢ last(state_) =

r and removes r from its state. As a result, statej and statek become equal.

Similarly, sk would add r to its state had sj, and not sk, received (log, si, r).

In the scenario described in the last paragraph, response r is never sent to

the client (i.e. there is a service outage). We now show that such outages are
bounded, si did not send the response, and so by B3, must have halted by time

t (say). Now from B7 either Si+l halts or becomes the primary by time t + r + 6.
Since no correct site halts (by B8 and Fig 4), and the number of faulty sites are

bounded by f, there eventually will be a time when there is a correct primary

and no more outages occur.

From B3, the protocol C-blocking. Furthermore, it can be shown from B7,

B8 and Fig. 4 that the failover time of the protocol is f(d + r) for arbitrarily

small and positive r.

However, the primary procedure in Fig. 4 does not work if there are message

losses between the clients and the sites (due to link or omission failures). For

example, a non-faulty primary might omit to receive all requests from a client
due to a failure, violating Pb4. Similarly, inform-clients might omit to inform

some of the clients. However, it is relatively easy to account for these failures

when clients are non-faulty. Assume that there is an upper bound (say G) be-

tween any two requests from a client and that requests carry sequence numbers.

If the primary does not receive any requests from a client during an interval of

length G or if the primary receives some request with a sequence number gap,
then the primary halts. Similarly, the primary can detect that a response was



lostbyhavingclients acknowledge responses. If such an acknowledgement is not

received, then again the primary halts. Properties Pbl-Pb5 can again be shown
to be true if we make the above modification in Figs. 2 and 4.

8 Implementation for the various Failure Models

In this section, we show how to implement B1--Bll for the various failure mod-

els.

8.1 Crash Failures

The procedures implementing BI--Bll for crash failures are given in Fig. 5.
Whenever we say that a site "delivered M', we mean that the procedure deliver

has been called with M. Enq adds an element to the head of a queue and Deq

dequeues an element from the tail.

procedure inltlallze(k)
statek := Rqueue_ := e
Vi : Faultyk[si] := false

procedure broadcast(M, k)
send M to all sites

procedure deliver (M, k)
Let M be of the form (tag,-,-)
if tag e {log, mylastlog} then Enq(Rqueuek, (M, k))

procedure delivery-process(k)
do forever

if received M then deliver(M, k)
od

procedure failure-detector(k)
cobegin

II for i := 0 to oo
when current-time = it: send (alive, sk, it) to all sites

!Ifor i := 0 to
when current-time = ir + d:

Vj : if not delivered (alive, sj, it) then Faultyk[sj] := true
eoend

Fig. 5. Procedures for crash failures



WenowinformallyarguethatB1-Bll holdforthis implementationif d = 6
and C = 0. B1 holds as channels are FIFO and, B2 holds as d = 6 and the

maximum message delivery time is also 6. B3, B4 and B5 can be seen trivially.
B6 and B7 can be seen from failure-detector as there are no message losses

and message delivery time is atmost & B8 holds trivially. It can be shown that

if sj halts at time t, then no site sets Faulty[sj] to true before time t + 6. B9,
B10 and Bll now follow.

The procedures in Fig. 5 require ns > f, and so the lower bound on the

degree of replication is tight. Since C = 0 and d = 6, from Sect. 7.1, the lower

bounds on blocking time and failover time are tight as well.

8.2 Crash+Link Failures

The procedures in Sect. 8.1 do not work if links can fail. For example, if s1

sends a message to sk then the message might not reach sk due to a link failure

(which will violate B6 and B10). We therefore replace the implementation in

Fig. 5. with the one in Fig. 6, except that deliver is the same as before. For
this implementation, d = 26 and C = 0. These procedures use fifo-broadcast

and fifo-deliver in Fig. 7 which ensure that intermittent link failures become

permanent failures: if sj fifo-broadcasts a message m to sk and sk omits to

fifo-deliver m, then sk will not fifo-deliver any subsequent message from sj.

It can be shown (proof omitted) that this new implementation again satisfies
B1-Bll if ns > f + 1. Informally, this is true because of the following reason.

Whenever s I initiates a broadcast of M at time t, it sends M to all sites, and the
sites then relay M to all other sites. Since ns > f + 1, there is always at least one

non-faulty path between any two non-crashed sites, where a path consists of zero

or one intermediate sites. Therefore, if sj does not crash during the broadcast,
then all non-crashed sites will deliver Mby time t + 26. Furthermore B1 will be

satisfied because of the FIFO properties of fifo-broadcast and fifo-deliver.

This crash+link protocol requires n6 > f + 1, is 0-blocking (since C = 0),

and has a failover time of f(26 + r) (since d = 26). Thus, all lower bounds for

crash+link failures are tight.

8.3 General-Omission Failures

The implementation of the procedures for general-omission failures is given in

Figs. 8 and 9, except delivery-process which is the same as Fig. 6. Whenever,

we say that a site "fifo-delivered M', we mean that the procedure fifo-deliver

was called with M. These procedures were developed using a technique similar

to [8] (although modified to work in our non-round-based model) which requires

ns > 2f and d = 26.



procedure |n|t|alize(k)

state_ := Rqueuek := Dqueuek :--- ¢

Vi : Faultyk[sl] := false

last-sentk := Yj :expectedk_] := 0

procedure broadcast(M, k)

time :=current-lime

flfo-broadcast(in£t, M, sk , time)

procedure dellvery-process(k)

cobegin

[[ fifo-delivery-process(k)
H do forever

(tag, M, -, t) :=Deq(Dqueuek)

if tag = init then fifo-broadcast (echo, M, sk,t)

if tag = echo and not dequeued (tag,M, -, t) before then deliver (M, k)

od

coend

procedure failure-detector(k)

As = (alive, s,,it)

cobegin

]]for i := 0 to oo

when current-time -- it:flfo-broadcast(init, A_, sk,it)

[] for i:=O to
when current-time = iv + d:

Yj : if not delivered A_ then Faultyk[s_] := true

coend

Fig. 6. Procedures for crash+Iink failures

procedure fifo-broadcast(tag, M, sk, t)

send (tag, M, sk, t,last-sentk) to all

last-sent_ :=last-sentk + 1

procedure fifo-dellver (tag, M, s j, t)

Enq( Dqueuek, (tag, M, s j, t ) )

procedure flfo-dellvery-process (k)
do forever

if received (tag, M, sj, t, last i) then

if (lastj _expectedk_']) then skip
else

e_cted_[i]:=e_pected_[j]+ a
flfo-dellver (tag,M, sj,t)

od

Fig. 7. Procedures for crash+link failures



procedure inltlallze(k)
statek := Rqueuek := Dqueuek := e
Vi : Faultyk[s,] := false
current-primary:=last-nentk := Vj :ezpectedk_] := 0

procedure broadcast(M, k)
time :-- current-time

flfo-broadcast(init, M, sk, time)
if by time + d fifo-delivered (echo, M, sj, time)

for at least n, - f different j then return

else stop

procedure deliver (M, k)
Let M be of the form (tag, sj, -)
if tag E {log, mylastlog} then

if j <current-primary then return
else

current-primary.= j

Enq(Rqueuek, (M, k))

Fig. 8. Procedures for general--omission failures

We now briefly argue that these procedures satisfy B1--Bll. The detailed

proof is omitted from this paper. Had we used the implementation of broadcast

in Fig. 6, B10 (in particular) would be violated because a faulty primary sj

might omit to send the logs to the backups. Therefore, in Fig. 8, sj stops in
the broadcast of a response (say r) if less than ns - f sites fifo-deliver and

subsequently fifo--broadcast r. However, even ifsj does not stop in the broadcast,

a faulty (but non-crashed) site sk might still omit to deliver r, due to a receive-

omission failure, and later become the primary were sj to fail. To prevent this, sk

ensures (in procedure failure-detector) that it fifo-delivers some message (say

m') from at least one of the above ns - f sites that had earlier fifo-broadcast r. If
s_ does not receive such an m _, then s_ stops. Now, if sk omitted to fifo-deliver

r, then by the properties of fifo-broadcast and fifo-deliver, sk cannot fifo-deliver

m _ and would stop (and, therefore, cannot become the primary). Property B6

is similarly satisfied by ensuring that sites detect their own failure to send or

receive alive messages and therefore stop.

These procedures require n_ > 2f, d = 26 and C = 26. Furthermore, we have

developed a protocol for f = 1 (omitted in this paper) that is 6-blocking. Thus,
we establish that all lower bounds for general-omission failures are tight.

As mentioned earlier, the 6-blocking protbcol for f = 1 has scenarios in which

the site that receives the request is not the site that responds to the clients. This

is in fact necessary. Define a protocol to be "pass the buck" if in any failure-free

run of the protocol, the site that receives a request is not the site that sends the

corresponding response.



procedure failure-detector(k)

Vi, j: A_ := (alive, s._, it)

¥i,j:F] := (fault,s_,it)

eobeg|n

H for i := 0 to oo
when current-time it: flfo-broadcast(init, A_, sk, it)

[] for i := O to c¢
when current-tlme = iT + 6:

Vj : if not fifo-delivered (init, A_, sj, it) then
fifo-broadcast (echo, Fj, sk, it)

II for i := 0 to
when current-time = ir + d:

witnessk[k] := {sAfifo-denvered (echo, A'_, s_, it)}
Yj # k: witnessk[j] := {s,lfifo-denvered (echo, Z_, s,, it) or

fifo-delivered (echo, F], si, it)}
if 3j : [witnessk[j][ < n, - f then stop
if qj : not delivered A_ then Faultyk[sj] := true

coend

Fig. 9. Procedures for general-omission failures

• Theorem l. Any C-blocking protocol, where C < 2g, for send-omission failures

is _pass the buck".

Proof. Omitted in this paper. See [4]. U

8.4 Other Failure Models

The implementations of the procedures for send-omission and receive-omission

failures are similar to those for general-omission failures and so are omitted

from this paper. For receive-omission failures, the lower bound on the degree

of replication and the lower bound on blocking time when ns < 2f and f > 1

are not tight. Finding optimal protocols remains an open problem. However, the
lower bound on failover time for receive-omission failures, and all lower bounds

for send-omission failures are tight.

9 A Surprising Protocol

We now describe a 6-blocking protocol tolerating receive-omission failures for

the special case of ns = 2 and f = 1. This protocol is complex, and so we omit

the detailed description and only outline the protocol's operation here. This

protocol shows that our lower bound on blocking time when ns _< 2f and f = 1

is tight. The protocol has the odd (yet necessary as shown in [5]) property that
a non-faulty primary is forced to relinquish to a faulty backup. Furthermore, the

protocol is "pass the buck". We, however, show that most 6-blocking protocols

tolerating receive omission failures have to be "pass the buck".



Informally,let /' be the maximum time between any two successive client

requests (possibly from different clients), and let D be such that if some site s
becomes the primary at time to and remains the primary through time t > to ÷ D

when a client i sends a request, then Des_ - s at time t. We write D < /' to
mean that D is bounded and /_ is either unbounded or bounded and greater

than D. Then

Theorem2. Any C-blocking protocol, where C < 28, for receive-omission fail-

ures with ns <_ 2f and D < 1" is "pass the buck",

Proof. Omitted from this paper. U

Whether a protocol has to be "pass the buck" when the relation D < F does

not hold is an open question.
We now describe the protocol. There are two sites so and sl. They commu-

nicate with each other using fifo-broadcast and fifo-deliver shown in Fig. 7.

Henceforth, when we say that a site sends a message to the other, we will mean

that the message is sent with fifo-broadcast and other site receives it with
fifo-deliver.

In a failure-free run of this protocol, since the backup responds to the client,

the primary forwards any response to the backup (with a green tag as we see

below) and the backup sends this response to the client. However, if there is
a failure, then the primary responds to the clients. In this case, the primary

forwards a response to the backup with a red tag. The backup does not forward

a response to the client if the response has a red tag.

Let So initially be the primary. Whenever so receives a request from the

client, it computes a response r, changes state, and sends (green,r) to sl. Upon

receiving this message, sl updates its state, acknowledges to so, and then sends

r to the client. Because it is the backup that responds to the client, the protocol

is 8-blocking. Site so processes a new request only after receiving the acknowl-

edgement from sl for the previous request. Finally, So periodically sends alive

messages to sl, and sl acknowledges these messages.

Suppose that so does not get s1's acknowledgement for some message, say,

(green,r) (the argument is similar if no acknowledgement is received for an

alive message). There are three possibilities: (1) sl has crashed, (2) sl omitted

to receive (green,r) and so did not send the acknowledgement, (3) so omitted to

receive the acknowledgement, so now waits until it is supposed to send the next

alive message. So sends this alive message and waits for an acknowledgement.
We now consider the above three cases separately.

Case 1: sl has crashed. As a result, so does not receive the acknowledgement

to the alive message, so continues as the primary. From then on, whenever so

receives a request from the client, it computes the response r, sends (red,r) to

sx, and then sends the response back to the client. Also, So continues to send

alive messages. Since so is correct, it can continue like this forever.

Case 2: sl is faulty and omitted to receive (green,r). By the property of fifo-

broadcast and fifo-deliver, sl will not receive the alive messages that so sends.



sl concludes that s0 has crashed, sends (%1 is primary") to so and becomes the

primary. After that, it behaves like so in case 1 above (including sending alive
messages to so). Since so is correct, it receives (%1 is primary") (as opposed to

case 1) and so it becomes the backup. Also, since so is correct it will not omit

to receive (red,r) messages that sl sends and so so keeps its state consistent

with sl. Subsequently, if so stops receiving alive messages from sl, then sl has

crashed and so becomes the primary once again.

Case 3: so is faulty. Since sl is correct, it receives the alive message from so,

sends the corresponding acknowledgement and remains the backup (as opposed

to case 2). However, by the property of fifo-broadcast and fifo-receive, so will
not receive this acknowledge to the alive message (or the (%1 is primary")

message), and so it behaves as in case 1 and continues as the primary. Similar to

case 2, sl receives all (red,r) messages that so sends and so its state is consistent
with so. Finally, sl becomes the primary if it stops receiving alive messages

from so.

Case 2 in the protocol is the odd scenario in which the correct primary so

is being forced to relinquish to sl, known to be faulty. However, this scenario is
not something peculiar to our protocol. We showed in [5] that relinquishing to a

faulty backup is necessary when ns _< 2/.

10 Discussion

In [5], we present lower bounds for primary-backup protocols which constrain

the degree of replication, the failover time, and the amount of time it can take

to respond to a client request. In this paper, we derive matching protocols and

show that all except two of these lower bounds are tight. Furthermore, we show

that in some cases the optimal response time can only be obtained if the site

that receives the request is not site that sends the response to the clients.

We have attempted to give a characterization of primary-backup that is broad

enough to include most synchronous protocols that are considered to be instances

of the approach. There are protocols, however, that are incomparable to the class

of protocols we analyze as these protocols were developed for an asynchronous

system [6,9]. We are currently studying possible characterizations for a primary-

backup protocol in an asynchronous system and expect to extend our results to

this setting.
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