
Lecture Notes in Computer Science
Edited by G. Goos and J. Hartmanis

649

Advisory Board: W. Brauer D. Gries J. Stoer

A. Pettorossi (Ed.)

Meta-Programming
"Logic i n

Third International Workshop, META-92
Uppsala, Sweden, June 10-12, 1992
Proceedings

Springer-Verlag
Berlin Heidelberg NewYork
London Paris Tokyo
Hong Kong Barcelona
Budapest

Series Editors

Gerhard Goos
Universit~it Karlsruhe
Postfach 69 80
Vincenz,Priessnitz-Strare 1
W-7500 Karlsruhe, FRG

Juris Hartmanis
Cornell University
Department of Computer Science
4130 Upson Hall
Ithaca, NY 14853, USA

Volume Editor

Alberto Pettorossi
University of Rome Tot Vergata, Via della Ricerca Scientifica
1-00133 Roma, Italy

CR Subject Classification (1991): 1.2.2-4, E4.1

ISBN 3-540-56282-6 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-56282-6 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, re-use of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German Copyright Law of September 9, 1965, in its
current version, and permission for use must always be obtained from Springer-Verlag.
Violations are liable for prosecution under the German Copyright Law.

�9 Springer-Verlag Berlin Heidelberg 1992
Printed in Germany

Typesetting: Camera ready by author/editor
Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.
45/3140-543210 - Printed on acid-free paper

Preface

Meta-programming is a technique which is widely used in logic programming. It is
also an important technique for other programming paradigms and it has been present

in various areas of computer science throughout the history of its development.

Meta-programming can be understood as the treatment of programs as objects.

Thus, the various methodologies which refer to program transformation, program

analysis, and program manipulation for imperative, functional, and logic languages,

are all included in the area of meta-programming.

It is assumed that the programs under consideration have an associated sem-

antics. This hypothesits is essential, because program manipulations and program
transformations are meaningful only if they are performed while preserving the sem-

antic values.
In the case of logic languages where computations and programs can naturally

be viewed as proofs (recall the 'programs as proofs' paradigm), one can consider the

techniques for representing and manipulating proofs to be an essential part of the meta-

programming idea.
In particular, one may refer to proofs by using the 'demo' predicate, which can

be decorated with suitable arguments for explicitly describing the relevant properties of

the proofs in hand.

Proofs may belong to different logical theories. One may stratify those theories

in a hierarchy or one may amalgamate them into a unique theory. There are advantages

and disadvantages for either choice: the best solution very much depends on the

application domain.
In both cases one may refer to a proof in a given logical theory by a name (or a

term). The reader will find in this book some papers which address this 'naming

problem' and propose some solutions. The origin of the naming problem is linked to

GOdel's incompleteness theorem, which uses a naming technique for encoding logical

formulas.
A particularly interesting field where logical theories are used is knowledge

representation, where it is often required to represent what agents know about their

own knowledge and the knowledge of other agents. This 'reflexive' power can easily
be encoded into suitable logic programs, provided that the language includes some
meta-programming features.

It is not required tO use modal theories to represent these situations in a natural
way. Some of these issues have been considered in the invited lectures and in other
papers of these proceedings.

Foreword

This volume contains the papers presented at the Third International Workshop on

"Meta-Programming in Logic" held at the Department of Computer Science of the
University of Uppsala (Sweden), 10-12 June, 1992. This workshop is the successor of
the ones organized by John Lloyd in Bristol, U.K. (June 1988) and by Maurice
Bruynooghe in Leuven, Belgium (April 1990). This volume also includes the invited

lectures and the advanced tutorials from the workshop.
The Programme Committee received 35 papers, from which 18 were chosen for

a long presentation and 6 for a short one. The papers give an interesting and stimu-
lating view of the major topics under investigation on: i) the foundations and appli-
cations of meta-programming and transformational programming, ii) the design and
implementation of language facilities for meta-programming, and iii) knowledge rep-
resentation and meta-programming.

Unfortunately, we were not able to include in this volume the following 6

papers relative to the short presentations:
i) F. Giunchiglia and L. Serafini (IRST, Povo, Italy): "Hierarchical Meta-Logics (or:
How We Can Do Without Modal Logics)", ii) K. Hinkelmann (DFKI, Kaiserslautern,
Germany): "Forward Logic Evaluation: Developing a Compiler from a Partially
Evaluated Meta-Interpreter", iii) R. M. Jones (Optismsoft, Wegberg, Germany): "Why
Must the King Speak Out?", iv) H. Ohnishi and S. Akama (Asao-ku, Kawasaki-shi,
Japan): "Indexed Knowledge in Epistemic Logic Programming", v) J. S. Santib~ez
(A.I. Dept., Polytechic University Madrid, Spain): "A Formal Model for Temporal
Knowledge Based Systems Verification", and vi) D. G. Schwartz (Dept. Computer
Engineering, CWRU, Cleveland, Ohio): "Metaprograms: the Glue to Integrate and
Control Blackboard Knowledge Sources".

Their abstracts have been published in a document of the Computing Science

Department of the University of Uppsala (Sweden).
I would like to thank the members of the Programme Committee who carefully

read the submitted papers with the help of external referees and reported on time their
comments and opinions, and in particular those who attended the Programme
Committee meeting held in Rome at the beginning of February 1992. Special thanks
also go to Maurice Bruynooghe and Robert Kowalski who supported my work with
useful advice and suggestions.

I acknowledge the dedicated, patient, and skilful cooperation of Maudzio Proietti.
I am grateful to Jonas Barklund and the members of the Organizing Committee

for their efforts in making the workshop possible and preparing this volume. They
were very good at overcoming the inevitable difficulties due to the distance between
Rome and Uppsala, which sometimes made things not so easy.

On behalf of the participants and the Programme Committee I would like also

vI

to thank the invited speakers, who delivered very interesting and stimulating lectures.

Finally, I want to thank the Department of Electronic Engineering of the Uni-

versity of Rome 'Tor Vergata' (Italy), the IASI Institute of the Italian National Re-

search Council in Rome (Italy), and the Department of Computer Science of Uppsala
University (Sweden) for their financial support and for providing the necessary facil-
ities.

Alberto Pettorossi

A c k n o w l e d g e m e n t s

The Meta 92 Workshop has been made possible through generous financial support

from several sponsors:
- the Swedish Board for Technical Development (NUTEK),

- Uppsala University,
- the Association for Logic Programming,

- Swedish Institute of Computer Science (SICS), and

- SUN Microsystems AB.
The help from Civildatalogf0rbundet is also appreciated.

Being the chairman for the workshop, I find this an appropriate opportunity

also to thank the other members of the Organizing Committee for the considerable

time they have spent for preparing the workshop. I hope our combined efforts have

produced a stimulating setting for the workshop.

The success of this workshop is of course mostly dependent on the quality of
the program. The members of the Programme Committee have made a good effort to

judge each submission carefully and to include as many significant contributions as

time could allow.
In particular, we owe much to the programme chairman for the workshop,

Alberto Pettorossi, and to his colleague Maurizio Proietti for hosting the Programme

Committee meeting and for careful editing of the contributions.
Finally, I would like to thank Danny De Schreye for sharing valuable experi-

ences from the preceding workshop in this series.

Jonas Barldund

VII

Program Committee

L. Aiello Carlucci (Rome, Italy)
J. Barklund (Uppsala, Sweden)
H. Blair (Syracuse, U.S.A.)
K. A. Bowen (Syracuse, U.S.A.)
M. Bruynooghe (Leuven, Belgium)
A. Bundy (Edinburgh, U.K.)
W. Drabent (Warsaw, Poland)
K. Furukawa (Tokyo, Japan)
J. Gallagher (Bristol, U.K.)
J. Komorowski (Trondheim, Norway)

R. A. Kowalski (London, U.K.)
G. A. Lanzarone (Milan, Italy)
W. Marek (Ithaca, U.S.A.)
D. Miller (Philadelphia, U.S.A.)
L. M. Pereira (Lisbon, Portugal)
A. Pettorossi (Rome, Italy), chairman
J. Staples (Queensland, Australia)
L. Sterling (Cleveland, USA)
S.-A. T~nlund (Uppsala, Sweden)
F. Turini (Pisa, Italy)

Organizing Committee

J. Barklund (Uppsala, Sweden), chairman
A. Hamfelt (Uppsala, Sweden)

T. Hjerpe (Uppsala, Sweden)
F. M611erberg (Uppsala, Sweden)

List of Referees

L. Aiello, J. Alferes, J. Aparicio, R. Barbuti, J. Barklund, H. Blair, K. A. Bowen,
A. Brogi, M. Bruynooghe, A. Bundy, M. Cialdea, S. Costantini, M. Danelutto,
B. Demoen, D. De Schreye, W. Drabent, G. Fil~, H. Fujita, K. Furukawa,
J. Gallagher, E. Hainicz, Y. J. Jiang, T. Kawamura, J. Komorowski, R. A. Kowalski,
G. Lanzarone, W. Lukaszewicz, W. Marek, B. Martens, D. Miller, D. Nardi,
E. G. Omodeo, D. Pedreschi, L. M. Pereira, A. Pettorossi, M. Proietti, T. Shintani,
J. Staples, L. Sterling, A. Takeuchi, S.-A. T~irnlund, M. Temperini, F. Turini,
K. Verschaetse, S. Wierzchon, A.Wrzos-Kaminska, J. Wrzos-Kaminski.

This book also includes papers on: i) logical foundations of meta-pro-

gramming, ii) model-theoretic and proof-theoretic problems, iii) analysis and

transformation of logic programs, iv) use of meta-programming for deductive

databases, and v) implementation aspects related to meta-programming, like

modularization, compiler optimization, process communication, and object-

orientation.

Meta-programming is not a special feature of logic programming. As we

already said, it has been part of computer science since its very beginning. Indeed, if

meta-programming is considered to be manipulation of programs as objects, one can

say that it was already required when writing programs for the yon Neumann

computer. For instance, if we want to compute the sum of k integers which are

assumed to be stored from memory location i to memory location i+k-1, and we

assume that the values of k and i are known at run time only, it is necessary to write a

program whose instructions manipulate the program itself (if indirect addressing and

index registers are not available). Some of the instructions which will be executed at

run time, are themselves obtained as the result of a computation.

Also interpretation or compilation can be viewed as instances of meta-

programming. In both cases the executable program in machine language is the result

of a computation over the source program given as input.

Abstraction mechanisms present in some programming languages, like

i) making a procedure, say 'Lx.x+l', out of an expression, say 'x+l ', or ii) making a

block, say 'begin SI; $2 end', out of a sequence of statements, say 'S1; $2', can be

viewed as meta-programming techniques.

We do not have here the space to thoroughly explore many other programming
techniques (such as partial evaluation) and examine their relationship to meta-pro-

gramming. However, we want to remark that meta-programming is also present in

functional languages, in particular if they allow a higher-order type discipline. In that

case, in fact, one may obtain a function to be used as the result of the application of a
higher-order function to an argument which itself is a function. Obviously, higher-

order functions are extremely useful for conciseness and clarity. A standard example is

the function composition operator, which is very often used in functional pro-

gramming.

Rome, Italy
September 1992

Alberto Pettorossi

Table of Contents

Invited Papers

P. Giirdenfors
Belief Revision: A Vademecum . 1

L. Farigas Del Cerro and A. Herzig
Meta-Programming Through Intensional Deduction: Some Examples 11

K. Konolige
An Autoepistemic Analysis of Metalevel Reasoning in Logic Programming ... 26

Advanced Tutorials

J. Komorowski
An Introduction to Partial Deduction . 49

D. De Schreye and K. Verschaetse
Tutorial on Termination of Logic Programs . 70

Languages and Applications I

F. van Harmelen
Definable Naming Relations in Metalevel Systems . 89

A. Brogi, P. Mancarella, D. Pedreschi, and F. Turini
Meta for Modularizing Logic Programming . 105

S. K. Debray
Compiler Optimizations for Lowlevel Redundancy Elimination:
An Application of Metalevel Prolog Primitives . 120

S. Costantini, P. Dell'Acqua, and G. Lanzarone
Reflective Agents in Metalogic Programming . 135

Languages and Applications II

I. Cervesato and G.F. Rossi
Logic Meta-Programming Facilities in 'Log . 148

R. Bahgat
The Pandora Deadlock Handler Metalevel Relation . 162

K. Benkerimi and P.M. Hill
Object-Oriented Programming in G&lel: An Experiment . 177

Logical Foundations

D. De Schreye and B. Martens
A Sensible Least Herbrand Semantics for Untyped Vanilla Meta-Programming
and its Extension to a Limited Form of Amalgamation . 192

H. Christiansen
A Complete Resolution Method for Logical Meta-Programming Languages ... 205

xII

P. Bonatti
Model Theoretic Semantics for Demo .. 220

F. Giunchiglia, L. Serafini, and A. Simpson
Hierarchical Meta-Logics: Intuitions, Proof-Theory, and Semantics 235

Transformation and Analysis I

G.A. Wiggins
Negation and Control in Automatically Generated Logic Programs 250

A. Bossi, N. Cocco, and S. Etalle
Transforming Normal Programs by Replacement .. 265

Transformation and Analysis II

J.L. Trdff and S.D. Prestwich
Meta-Programming for Reordering Literals in Deductive Databases 280

M. Bruynooghe and G. Janssens
Propagation: A New Operation in a Framework for Abstract Interpretation of
Logic Programs .. 294

F. Mesnard and J.-G. Ganascia
CLP(Q) for Proving Interargument Relations .. 308

Knowledge Representation

A. Hamfelt and ,4. Hansson
Representation of Fragmentary Multilayered Knowledge ... 321

J. Grabowski
Metaprograms for Change, Assumptions, Objects, and Inheritance 336

Author Index . 353

