Skip to main content

Superpolynomial circuits, almost sparse oracles and the exponential hierarchy

  • Conference paper
  • First Online:
Foundations of Software Technology and Theoretical Computer Science (FSTTCS 1992)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 652))

Abstract

Several problems concerning superpolynomial size circuits and superpolynomial-time advice classes are investigated. First we consider the implications of NP (and other fundamental complexity classes) having circuits slighter bigger than polynomial. We prove that if such circuits exist, for example if NP has n logn size circuits, the exponential hierarchy collapses to the second level. Next we consider the consequences of the bottom levels of the exponential hierarchy being contained in small advice classes. Again various collapses result. For example, if EXP NP \(\subseteq\) EXP/poly then EXP NP =EXP.

This research was done while visiting the Boston University Computer Science Department with the support of NSF Grant CCR-8814339, The Netherlands Organization for Scientific research (NWO) grant SIR 13-603 and NWO-programma voor korte reisbeurzen.

Supported in part by National Science Foundation Grants CCR-8814339 and CCR-9103055.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allender E. & O. Watanabe. Kolmogorov Complexity and Degrees of Tally Sets. Proc. Structure in Complexity Theory third annual conference, IEEE Computer Society Press (1988).

    Google Scholar 

  2. Babai L., L. Fortnow & C. Lund. Non-deterministic exponential time has twoprover interactive protocols. Proc. 31st IEEE Symp. on Foundations of Computer Science, (1990) pp16–25.

    Google Scholar 

  3. Balcázar J.L. Self-reducibilityi. Journal of Computer and System Sciences 41 (1990) pp367–388.

    Article  Google Scholar 

  4. Balcázar J.L., J. Díaz & J. Gabarró. Structural Complexity I. W. Brauer, G. Rozenberg & A. Salomaa (eds.) EATCS Monographs on Theoretical Computer Science 11 (1988) Springer Verlag.

    Google Scholar 

  5. Feige U., S. Goldwasser, L. Lovász, S. Safra & M. Szegedy Approximating Clique is Almost NP-complete. Manuscript.

    Google Scholar 

  6. Hartmanis J., N. Immerman & V. Sewelson. Sparse Set in NP-P: EXPTIME versus NEXPTIME. Information and Control, 65 (1985) pp158–181.

    Article  Google Scholar 

  7. Hemachandra L.A. Counting in Structural Complexity Theory. Ph.D. thesis Cornell University (1987).

    Google Scholar 

  8. Homer S. & L. Longpré. On Reductions of NP Sets to Sparse Sets. To appear in Proc. Structure in Complexity Theory sixth annual conference (1991) in Chigaco Il.

    Google Scholar 

  9. Kadin J. PNP[logn] and sparse Turing complete sets for NP. Proc. Structure in Complexity Theory second annual conference, IEEE Computer Society Press (1987) pp33–40.

    Google Scholar 

  10. Kannan R. Circuit-size Lower Bounds and Non-reducibility to Sparse Sets. Information and Control 55 (1982) pp40–46.

    Article  Google Scholar 

  11. Karp, R.M. Reducibility among combinatorial problems. Complexity of Computer Computations, R.E. Miller & J.W. Thatcher eds. Plenum N.Y. pp85–103.

    Google Scholar 

  12. Karp, R.M. & R.J. Lipton. Some connections between nonuniform and uniform complexity classes. Proc. 21 st IEEE Found. Comput. Sci. (1980) pp302–309.

    Google Scholar 

  13. Mahaney S.R. Sparse complete sets for NP: Solution of a conjecture by Berman and Hartmanis. Journal of Computer and System Sciences 25 (1982) pp130–143.

    Article  Google Scholar 

  14. Ogiwara M. & A. Lozano. On One Word-Decreasing Self-Reducible Sets. To appear in Proc. Sructure in Complexity Theory sixth annual conference (1991) in Chigaco Il.

    Google Scholar 

  15. Ogiware M. & O. Watanabe On polynomial time boounded truth-table reducibility of NP sets to sparse sets. Proc. 22nd Annual ACM Symposium on Theory of Computing (1990) pp457–467.

    Google Scholar 

  16. Wilson, C.B. Relativized Circuit Complexity J. Comp. Sys. Sci. 31 (1985) pp169–181.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rudrapatna Shyamasundar

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buhrman, H., Homer, S. (1992). Superpolynomial circuits, almost sparse oracles and the exponential hierarchy. In: Shyamasundar, R. (eds) Foundations of Software Technology and Theoretical Computer Science. FSTTCS 1992. Lecture Notes in Computer Science, vol 652. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-56287-7_99

Download citation

  • DOI: https://doi.org/10.1007/3-540-56287-7_99

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56287-0

  • Online ISBN: 978-3-540-47507-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics