
Path Orderings for Termination
of Associative-Commutative Rewriting*

Nachum Dershowitz, Subrata Mi t ra
Department of Computer Science

University of Illinois at Urbana-Champaign
1304 West Springfield Avenue
Urbana, Illinois 61801, USA.

{nachura, mitra}@cs.uiuc.edu

Abstract

We show that a simple, and easily implementable, restriction on the recursive path
ordering, which we call the "binary path condition," suffices for establishing termina-
tion of extended rewriting modulo associativity and commutativity.

1 I n t r o d u c t i o n

Rewrite systems find application to various aspects of theorem proving and programming
language semantics. The essential idea in rewriting is to use an asymmetric directed equality
(~) , rather than the usual symmetric equality relation (~).

Termination of a system consisting of such directed equations means that no infinite
sequences of left-to-right replacements are possible for any term. Termination is important
for using rewriting as a computational tool, and for simplification in theorem provers. One
popular way of proving termination of a rewrite system is to use path orderings, based on
a precedence relation on the function symbols of the system. Another common approach
interprets function symbols as multivariate polynomials. For a survey of these techniques,
see [Der87].

A binary function f is said to be associative and commutative (AC for short) if f obeys
the equations

f (x , f (y , z)) = f (f (x , y) , z)
f (x , y) = f (y ,x) .

Since it is not possible to orient the second equation without losing termination~ rewriting
modulo such a congruence has to be handled in a special way. In essence, we rewrite AC
equivalence classes, rather than terms.

*This research was supported in part by the U. S. National Science Foundation under Grants CCR-90-
07195 and CCI~-90-24271.

169

Polynomials can be used to prove termination of rewriting modulo AC when AC-
equivalent terms have the same interpretation. But this severely restricts the degree of
polynomial that can be used. (See [Lan79] and [BL87].) Path orderings have been com-
monly used in theorem provers, even for AC-rewriting (see the discussion in [Bjo82, page
350]), despite the fact that they do not establish termination in the AC case (see the coun-
terexamples in [DHJP83]). Extensions of path orderings have been proposed that do handle
associative and commutative functions properly ([BP85], for example), most recently in
[KSZ90]. However, the ordering of [KSZ90] is difficult to implement, because it requires
many nondeterministic operations (like pseudocopying; see Section 2).

In this paper, we show that if a rewrite system can be proved terminating using the recur-
sive path ordering (RPO), then it is also AC-terminating--provided that when comparing
two terms with the same (or equivalent) AC symbol at their roots, we compare subterms
componentwise, rather than as multisets. This criterion can be easily implemented.

We write s ,-~.~ t to denote that s and t are rearrangements using the AC axioms. AC-
rewriting (~n/Ae) can be defined as follows: u[s], ~R/AV u[t]~, for terms s, t, context u and
position r , if s ~,~ s', s ' --*R t ' and t' ...,c t. When dealing with AC systems, it is often
convenient to treat AC symbols as functions with variable arity by considering only flattened
terms. We use 7 to denote the flattened version of t. An ordering :,- is AC-compatible if,
for all terms s,s ' , t , t ' , s ,.~,~ s' ~- t' ,.~,~ t implies s ~- t, in which case, we can also say that

~- L A rewrite system is AC-terminating if and only if the relation --*R/AV is contained in
an AC-compatible reduction ordering. In general, we use standard terminology and notation
for rewrite systems. For a survey of" the field, refer to [DJ90].

2 B i n a r y P a t h C o n d i t i o n

In this section we develop a restricted version of RPO--called "binary path condition"--
which can be extended to an AC-compatible reduction ordering.

We first show that R,PO, in general, is not AC-compatible. Consider the rule

f (a , f (a ,b)) --4 f (b , f (a ,a))

If we consider b ~-1 a, then we can slmw that f (a , f (a , b)) ~,,,,, f(b, f(a,a)) , assuming
multiset status for f. However, we also have that f(a, f(a, b)) ~oo /(~, f(~, ~)). Clearly,
R,PO with lexicographic status is not compatible with the commutativity axiom:

f(a,b) --~ f(b,a)

If we now have a ~-i b, then using left-to-right status for f , we have f(a, b) ~,po f(b, a) '~.c
f(a, b), which violates irreflexivity. Finally, we show that RP0 on flattened terms is not
AC-compatible:

I (a ,b) -~ g(a,b)
f (. ,g (~ ,b)) -~ f(~,~,b)

Here f ~ i g, and f is AC. Now, we have f (a,a,b) = f (a , f (a ,b)) ~"rr~ f(a,g(a,b)) ~-~
f (a, a, b), which violates irreflexivity.

These counterexamples show that RPO with status cannot be extended to an AC-
compatible ordering. We therefore define a restricted version of it (~-b~), which uses RPO

170

with status for the non-AC symbols, but uses R.PO without status to compare terms which
have equivalent top-level AC operators. Here we use t ~bp~ s to mean t ~ s or t ~'bp~ s.

D e f i n i t i o n 2.1 (Binary Path Coudition). Let }-I be a well-founded precedence ordering on
the function symbols. We have t = f (t ~ , . . . , t~) ~-bp~ g (s~ , . . . , s , ,) = s iffone of the following
holds:

1. ti ~bpcs for some i, 1 < i < u.

2. f > - / g , a n d t ~ b ~ s j for a l l j , l < j < m .

3. f ,-.f g, f and g are non-AC, and have the same status, and either

�9 f has multiset status, and { t l , . . . , tn}~raut{Sl , . . . , am}, or,

�9 f has lexicographic status, and

- (tl ,t,,)~,,,(sl,...,s,,), and

- t > - b p e s j f o r a l l j , l < j < m .

4. f ~ j g, f , g are AC, t = f (t l , t2) and s = g(sl ,s2), and either (tl , t2) :,-~o,,p (sl,s2) or
(t l , t z) ~o , , v (s2,sl), where (ti , t2) >-~omv (Sl,S'/)iff either tl >-bw sl and t2 ~bp~ s2, or,
tl N@c s~ and tz ~bpc el.

To compare terms with variables, we can use the fact that a ground term tot is greater
under :'-bp~ than xa (x is a variable), for any substitution q, whenever x occurs in t.

T h e o r e m 2.2. Let R be a rewrite system. I f for each rule I --* r E R we have 1 >'bpc r, then
R is AC-terminating.

We first recall the definition of AC-RPO (>-,c), on ground terms, due to [KSZ90]. This
ordering compares flattened terms.

D e f i n i t i o n 2.3. Let >-1 be a well-founded precedence ordering on the function symbols. We
have t = f (t l , . . . , tn) ~-~c g (s l , . . . , Sin) = S iff one of the following holds:

1. ti ~acs for some i, 1 < i < n, where ti N-ace iff ti "~c s or ti Nac s.

2. f ~ j g , a n d t ; . - ~ s i f o r a l l j , l < j _ < m .

3. f "~I g, f and g are non-AC and have the same status, and either

�9 f has multiset status, and {tl , t , } ~ m , t { s l , . . . ,sin}, or,

�9 f has lexicographic status, and

- - (g i , ' ' ' , tn)~-lex(31,..., Sin), and

- t ~ c s j for all j , 1 < 3 < m .

4. f ~1 g, f , g are AC, t = f (T) , s = g(S), S' = S - T = {sl, ..., s~,} (where " - " denotes
the multiset difference performed using ,vat, i.e., terms equivalent with respect to "~,c
can be dropped from both T and S), and either

171

�9 k = 0 a n d n > m (i . e . , S - T = @ a n d T - S # 0) , o r

* f (T - S) ~* f (T ') , and T' = T1 O . . . O Tk and for all i (1 < i < k) either

- Ti = {u} and u ~,~ s~, or

- Ti = { u l , . . . , ut} and f (u l , . . . , ut) ~,~ s~.

Also, in this case, either t =~+ f (T ') , or, for at least one i, we have instead a strict
decrease in ~-~.

Case 4 of this definition uses tile operation :~, which may be one of the following: pseudo-
copying, elevation or flattening. Here we briefly explain these notions; for details refer to
[KSZ90]. Pseudo-copying is used to allow a single big (that is, with a top-level function
which is higher than f in the precedence relation ~'I) subterm on the left-hand side to
handle multiple subterms on the right. For example, while comparing the terms tl = f(g(x))
and t2 = f (h(x) , h(x)), where f is AC, and g ~ - / f ~-1 h, we can say that tl ~-,, tz, since
tl =~ f(gg(x), gy(x)) ~-~ t2, where gg(x) is a pseudo-copy of g(x). Note that pseudo-copying
is allowed only for big terms which are immediate subterms of the top-level AC operator of the
left-hand side term. At times, a big term may be nested further down, in which case elevation
is used to bring it up. For example, in comparing f(c(g(x))) with f (h(z) , h(x)), where
g ~ l f :"I h b-i c, we can use the following steps: f(c(g(x))) =~ f (g(x)) ~'a~ f (h(x) , h(x)).
Finally, flattening can be used to remove immediate nesting of different AC functions which
have the same precedence. For example, we could say f (g(x) , y) =~ f (x , y), if jr NI g, and
f and g are AC. The essential idea in this ordering is to partition the subterms of the AC
functions and compare the components, using =V to make the relation transitive. It is shown
in [KSZ90] that this ordering is well-founded and AC-compatible.

We are ready for a proof of the theorem:

Proof . We show that for any two terms s and t, if t :'-br, s then t ~** ~, by induction on
the sizes of s and t. There are several cases to be considered, depending on the possibile
reasons why t Y'brr s. We assume that t is of the form f (t l , . . . ,in) and s is 9(s l , . . . , s ,~) .

1. If ti ~br~ s, then, by the inductive hypothesis we have ti ~,r s, and hence i Y-,~ ~, by
Case 1 of Definition 2.3.

2. If f ~-! g and t ~'bp~ sj, then by the inductive hypothesis, we have t ~-,~ ~ , 1 < j _< m.
There are two further possibilities:

* g is not AC. In this case, ~ = g(~l , . . . ,~-~), and therefore we have 7 ~-a, ~, by
Case 2 of Definition 2.3.

�9 Suppose g is AC (thus m = 2). In this case, there are various possibilities for
s, for example we could have: s = g(g(s la ,s la) ,s ,) , or s = gCs,,g(s2a,s2a)),
or s = g(g(sla,sl.2),g(sz.l,s2.2)), and so forth. However, in each case, we have
"5 = g(s'~,..., s'k), where each s~, 1 < j _< k, is either a subterm of sl or of s2.
Therefore, we have ~ ~-~, ~.

3. If f and g are both non-AC, and f , , , /g, then we can use the inductive hypothesis on
the flatten subterms of s, and then the proposition follows.

172

4. If f and g are both AC, and f ~ I g then n = m = 2. Furthermore, without loss
of generality, we can assume that tl ~'bpr st, and t2 ~bpcS2. (The other cases admit
similar proofs.) There are two further possibilities:

�9 If t2 ~-bpc s2, then by the inductive hypothesis we have: ~ ~-~e ~ and ~ ~-~c ~-~2.
Thus, we could use this partitioning of t to show that ~ ~-~c ~.

�9 If tz "~ac s2, then again the proposition holds, because we could ignore ~ and
when comparing t with ~.

D

Since ~-~, is AC-compatible, we have ~ ~-~c ~, not only when t ~-bp~ s, but also if t ,,~,~
l t ~'bpc s. In ordcr to prove termination of a system using ~bpr it is therefore sufficient to use
any rearrangement of the left- and right:hand side terms. We also have, for any AC function
symbol f and terms s and t, that if t ~-bw s, then f (i , X) ~bpc f (s , X) (and therefore,
f(~, x) ~-.o f(~, x)).

We have shown that the relation ~-bp~ is embedded in the AC-compatible reduction or-
dering ~-,c. Therefore, the binary path condition is sufficient for proving AC-termination. It
is important to note that the relation (~'bpr defined here is not really an ordering, because
it is not transitive. For example, if we have the precedence relation g ~-! f ~-I h, then we
can show that (here f is AC, while g and h are non-AC)

f(g(x), g(y)) ~bp~ f (f (x , x), f (y, y)) "~a~ f (f (x , y), f (x , y)) ~br~ f(h(x, y), h(x, y)).

However, it is the case that f(g(x), 9(y)) ~bpc f(h(x, y), h(x, y)). The interesting point about
~'bp~ is that it is easy to implement; much easier than the ordering of [KSZ90].

3 Examples

The binary path condition developed in the previous section, like ~-~c, and unlike [BP85], has
no restriction on the precedence relation ~'t, and can therefore be used to prove termination
of a large class of rewrite systems.

Two examples follow:

E x a m p l e 3.1 (Arithmetic over natural numbers), lfere * and + are AC, and * ~-,, + ~I
s ~-/O.

O + x -~ z
s (z) + y -~ s (x + y)

O*x ~ 0

(~+~)*~ ~ (~*~)+(y*~)

173

Example 3.2 (Free commutative ring).

O + x ~ x
- x + x --* 0

- 0 ~ 0
- - - - X ~ X

- (x + v) --" - = + - v

O*z --* 0
- x * y ---, - (z , y)

=, (v+z) -, (= ,y)+(= ,z)

Ileve * and + are AC, and * ~-1 - ~-1 + ~-10.

4 D i s c u s s i o n

We have considered a simple restriction on RPO that can be extended to an AC-compatible
ordering. The restriction disallows comparison of two terms with equivalent top-level AC
functions when both subterms on the right-hand side are dominated by only one subterm
on the left-hand side.

Independently, Bachmair [Bac92] has presented an AC-compatible rewrite-relation, also
based on [KSZ90], and proved its termination using a minimal counterexample argument.
Our termination condition is essentially the same as one rewrite step of [Bac92], with the
possibility of multiset status added. It is believed that the transitive closure of this relation
is identical to the ordering in [KSZ90], but this remains to be proved.

It will be interesting to be able to extend the relation defined here to cases where simple
multiset comparisons may be allowed for subterms of the AC-terms.

R e f e r e n c e s

[Bac92]

[BP85]

[BL87]

[Bjo821

[Der87]

Leo Bachmair. Associative-commutative reduction orderings. Information Pro-
cessing Letters. To appear.

Leo Bachmair and David A. Plaisted. Termination orderings for associative-
commutative rewrite systems, d. of Symbolic Computation, vol. 1, pages 329-349
(1985).

Ahlem Ben Cherifa and Pierre Lescanne. Termination of rewriting systems by
polynomial interpretations and its implementation. Science of Computer Pro-
#ramming, vol. 9, pages 137-159 (1987).

Dines Bjorner, editor. Proceedings of the IFIP Working Conference on Formal
Description of Programming Concepts-II. Garmisch-Partenkirchen, West Ger-
many, North-Holland 1982.

Nachum Dershowitz. Termination of rewriting. J. of Symbolic Computation, vol.
3, pages 69-116 (1987).

[DHJP831

[D J90]

[KSZ90]

[Lan79]

174

Nachum Dershowitz and Jieh Hsiang and N. Alan Josephson and David A.
Plaisted. Associative-commutative rewriting. In Proceedings of the Eighth Inter-
national Joint Conference on Artificial Intelligence, Karlsruhe, West Germany,
pages 940-944, 1983.

Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In J.
van Leeuwen, editor, Handbook of Theoretical Computer Science, chapter 6,
pages 243-320, North-Holland, Amsterdam, 1990.

Deepak Kapur, G. Sivakumar and Hantao Zhang. A new method for proving ter-
mination of AC-rewrite systems. In Proceedings of the Tenth International Con-
ference of Foundations of Software Technology and Theoretical Computer Science,
vol. 472 of Lecture Notes in Computer Science, pages 133-148, Springer-Verlag,
Berlin, 1990.

Dallas S. Lankford. On proving term rewriting systems are Noetherian. Memo
MTP-3, Mathematics Department, Louisiana Tech. University, Kuston, LA, 1979.

